

Protocol API

EtherNet/IP Adapter

V2.15.0

Hilscher Gesellschaft für Systemautomation mbH

www.hilscher.com

DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public

Introduction 2/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Table of Contents

1 Introduction ... 6
1.1 Abstract .. 6
1.2 List of Revisions ... 6
1.3 System Requirements .. 7
1.4 Intended Audience ... 7
1.5 Specifications ... 8

1.5.1 Technical Data .. 8
1.5.2 Limitations ... 9
1.5.3 Protocol Task System .. 10

1.6 Terms, Abbreviations and Definitions .. 11
1.7 References to documents .. 12

2 The Common Industrial Protocol (CIP) .. 13
2.1 Introduction ... 13

2.1.1 CIP-based Communication Protocols .. 14
2.1.2 Extensions to the CIP Family of Networks ... 16

2.1.2.1 CIP Safety .. 16
2.1.2.2 CIP Sync and CIP Motion ... 17

2.1.3 Special Terms used by CIP ... 18
2.2 Object Modeling ... 20
2.3 Services .. 23
2.4 The CIP Messaging Model ... 25

2.4.1 Connected vs. Unconnected Messaging ... 25
2.4.2 Connection Transport Classes .. 25
2.4.3 Connection Establishment, Timeout and Closing .. 26

2.4.3.1 Real Time Format ... 28
2.4.3.2 32-Bit Header Format ... 28
2.4.3.3 Modeless Format .. 28
2.4.3.4 Heartbeat Format ... 29

2.4.4 Connection Application Types ... 29
2.4.4.1 Exclusive Owner Connection .. 30
2.4.4.2 Input Only Connection .. 30
2.4.4.3 Listen Only Connection .. 31

2.4.5 Types of Ethernet/IP Communication .. 31
2.4.6 Implicit Messaging ... 32

2.4.6.1 Structure of Transmitted I/O Data ... 33
2.4.6.2 Restrictions regarding the EtherNetInterface (NDIS) channel .. 34

2.4.7 Explicit Messaging ... 35
2.5 CIP Data Types .. 36
2.6 Object Library ... 37
2.7 CIP Device Profiles .. 39
2.8 EDS (Electronic Data Sheet) .. 41

3 Available CIP Classes in the Hilscher EtherNet/IP Stack ... 42
3.1 Introduction ... 43
3.2 Identity Object (Class Code: 0x01) .. 44

3.2.1 Class Attributes ... 44
3.2.2 Instance Attributes ... 45
3.2.3 Supported Services ... 45

3.3 Message Router Object (Class Code: 0x02) ... 46
3.3.1 Supported Services ... 46

3.4 Assembly Object (Class Code: 0x04) .. 47
3.4.1 Class Attributes ... 47
3.4.2 Instance Attributes ... 47
3.4.3 Supported Services ... 47

3.5 Connection Manager Object (Class Code: 0x06) .. 48
3.5.1 Class Attributes ... 48
3.5.2 Supported Services ... 48

3.6 TCP/IP Interface Object (Class Code: 0xF5) ... 49
3.6.1 Class Attributes ... 49
3.6.2 Instance Attributes ... 49

Introduction 3/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

3.6.2.1 Status ... 53
3.6.2.2 Configuration Capability.. 54
3.6.2.3 Configuration Control .. 55
3.6.2.4 Physical Link ... 56
3.6.2.5 Interface Configuration ... 56
3.6.2.6 TTL Value ... 58
3.6.2.7 Mcast Config ... 58
3.6.2.8 Select ACD ... 59
3.6.2.9 Last Conflict Detected .. 59
3.6.2.10 Encapsulation Inactivity Timeout .. 60

3.6.3 Supported Services ... 60
3.7 Ethernet Link Object (Class Code: 0xF6) .. 61

3.7.1 Class Attributes ... 61
3.7.2 Instance Attributes ... 61

3.7.2.1 Interface Speed .. 64
3.7.2.2 Interface Status Flags ... 64
3.7.2.3 Physical Address .. 65
3.7.2.4 Interface Counters .. 65
3.7.2.5 Media Counters .. 65
3.7.2.6 Interface Control ... 65
3.7.2.7 Interface Type ... 66
3.7.2.8 Interface State .. 66
3.7.2.9 Admin State .. 66
3.7.2.10 Interface Label .. 67
3.7.2.11 Interface Capability ... 67

3.7.3 Supported Services ... 68
3.8 Time Sync Object (Class Code: 0x43) ... 68
3.9 DLR Object (Class Code: 0x47) ... 69

3.9.1 Class Attributes ... 69
3.9.2 Instance Attributes ... 69

3.9.2.1 Network Topology ... 70
3.9.2.2 Network Status ... 70
3.9.2.3 Active Supervisor Address.. 70
3.9.2.4 Capability Flags .. 70

3.9.3 Supported Services ... 70
3.10 Quality of Service Object (Class Code: 0x48) .. 71

3.10.1 Class Attributes ... 71
3.10.2 Instance Attributes ... 72

3.10.2.1 802.1Q Tag Enable .. 72
3.10.2.2 DSCP Value Attributes ... 73

3.10.3 Supported Services ... 73

4 Getting Started/Configuration ... 74
4.1 Task Structure of the EtherNet/IP Adapter Stack .. 74

4.1.1 EIS_APS task .. 75
4.1.2 EIS_OBJECT task ... 75
4.1.3 EIS_ENCAP task ... 75
4.1.4 EIS_CL1 task .. 75
4.1.5 EIP_DLR task .. 75
4.1.6 TCP/IP task ... 76

4.2 Configuration Procedures .. 76
4.2.1 Using the Packet API of the EtherNet/IP Protocol Stack ... 76
4.2.2 Using the Configuration Tool SYCON.net ... 76

4.3 Configuration Using the Packet API ... 77
4.3.1 Basic Packet Set ... 79

4.3.1.1 Configuration Packets .. 79
4.3.1.2 Optional Request Packets .. 80
4.3.1.3 Indication Packets the Host Application Needs to Handle .. 80

4.3.2 Extended Packet Set ... 81
4.3.2.1 Configuration Packets .. 81
4.3.2.2 Optional Request Packets .. 84
4.3.2.3 Indication Packets the Host Application Needs to Handle .. 84

4.3.3 Stack Configuration Set ... 86
4.3.3.1 Configuration Packets .. 86
4.3.3.2 Indication Packets the Host Application Needs to Handle .. 89

5 Status information .. 90

6 The Application Interface .. 91

Introduction 4/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

6.1 The EIS_APS-Task .. 91
6.1.1 EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ/CNF – Configure the Device with

Configuration Parameter ... 92
6.1.2 EIP_APS_CLEAR_WATCHDOG_REQ/CNF – Clear Watchdog error .. 104
6.1.3 EIP_APS_SET_PARAMETER_REQ/CNF – Set Parameter Flags ... 107
6.1.4 EIP_APS_MS_NS_CHANGE_IND/RES – Module Status/ Network Status Change Indication........ 110
6.1.5 EIP_APS_GET_MS_NS_REQ/CNF – Get Module Status/Network Status 113
6.1.6 EIP_APS_SET_MODULE_STATUS_REQ/CNF – Set Module Status .. 115
6.1.7 Modify Configuration Parameters .. 117

6.2 The EIS_OBJECT – Task ... 118
6.2.1 EIP_OBJECT_FAULT_IND/RES – Fault Indication ... 119
6.2.2 EIP_OBJECT_CONNECTION_IND/RES – Connection State Change Indication 122
6.2.3 EIP_OBJECT_MR_REGISTER_REQ/CNF – Register an additional Object Class at the Message

Router 130
6.2.4 EIP_OBJECT_CL3_SERVICE_IND/RES - Indication of acyclic Data Transfer 134
6.2.5 EIP_OBJECT_AS_REGISTER_REQ/CNF – Register a new Assembly Instance 141
6.2.6 EIP_OBJECT_ID_SETDEVICEINFO_REQ/CNF – Set the Device’s Identity Information 148
6.2.7 EIP_OBJECT_GET_INPUT_REQ/CNF – Getting the latest Input Data .. 154
6.2.8 EIP_OBJECT_RESET_IND/RES – Indication of a Reset Request from the network 157
6.2.9 EIP_OBJECT_RESET_REQ/CNF - Reset Request .. 162
6.2.10 EIP_OBJECT_READY_REQ/CNF – Set Ready and Run/Idle State .. 165
6.2.11 EIP_OBJECT_REGISTER_SERVICE_REQ/CNF – Register Service ... 168
6.2.12 EIP_OBJECT_CONNECTION_CONFIG_IND/RES – Indication of Configuration Data received during

Connection Establishment .. 171
6.2.13 EIP_OBJECT_TI_SET_SNN_REQ/CNF – Set the Safety Network Number for the TCP/IP Interface

Object 178
6.2.14 EIP_OBJECT_SET_PARAMETER_REQ/CNF – Set Parameter ... 181

6.2.14.1 Handling of connections of type “Application Object Trigger” or “Change of State” 186
6.2.15 EIP_OBJECT_AS_TRIGGER_TYPE_IND/RES – Indication of the currently used trigger type 188
6.2.16 EIP_OBJECT_CFG_QOS_REQ/CNF – Configure the QoS Object .. 192
6.2.17 EIP_OBJECT_CIP_SERVICE_REQ/CNF – CIP Service Request ... 196
6.2.18 EIP_OBJECT_CIP_OBJECT_CHANGE_IND/RES – CIP Object Change Indication 201
6.2.19 EIP_OBJECT_CIP_OBJECT_ATTRIBUTE_ACTIVATE_REQ/CNF – CIP Object Attribute Activate

Request .. 205
6.2.20 RCX_LINK_STATUS_CHANGE_IND/RES – Link Status Change ... 209
6.2.21 EIP_OBJECT_FWD_OPEN_FWD_IND/RES – Indication of a Forward_Open 212
6.2.22 EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND/RES – Indication of Forward_Open

Completion Result .. 218
6.2.23 EIP_OBJECT_FWD_CLOSE_FWD_IND - Indication of a Forward_Close .. 221
6.2.24 EIP_OBJECT_CREATE_OBJECT_TIMESYNC_REQ - Create Time Sync Object/Configuration of

the Synchronization Mode .. 226
6.3 The Encapsulation Task ... 229
6.4 The EIS_CL1-Task .. 229
6.5 The EIS_DLR-Task .. 229
6.6 The TCP_IP-Task .. 229

7 Special topics ... 230
7.1 Getting the Receiver Task Handle of the Process Queue ... 230

8 Status/Error Codes Overview .. 231
8.1 Status/Error Codes EipObject-Task ... 231

8.1.1 Diagnostic Codes .. 232
8.2 Status/Error Codes EipEncap-Task ... 233

8.2.1 Diagnostic Codes .. 234
8.3 Status/Error Codes EIS_APS-Task ... 236

8.3.1 Diagnostic Codes EIS_APS-Task ... 237
8.4 Status/Error Codes Eip_DLR-Task .. 238
8.5 General EtherNet/IP Error Codes .. 239

9 Appendix ... 241
9.1 Module and Network Status ... 241

9.1.1 Module Status ... 241
9.1.2 Network Status .. 242

9.2 Quality of Service (QoS) .. 243
9.2.1 Introduction .. 243
9.2.2 DiffServ .. 243

Introduction 5/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

9.2.3 802.1D/Q Protocol ... 244
9.2.4 The QoS Object ... 245

9.2.4.1 Enable 802.1Q (VLAN tagging) .. 245
9.3 DLR .. 246

9.3.1 Ring Supervisors ... 246
9.3.2 Precedence Rule for Multi-Supervisor Operation .. 247
9.3.3 Beacon and Announce Frames ... 247
9.3.4 Ring Nodes .. 248
9.3.5 Normal Network Operation .. 250
9.3.6 Rapid Fault/Restore Cycles ... 250
9.3.7 States of Supervisor .. 250

9.4 Quick Connect .. 253
9.4.1 Introduction .. 253
9.4.2 Requirements .. 255

9.5 Non-Null Forward Open and Null Forward Open ... 256
9.5.1 Introduction .. 256
9.5.2 Use cases .. 257
9.5.3 Using the Null Forward Open Feature ... 258

9.5.3.1 Activatation ... 258
9.5.3.2 Handling of use cases .. 258
9.5.3.3 Preparing the EDS file for the Null Forward Open Support... 259
9.5.3.4 Preparing the STC file for the Null Forward Open Support ... 261

9.6 Legal Notes .. 263
9.7 List of Tables .. 267
9.8 List of Figures ... 270
9.9 Contacts ... 272

Introduction 6/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

1 Introduction

1.1 Abstract

This manual describes the user interface of the EtherNet/IP Adapter implementation on the netX

chip. The aim of this manual is to support the integration of devices based on the netX chip into

own applications based on driver functions or direct access to the dual-port memory.

The general mechanism of data transfer, for example how to send and receive a message or how

to perform a warmstart is independent from the protocol. These procedures are common to all

devices and are described in the ‘netX DPM Interface manual’.

1.2 List of Revisions

Rev Date Name Revisions

21 2019-10-07 MB, KM Firmware/stack version V2.14.0

 Section Technical Data: Feature Null Forward Open added.

 Section Identity Object (Class Code: 0x01), subsection Instance Attributes: Bit
2 of attribute 5 is now settable by the host application.

 Section Connection Manager Object (Class Code: 0x06), subsection
Supported Services: Sercives Forward_Open and Forward_Clsoe added.

 Chapter Non-Null Forward Open and Null Forward Open added.

 Section Example Configuration Process removed.

 Section “Optional sequence count handling” of packet
EIP_OBJECT_CL3_SERVICE_IND removed.

 Define value 0 for input and output assmeblies in packet
EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ/CNF – Configure the

Device with Configuration Parameter

 Correct ulCmd field of Table 142 (EIP_OBJECT_FWD_OPEN_FWD_RES –

Response of Forward_Open indication)

 Clarification of Object revision of TCP/IP Interface object. Revision is 4.

 Clarification of Object revision of QoS object. Revision is 1.

22

Update 01

2021-03-02 KMI Firmware/stack version V2.15.0

 Added description of new parameter flag (Table 120) and handling of AOT
and COS connections (6.2.14.1)

 Added description of packet EIP_OBJECT_AS_TRIGGER_TYPE_IND/RES –

Indication of the currently used trigger type (6.2.15)

 Added clarification for the behavior of
EIP_OBJECT_CONNECTION_CONFIG_IND in case ForwardOpen/Close
forwarding is used

 Added new assembly flag EIP_AS_FLAG_FORWARD_SEQUENCE_COUNT

 Added new packet EIP_APS_SET_MODULE_STATUS_REQ

 Added new parameter flag
EIP_OBJECT_PRM_APPLICATION_CONTROLS_IDENTITY_STATE_ATTRIBUTE

 Decrease packet data size (abData) to 1400 bytes:
EIP_OBJECT_CIP_OBJECT_CHANGE_IND,
EIP_OBJECT_FWD_OPEN_FWD_IND,
EIP_OBJECT_FWD_OPEN_FWD_RES,
EIP_OBJECT_FWD_CLOSE_FWD_IND,
EIP_OBJECT_FWD_CLOSE_FWD_RES

 Increase object change indication timeout value from 3 to 10 seconds

 Support of Identity Object revision 2

 The host application is now able to write the data (attribute 3) of a
configuration assembly instance (PSEIPCORE-275)

Table 1: List of Revisions

Introduction 7/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

1.3 System Requirements

This software package has following system requirements to its environment:

 netX-Chip as CPU hardware platform

 operating system rcX

1.4 Intended Audience

This manual is suitable for software developers with the following background:

 Knowledge of the TCP/IP Protocol Interface Manual

 Knowledge of the netX DPM Interface manual

 Knowledge of the Common Industrial Protocol (CIPTM) Specification Volume 1

 Knowledge of the Common Industrial Protocol (CIPTM) Specification Volume 2

Introduction 8/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

1.5 Specifications

The data below applies to the EtherNet/IP Adapter firmware and stack version V2.15.0.

This firmware/stack has been written to meet the requirements of a subset outlined in the CIP Vol.

1 and CIP Vol. 2 specifications.

1.5.1 Technical Data

Maximum number of input data 504 bytes per assembly instance

Maximum number of output data 504 bytes per assembly instance

IO Connection Types (implicit) Exclusive Owner,

 Listen Only,

Input only

IO Connection Trigger Types Cyclic, minimum 1 ms*

 Application Triggered, minimum 1 ms*

 Change Of State, minimum 1 ms*

Explicit Messages Connected and unconnected

Max. number of connections 8 (sum of connected explicit and implicit

connections)

Max. number of user specific objects 20

Unconnected Message Manager (UCMM) supported

Predefined standard objects Identity Object (0x01)

Message Router Object (0x02)

Assembly Object (0x04)

Connection Manager (0x06)

DLR Object (0x47)

QoS Object (0x48)

TCP/IP Interface Object (0xF5)

Ethernet Link Object (0xF6)

Time Sync Object (0x43)

DHCP supported

BOOTP supported

Baud rates 10 and 100 MBit/s

Duplex modes Half Duplex, Full Duplex, Auto-Negotiation

MDI modes MDI, MDI-X, Auto-MDIX

Data transport layer Ethernet II, IEEE 802.3

Introduction 9/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

ACD supported (from firmware version 2.4.1)

DLR V2 (ring topology) supported

Quick Connect supported

CIP Sync supported

Integrated switch supported

Reset services Identity Object Reset Service of Type 0 and 1

Integrated Web Server supported (since firmware version 2.5.15,

for details of Web Server, see reference #5)

Null Forward Open supported

* depending on number of connections and number of input and output data

Firmware/stack available for netX

netX 50 yes

netX 51 yes (from firmware version 2.7.4)

netX 100, netX 500 yes

PCI

DMA Support for PCI targets yes

Slot Number

Slot number supported for CIFX 50-RE, CIFX 50E-RE

Configuration

 Configuration by tool SYCON.net (Download or exported configuration of two files named

config.nxd and nwid.nxd)

 Configuration by packets

Diagnostic

Firmware supports common diagnostic in the dual-port-memory for loadable firmware

1.5.2 Limitations

 Symbolic TAGs are not supported

Introduction 10/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

1.5.3 Protocol Task System

To manage the EtherNet/IP implementation six tasks are involved into the system. To send

packets to a task, the task main queue have to be identifier. For the identifier for the tasks and their

queues are the following naming conversion:

Task Name Queue Name Description

EIS_ENCAP_TASK ENCAP_QUE Encapsulation Layer

EIS_OBJECT_TASK OBJECT_QUE EtherNet/IP Objects

EIS_CL1_TASK QUE_EIP_CL1 Class 1 communication

EIS_TCPUDP EN_TCPUDP_QUE TCP/IP Task

EIP_DLR QUE_EIP_DLR DLR Task

EIS_APS_TASK DPMINTF_QUE Dual Port Memory Interface or Application
Task Slave

PTP_TASK No Queue available Precision Time Protocol Task

Table 2: Names of Tasks in EtherNet/IP Firmware

Introduction 11/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

1.6 Terms, Abbreviations and Definitions

Term Description

ACD Address Conflict Detection

AP Application on top of the Stack

API Actual Packet Interval or Application Programmer Interface

AS Assembly Object

ASCII American Standard Code for Information Interchange

BOOTP Boot Protocol

CC Connection Configuration Object

CIP Common Industrial Protocol

CM Connection Manager

DHCP Dynamic Host Configuration Protocol

DiffServ Differentiated Services

DLR Device Level Ring (i.e. ring topology on device level)

DMA Direct Memory Access

DPM Dual Port Memory

EIM Ethernet/IP Scanner (=Master)

EIP Ethernet/IP

EIS Ethernet/IP Adapter (=Slave)

ENCAP Encapsulation Layer

ERC Extended Error Code

GRC Generic Error Code

IANA Internet Assigned Numbers Authority

ID Identity Object

IP Internet Protocol

LSB Least Significant Byte

MR Message Router Object

MSB Most Significant Byte

ODVA Open DeviceNet Vendors Association

OSI Open Systems Interconnection (according to ISO 7498)

PCI Peripheral Component Interconnect

QoS Quality of Service

RPI Requested Packet Interval

SNN Safety Network Number

TCP Transmission Control Protocol

UCMM Unconnected Message Manager

UDP User Datagram Protocol

VLAN Virtual Local Area Network

Table 3: Terms, Abbreviations and Definitions

All variables, parameters, and data used in this manual have the LSB/MSB (“Intel”) data

representation. This corresponds to the convention of the Microsoft C Compiler.

Introduction 12/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

1.7 References to documents

This document is based on the following specifications:

[1] Hilscher Gesellschaft für Systemautomation mbH: Dual-Port Memory Interface Manual, netX

Dual-Port Memory Interface, DOC060302DPM17EN, Revision 17, English, 2020-06.

[2] Hilscher Gesellschaft für Systemautomation mbH: Packet API, netX Dual-Port Memory,

Packet-based services (netX 10/50/51/52/100/500), DOC161001API04EN, Revision 4,

English, 2020-06.

[3] Hilscher Gesellschaft für Systemautomation mbH: Protocol API, TCP/IP, Packet Interface,

V2.6, DOC050201API17EN, Revision 17, English, 2020-10.

[4] ODVA: The CIP Networks Library, Volume 1, “Common Industrial Protocol (CIP™)”, Edition

3.29, English, November 2020.

[5] ODVA: The CIP Networks Library, Volume 2, “EtherNet/IP Adaptation of CIP”, Edition 1.26,

English, April 2020.

[6] Hilscher Gesellschaft für Systemautomation mbH: Application Note, Functions of the

Integrated WebServer, DOC091203AN06EN, Revision 6, English, 2017-09.

[7] The Common Industrial Protocol (CIP™) and the Family of CIP Networks, Publication

Number: PUB00123R0, downloadable from ODVA website (http://www.odva.org/)

[8] IEEE 1588 - IEEE Standard for a Precision Clock Synchronization Protocol for Networked

Measurement and Control Systems, Revision 2, 2008

[9] Hilscher Gesellschaft für Systemautomation mbH: Application Note, EtherNet/IP Adapter,

CIP Sync, V2.9/V3.2 and higher, DOC130104AN05EN, Revision 5, English, 2016-09.

http://www.odva.org/

The Common Industrial Protocol (CIP) 13/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

2 The Common Industrial Protocol (CIP)

This chapter introduces the EtherNet/IP protocol as a member of the CIP network family of

protocols. It covers mainly the same topics as the paper “The Common Industrial Protocol (CIP™)

and the Family of CIP Networks” published by the ODVA which is recommended for more detailed

information, see reference [7] listed on page 12 of this document.

2.1 Introduction

Currently, the requirements for networks used in manufacturing enterprises are massively

changing. These are some of the most important impacts:

 The lack of scalable and coherent enterprise network architectures ranging from the plant

floor level to enterprise level (This causes numerous specialized - and often incompatible –

network solutions.)

 Adoption of Internet technology

 Company-wide access to manufacturing data and seamless integration of these data with

business information systems

 Demand for open systems

From the ODVA’s point of view, common application layers are the key to true network integration.

Therefore, the ODVA (jointly with ControlNet International) offers a concept for advanced

communication based on common application layers. namely the Common Industrial Protocol

(CIP™).

These are the main advantages of CIP:

 CIP allows complete integration of control with information, multiple CIP Networks and

Internet technologies.

 CIP uses a media-independent platform providing seamless communication from the plant

floor to enterprise level with a scalable and coherent architecture,

 CIP allows integration of I/O control, device configuration and data collection across multiple

networks.

 CIP decreases engineering and installation time and costs while maximizing ROI.

The Common Industrial Protocol (CIP) 14/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

2.1.1 CIP-based Communication Protocols

A couple of communication protocols have been developed as part of the CIP network family of

communication protocols.

Table 4 provides an overview on these:

Protocol

name

Year of

introduction

Main facts

DeviceNet™ 1994 CIP implementation using the popular Controller Area Network (CAN) data link layer.

CAN according to ISO 1189810 defines only layers 1 and 2 of the OSI 7-layer model.

DeviceNet covers the remaining layers.

Advantages: Low cost of implementation, easy to use, many device manufacturers offer

DeviceNet capable products.

Vendor organization: Open DeviceNet Vendor Association (ODVA,

http://www.odva.org).

ControlNet™ 1997 new data link layers compared to DeviceNet that allow for much higher speed (5 Mbps),

strict determinism and repeatability

extending the range of the bus (several kilometers with repeaters) for more demanding

applications.

Vendor organization: ControlNet International (CI, http://www.controlnet.org)

EtherNet/IP 2000 EtherNet/IP is the CIP implementation based on TCP/IP.

It can therefore be deployed over any TCP/IP supported data link and physical layers,

such as IEEE 802.311 (Ethernet).

Easy future implementations on new physical/data link layers possible.

CompoNet 2006 CompoNet provides a bit-level network to control small, high speed machines and the

CIP Network services to connect to the plant and the enterprise.

CompoNet is especially designed for applications using large numbers of simple

sensors and actuators by CompoNet provides high speed communications with

configuration tools Efficient construction, Simple set-up, High availability.

CompoNet uses Time Division Multiple Access ("TDMA") in its network layer.

CompoNet includes an option for power (24V DC, 5A) and signal in the same cable

with the ability to remove and replace nodes under power.

Table 4: Network Protocols for Automation offered by the CIP Family of Protocols

Among these, EtherNet/IP is the CIP implementation based on TCP/IP.

Note that CIP is independent from physical media and data link layer.

http://www.odva.org/

The Common Industrial Protocol (CIP) 15/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

The overall relationship between these main implementations of CIP and the ISO/OSI 7-layer

model is shown in

Table 5: The CIP Family of Protocols

The Common Industrial Protocol (CIP) 16/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

2.1.2 Extensions to the CIP Family of Networks

2.1.2.1 CIP Safety

For achieving functional safety for CIP Networks, CIP Safety has been introduced in 2004. It

provides users with fail-safe communication between devices, controllers and networks for safety

applications.

CIP Safety is a protocol extension that allows the transmission of safety relevant messages. Such

messages are governed by additional timing and integrity mechanisms that are guaranteed to

detect system flaws to a very high degree, as required by international standards such as IEC

6150814. If anything goes wrong, the system will be brought to a safe state, typically taking the

machine to a standstill.

The Common Industrial Protocol (CIP) 17/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

2.1.2.2 CIP Sync and CIP Motion

Two other significant extensions to CIP are CIP Sync and CIP Motion. CIP Sync allows

synchronization of applications in distributed systems through precision real-time clocks in all

devices. Tight synchronization of these real-time clocks is achieved using the IEEE 1588 standard.

The CIP Sync technology provides the ideal basis for motion control applications such as CIP

Motion.

CIP Sync is the time synchronization technology for the Common Industrial

Protocol (CIP). This technology allows accurate real-time synchronization of devices and

controllers connected over CIP networks that require

 time stamping,

 recording sequences of events,

 distributed motion control,

 increased control coordination.

CIP Sync uses the time synchronization technology as defined in standard “IEEE 1588 - Precision

Clock Synchronization Protocol for Networked Measurement and Control Systems” which is

described in reference [8] and [9].

The main components of CIP Sync are:

 The Precision Time Protocol defined in IEEE 1588:2008. It is a network protocol providing a

standard mechanism for time synchronization of communicating clocks across a network of

distributed devices.

 The Time Sync object (CIP class ID 0x43) providing a CIP interface to the IEEE 1588

standard.

A more detailed description of this CIP extension with respect to the EtherNet/IP protocol stack

from Hilscher is given in the Application Note EtherNet/IP Adapter CIP Sync .

Ordinary devices can operate with CIP Sync or CIP Safety devices simultaneously in the same

system. There is no need for strict segmentation into “Standard”, “Sync” and “Safety” networks. It is

even possible to combine all three functions in one device.

This chapter focuses on the following aspects of CIP:

 Object Modeling (2.2)

 Services (2.3)

 Messaging Protocol (2.4)

 Object Library (2.5)

 Device profiles (2.7)

 Electronic Data Sheets (2.8)

CIP Sync is expected to be supported by the EtherNet/IP Adapter protocol stack beginning with

version 2.8.

The Common Industrial Protocol (CIP) 18/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

2.1.3 Special Terms used by CIP

As CIP uses a producer/consumer architecture instead of the often used client/server architecture,

some special terms in this context should be explained here precisely.

Client A client is a device sending a request to another node on the network (the

server) and expecting a response from the server.

Server A server is a device receiving a request from another node on the network

(the server) and reacting by sending a response to the client.

Producer According to the CIP specification, a producer is a network node which is

responsible for transmitting data. It places a message on the network to be

consumed by one or more consumers. The produced message is not

directed to a specific consumer (implicit messaging). Instead, the producer

sends the data packets along with a unique identifier for the contents of the

packet.

Consumer According to the CIP specification, a consumer is a network node (not

necessarily the only one) which receives data from a device acting as a

producer on the network (implicit messaging). All interested nodes on the

network can access the contents of the packet by filtering for the unique

identifier of the packet.

Producer/Consumer Model

The producer/consumer model uses an identifier-based addressing scheme

in contrast to the traditional source/destination message addressing

scheme which is applied in conjunction with the client/server architecture

(see Figure 1 and Figure 5).

It offers the following advantages:

1. It is very efficient as it increases the information flow while it decreases the network load.

2. It is very flexible.

3. It can easily handle multicast communication.

The network nodes decide on their own whether to consume or not to consume the data in the

corresponding message.

Figure 1: Source/Destination vs. Producer/Consumer Model

The Common Industrial Protocol (CIP) 19/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Explicit Message

Explicit messages are used within CIP for point-to-point and client/server connections. They

contain addressing and service information causing execution of a specific service on a specific

part of the network node.

An explicit data transmission protocol is used in the data fraction of the explicit message packet.

Explicit messages can either be connection-oriented or connection-less.

Implicit (I/O) Message

Implicit messages do not contain any transmission protocol in their IO data, for instance there is

not any address and/or service information. A dynamically generated unique connection ID allows

reliable identification. The data format has already been specified in the EDS file previously. Thus

the efficiency of data transmission is improved as the meaning of the data is already known.

Implicit messages can only be connection-oriented. There are no connection-less implicit

messages defined within CIP.

Data transmission for implicit messages can be initiated cyclically (by clock/timer) or based on

change-of state.

For more details on explicit and implicit messages also see section 2.4.5 “Types of Ethernet/IP

Communication” on page 31.

The Common Industrial Protocol (CIP) 20/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

2.2 Object Modeling

CIP is based on abstract object modeling. Every device in a CIP network is modeled as a collection

of objects.

According to the CIP Specification, an object provides an abstract representation of a particular

component within a product. Therefore, anything not described in object form is not visible through

CIP.

CIP objects can have the following structured elements:

 classes,

 instances,

 attributes.

Furthermore, objects may contain services offering a well-defined functionality.

A class is a set of objects all representing the same kind of system component. Each class has a

unique Class ID number in the range between 1 and 65535. The CIP specification defines an own

library of standard objects (described in Part 5 of references). It also offers the possibility to extend

the object model by defining own objects.

Sometimes it is necessary to have more than one “copy” of a class within a device. Each such

“copy” is denominated as an instance of the given class.

Objects have data variables associated with them. These are called the attributes of the particular

object. Typically attributes provide status or govern the operation of the object. To each attribute of

an object, an Attribute ID number in the range between 0 and 255 is assigned

There are two kinds of attributes, namely instance and class attributes.

This means, an instance of a particular object is the representation of this object within a class.

Each instance has the same set of attributes, but has its own set of attribute values, which makes

each instance unique. Instances have a unique Instance ID number (range: 1-65535).

In this context, also see Figure 2: A class of objects.

Object

Instances

CIP Node

A Class of

Objects

Figure 2: A class of objects

The Common Industrial Protocol (CIP) 21/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

In addition to the instance attributes, there is also another kind of attributes an object class may

have, namely the class attributes. These represent attributes that have class-wide scope. I.e. they

describe properties of the entire object class, e.g., the number of existing instances of this

particular object or the class revision. Class attributes have the instance ID 0.

Uniform Addressing Scheme

Addressing of objects and their components is accomplished by a uniform addressing scheme.

The following information is necessary to address data inside a device via the network.

Item Description

Node Address An integer identification value assigned to each node on a CIP Network. On

EtherNet/IP, the node address is the IP address.

Class Identifier (Class ID) An integer identification value assigned to each object class accessible from the

network.

Instance Identifier (Instance ID) An integer identification value assigned to an object instance that identifies it

among all instances of the same class.

Attribute Identifier (Attribute ID) An integer identification value assigned to a class or instance attribute.

Service Code An integer identification value which denotes an action request that can be

directed at a particular object instance or object class.

Table 6: Uniform Addressing Scheme

This kind of addressing is used for instance in explicit messaging and also in the internal binding of

one object to another. Identification of configurable parameters in the Electronic Device Sheets

(EDS files) is also in the same way.

Figure 3 shows the addressing scheme.

Figure 3: Example for Addressing Schema with Class – Instance – Attribute

The Common Industrial Protocol (CIP) 22/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

According to the CIP Specification (reference [4]), the ranges of the following Table 7: Ranges for

Object Class Identifiers apply for object class identifiers:

Range of object class

identifiers

Meaning

0…0x63 Area for publicly defined objects

0x64…0xC7 Area for vendor-specific objects

0xC8…0xEF Reserved for future use by ODVA/CI

0xF0…0x2FF Area for publicly defined objects

0x300…0x4FF Area for vendor-specific objects

0x500…0xFFFF Reserved for future use by ODVA/CI

Table 7: Ranges for Object Class Identifiers

For attribute identifiers, the following table applies:

Range of attribute

identifiers

Meaning

0…0x63 Area for publicly defined objects

0x64…0xC7 Area for vendor-specific objects

0xC8…0xFF Reserved for future use by ODVA/CI

Table 8: Ranges for Attribute Identifiers

Figure 4 shows an example on how an object attribute is addressed in CIP.

Node ID: 192.168.1.1 Node ID: 192.168.1.2

Node ID: 192.168.1.4

Node ID: 192.168.1.3

Object Class #5

Instance

#1

Object Class #5

Instance

#1

Instance

#2

Attribute #2

Object Class #7

Instance

#1

CIP Link

Node ID 192.168.1.4

Object Class #5

Instance #2

Attribute #2

Figure 4: Object Addressing Example

The Common Industrial Protocol (CIP) 23/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

2.3 Services

Objects have associated functions called services. Services are used at explicit messages (also

see section Explicit Messaging on page 35). Services are identified by their service codes defining

the kind of action to take place when an object is entirely or partly addressed through explicit

messages according to the addressing scheme (see Table 6 page 21 and Figure 3 page 21).

As Table 9 explains, there are in general three kinds of service available to which specific ranges

of service code identifiers have been associated:

Range of service identifiers Description

0x00 … 0x31 Range for CIP Common Services

0x32 … 0x4A Range for vendor-specific services

0x4B … 0x63 Range for object class-specific services

0x64 … 0xFF Reserved

Table 9: Ranges for Service Codes

Besides simple read and write functions, a set of more sophisticated CIP Common Services has

been defined within the CIP specification. These services (0x00 … 0x31) may be used in all kinds

of CIP networks. They may be applicable or not applicable to a specific object depending on the

respective context. Some times the meaning also depends from the class.

The Common Industrial Protocol (CIP) 24/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

In general, the following service codes for CIP Common Services are defined within the CIP

specification:

Numeric value of service code Service to be executed

00 Reserved

01 Get_Attributes_All

02 Set_Attributes_All

03 Get_Attribute_List

04 Set_Attribute_List

05 Reset

06 Start

07 Stop

08 Create

09 Delete

0A Multiple_Service_Packet

0B Reserved for future use

0D Apply_Attributes

0E Get_Attribute_Single

0F Reserved for future use

10 Set_Attribute_Single

11 Find_Next_Object_Instance

12-13 Reserved for future use

14 Error Response

15 Restore

16 Save

17 No Operation (NOP)

18 Get_Member

19 Set_Member

1A Insert_Member

1B Remove_Member

1C GroupSync

1D-31 Reserved for additional Common Services

Table 10: Service Codes according to the CIP specification

The Common Industrial Protocol (CIP) 25/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

2.4 The CIP Messaging Model

CIP (and thus EtherNet/IP) separates between two standard types of messaging: implicit and

explicit messaging (see section Types of Ethernet/IP Communication on page 31, especially Table

14: Comparison of basic Types of Ethernet/IP Communication: Implicit vs. Explicit Messaging).

Additionally, we have to separate between connected and unconnected messaging.

2.4.1 Connected vs. Unconnected Messaging

Connected messaging has the following characteristics.

 Resources are reserved.

 It reduces data handling upon receipt of messages.

 Supports the producer-consumer model and time-out handling

 Explicit and implicit connections available

 It is a controlled connection.

 A connection needs to be configured.

 There is the risk that a node is running out of applicable connections.

Unconnected messaging has the following characteristics.

 Unconnected messaging must be supported on every EtherNet/IP device (minimum

messaging requirement a device has to support) and is therefore always available.

 The resources are not reserved in advance, so there is no reservation mechanism at all.

 No configuration or maintenance required.

 The message can be used only when needed.

 It supports all explicit services defined by CIP.

 More overhead per message

 It is mainly used for low-priority messages occurring once or not frequently.

 It is also used during the connection establishment process of connected messaging

2.4.2 Connection Transport Classes

The CIP specification defines seven transport classes (Class 0 to Class 6) of which the following

are applicable in the EtherNet/IP context:

 Implicit (Cyclic real-time communication, Producer/Consumer)

 Transport Class 0

 Transport Class 1

These transport classes differ in the existence (Class 1) or absence (Class 0) of a

preceding 16 bit sequence count value used for avoiding duplicate packet delivery.

 Explicit (Acyclic non-real-time communication, Client/Server)

 Transport Class 3

Class 3 connections are transport classes for bidirectional communication which are

appropriate for the client-server model.

The Common Industrial Protocol (CIP) 26/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

2.4.3 Connection Establishment, Timeout and Closing

A CIP connection is established by the EtherNet/IP Scanner (Master). In order to do so, the

scanner sends a Forward_open request to the EtherNet/IP Adapter. This request includes such

information as:

 Identity of originator (Vendor ID, serial number of the connection)

 Timeout information for the connection to be established

 Connection Parameters:

 Connection Type

 Priority

 Connection Size

 Production Trigger

 Transport Class

 Requested speed of data transmission (Request Packet Interval - RPI)

 Connection Path (target assembly instances also called connection points)

When the EtherNet/IP Adapter receives a Forward_open request, the protocol stack establishes

the connection on its own using the information received from the EtherNet/IP Scanner. If it

succeeds, it sends the EIP_OBJECT_CONNECTION_IND indication with ulConnectionState =

EIP_CONNECTED = 1 to the application.

When the EtherNet/IP Adapter receives a Forward_close request, the connection is closed and

connection-related data is cleared. The stack sends an EIP_OBJECT_CONNECTION_IND

indication with ulConnectionState = EIP_UNCONNECT = 0 to the application. The indication is

also sent when the connection times out.

When talking about CIP connections in the EtherNet/IP context often the terms “target” and

“originator” are used. The originator is the device that sends the Forward_Open frame to the

Target, which then returns the frame to the originator. Usually, a scanner originates a connection

and the adapter is the target.

On EtherNet/IP a Forward_Open frame usually establishes two connections at the same time, one

in the OT direction and one in the TO direction.

This is why a scanner has to provide at least two connection points (assembly instances) in order

to open a connection. In Figure 6 for example the scanner can use the assembly instances #1 and

#2. #1 is the instance that is used for the TO direction (the adapter sends data to the originator

thus produces data on the network) and #2 can be used for the OT direction (the adapter

receives data from the originator thus consumes data from the network).

These connection points are transmitted via the Forward_Open in the “Connection Path” field.

The following table gives an overview about the most important parameters that are sent along

with the Forward_Open frame.

The Common Industrial Protocol (CIP) 27/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Parameters Name Description

Connection Timeout Multiplier The Connection Timeout Multiplier specifies the multiplier applied to

the RPI to obtain the connection timeout value.

OT RPI Originator to Target requested packet rate. This is the cycle time the

Originator uses to send I/O frames as soon as the connection has

been established.

OT Network

Connection Parameters

Connection

Type

This field specifies whether the I/O frames are sent as Point to Point or

as Multicast

 Connection Size The size, in bytes, of the data of the connection.

The connection size includes the sequence count and the 32-bit real

time header, if present. (See section 2.4.3.1 “ Real Time Format”)

TO RPI Target to Originator requested packet rate. This is the cycle time the

Target uses to send I/O frames as soon as the connection has been

established.

TO Network

Connection Parameters

Connection

Type

This field specifies whether the I/O frames are sent as Point to Point or

as Multicast

 Connection Size The size, in bytes, of the data of the connection.

The connection size includes the sequence count and the 32-bit real

time header, if present. (See section 2.4.3.1 “Real Time Format”)

Transport Type/Trigger Trigger Cyclic, Change Of State, Application Triggered

 Class Class 0 / Class 1

Connection Path Specifies the addressed assembly instances (connection points)

Usually, the following order is used:

1) Configuration Assembly Instance

2) Output Assembly Instance (OT)

3) Input Assembly Instance (TO)

Table 11: Forward_Open Frame – The Most Important Parameters

What assembly instances are available in the device must be provided with the EDS file.

Additionally, all available connections that can be established to the device must be provided in the

[Connection Manager] section.

There are two further elements concerning Ethernet/IP connections:

 Real Time Format

 Connection Application Types

These elements are described in the following sections.

The Common Industrial Protocol (CIP) 28/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

2.4.3.1 Real Time Format

Every connection has a pre-defined Real Time Format, which is the format of the data in the OT

and TO direction. What Real Time Format shall be used is not specified in the Forward_Open,

but in the [Connection Manager] section of the EDS file. Although the Real Time Format is not

provided in the Forward_Open frame, it still has influence on the connection sizes within the

network connection parameters.

The following Real Time Formats are available:

 32-Bit Header Format (includes run/idle notification)

 Modeless Format (no run/idle notification)

 Heartbeat Format (no run/idle notification)

2.4.3.2 32-Bit Header Format

The 32 bit header real time format includes 0-n bytes of application data prefixed with 32 bits of

header.

The 32-bit real time header format prefixed to the real-time data shall be the following form:

Bits 4-32 Bits 2-3 Bit 1 Bit 0

Reserved ROO COO Run/Idle

Table 12: 32-Bit Real Time Header

The run/idle flag (bit 0) shall be set (1 = RUN) to indicate that the following data shall be sent to the

target application. It shall be clear (0 = IDLE) to indicate that the idle event shall be sent to the

target application.

The ROO and COO fields (bits 1-3) are used for the connection application type “Redundant

Owner” which is not supported by the Hilscher EtherNet/IP Stack.

A class 0 32-bit header real time packet format is:

32-bit real time header 0-n bytes of application data

A class 1 32-bit header real time packet format is:

2 bytes sequence count 32-bit real time header 0-n bytes of application data

2.4.3.3 Modeless Format

The modeless real time format may include 0-n bytes of application data and there is no run/idle

notification included with this real time format.

A class 0 modeless real time packet format is:

0-n bytes of application data

A class 1 modeless real time packet format is:

2 bytes sequence count 0-n bytes of application data

The Common Industrial Protocol (CIP) 29/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

2.4.3.4 Heartbeat Format

The heartbeat real time format includes 0 bytes of application data and there is no run/idle

notification included with this real time format.

A class 0 heartbeat real time packet format is:

0 bytes of application data

A class 1 heartbeat real time packet format is:

2 bytes sequence count 0 bytes of application data

2.4.4 Connection Application Types

The application type shall determine the target behavior concerning the relationship between

different connections each sharing a producer (the same producing assembly instance).

The Hilscher EtherNet/IP Stack supports three different connection application types:

 Exclusive Owner

 Input Only

 Listen Only

One difference between these types is related to the real time format of the data that is transmitted

(see section 2.4.3.1 “ Real Time Format”). Where Exclusive Owner connections usually have I/O

data in both directions, Input Only and Listen Only connections only have I/O data in the TO

direction.

Another characteristic of these connection types is the condition, under which the connection of a

particular type can be established. While Exclusive Owner and Input Only connections can always

be created, Listen Only connections can only be established if an Exclusive Owner or Input Only

connection is already running.

The following table explains the relationship of connections with different application types. The

table shows a 1st and a 2nd connection. For each pair of connections it is assumed that the 1st

connection is established followed by t he 2nd connection. The column “Expected Result of 2nd

Connection” provided the result of the Forward_Open Response when trying to establish the 2nd

connection. The last two columns show the behavior of the 2nd connection when the 1st connection

times out or is closed.

1st Connection 2nd Connection Expected Result of

2nd Connection

Timeout of 1st

Connection

Close of 1st

Connection

IO EO Success EO stays open EO stays open

IO IO Success 2nd IO stays open 2nd IO stays open

IO LO Success LO closes LO closes

EO IO Success IO closes IO stays open

EO LO Success LO closes LO closes

EO EO Error 1) - -

LO - Error - -

EO = Exclusive Owner, IO = Input Only, LO = Listen Only

1) Assuming the OT connection path entry is the same of the 1st and 2nd connection

Table 13: Relationship of Connections with Different Application Connection Types

The Common Industrial Protocol (CIP) 30/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

2.4.4.1 Exclusive Owner Connection

An Exclusive Owner connection is not dependent on any other connection for its existence. A

target only accepts one exclusive owner connection per OT connection point.

The term connection owner refers to the connection originator whose OT packets are being

consumed by the target object. The term owning connection shall refer to the connection

associated with connection owner.

When an exclusive owner connection timeout occurs in a target device, the target device stops

sending the associated TO data. The TO data will not be sent even if one or more input only

connections exist. This requirement exists to signal the originator of the exclusive owner

connection that the OT data is no longer being received by the target device.

Most common Real Time Format:

 OT: 32-Bit Run/idle Header

TO: Modeless

Most Common Connection Types:

 OT: Point-2-Point

TO: Point-2-Point /Multicast

2.4.4.2 Input Only Connection

An Input Only connection is not dependent on any other connection for its existence.

The OT data uses the heartbeat format as described in section 2.4.3.1 „Real Time Format“. A

target may accept multiple input only connections which specify the same TO path. In addition,

the target may accept listen only connections that use the same multicast TO data.

Most common Real Time Format:

 OT: Heartbeat

TO: Modeless

Most Common Connection Types:

 OT: Point-2-Point

TO: Point-2-Point /Multicast

The Common Industrial Protocol (CIP) 31/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

2.4.4.3 Listen Only Connection

A Listen Only connection is dependent on a non-Listen only application connection for its

existence. The O=>T connection shall use the heartbeat format as described in section 2.4.3.1

„Real Time Format“. A target may accept multiple listen only connections which specify the same

TO path. If the last connection on which a listen only connection depends is closed or times out,

the target device stops sending the TO data which will result in the listen only connection being

timed out by the originator device.

Most common Real Time Format:

 OT: Heartbeat

TO: Modeless

Most Common Connection Types:

 OT: Point-2-Point

TO: Multicast

2.4.5 Types of Ethernet/IP Communication

The following table introduces the two basic types of Ethernet/IP Communication by comparing

their most important characteristics:

CIP Message Type Explicit Implicit

CIP Communication

Relationship

Unconnected Connected Connected

Point-to-point or

multicast

Point-to-point Point-to-point Multicast

Communication Model Client-Server Producer-Consumer

Communication Type Acyclic

Requests and replies, execution of services

Cyclic

IO data transfer

Typical Use/ Example Data of lower priority and time criticality /

Configuration data and diagnostic data

Time-critical real-time data / IO data

Involved object Message router object, UCMM Assembly object

Transport Protocol TCP/IP UDP/IP

Transport Class None Class3 Class0, Class1

Table 14: Comparison of basic Types of Ethernet/IP Communication: Implicit vs. Explicit Messaging

In the following, implicit and explicit messaging is discussed in more detail.

The Common Industrial Protocol (CIP) 32/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

2.4.6 Implicit Messaging

Implicit messaging is used for cyclic communication, i.e. for periodically repeated transmission of

data with the same structure. It has the following characteristics:

 the meaning of transferred data is known at both connection endpoints. Therefore,

 the data can be sent with only a minimum of information overhead.

 Operation is always in connected mode.

 Different transmission triggers available.

 Typically, this kind of communication is multi-cast communication (unicast possible as well).

There are three mechanisms how the data exchange can be triggered, the so called production

triggers:

 Cyclic: Messaging is triggered periodically with a specified repetition time (packet rate).

 Change of State (COS): Messaging is triggered by the change of a specific state.

 Application-triggered: Messaging is triggered by the application.

Implicit Messages are based on the producer-consumer model, which supports multicast and

unicast (Point-2-Point) messaging.

Figure 5: Producer Consumer Model – Point-2-Point vs. Multicast Messaging

The Common Industrial Protocol (CIP) 33/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

2.4.6.1 Structure of Transmitted I/O Data

When opening a CIP I/O connection a scanner usually connects to a pair of assembly instances,

also called connection points. Each assembly instance comes with a specific data structure. For

example the data of an assembly instances can combine attributes of other object attributes. The

following figure illustrates this.

Figure 6: Example of possible Assembly Mapping

This accelerates the access to the IO data by maximizing the efficiency of IO data access. Working

with assemblies makes the IO or configuration data available as one single block. This improves

the IO performance significantly.

The Common Industrial Protocol (CIP) 34/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Assembly instances are classified as follows:

Input assembly Instances (Input Connection Points)

Input Assembly Instances produce data on the network.

I/O direction for the EtherNet/IP Adapter: TO (the adapter sends data to the scanner via this

assembly instance)

Output assembly Instances (Output Connection Points)

Output assembly Instances consume data from the network.

I/O direction for the EtherNet/IP Adapter: OT (the adapter receives data from the scanner via this

assembly instance)

Configuration Assembly Instances

An assembly instances carrying configuration data instead of IO data. This allows transferring

configuration data upon connection establishment.

Device profiles often contain fix assembly instances for the kind of device they model. The

numbering of instances depends on the kind of usage:

If you implement a predefined CIP device profile for your device, then the assembly instances shall

use the assembly instance number ranges for open profiles. These are 1…0x63, 0xC8…0x2FF

and 0x500…0xFFFFF (also see Table 98: Assembly Instance Number Ranges).

If you implement vendor-specific extensions to a CIP device profile or a device profile of your own,

then the applicable assembly instance number ranges for vendor-specific profiles shall be used.

These are 0x64…0xC7 and 0x300…0x4FF.

2.4.6.2 Restrictions regarding the EtherNetInterface (NDIS) channel

Regarding the provided EtherNetInterface (NDIS) DPM channel, the following restriction applies on

Implicit Messaging: Implicit messaging of the EtherNet/IP stack will not be forwarded to the

provided EtherNetInterface-Channel, even if data transfer is multicast-based and an application

has registered for the actual multicast group address being used.

The Common Industrial Protocol (CIP) 35/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

2.4.7 Explicit Messaging

Explicit messaging is used for point to point messaging that typically takes place only once (or at

least not very frequently). Explicit messaging is typically used for non-real data such as:

 Diagnostic

 Information

 Configuration

 Request of data for a single time

In most cases, the real-time requirements for explicit messages are less severe as those for

implicit messaging.

Explicit messaging works in unconnected and connected mode. It is used for acyclic data

transmission of data having to be transferred only once such as configuration and diagnostic data.

Communication takes place in point-to-point mode.

The messaging uses the request/response mechanism based on the client-server model. The

support of explicit messaging is mandatory for every CIP device.

The Common Industrial Protocol (CIP) 36/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

2.5 CIP Data Types

The following Table 15: CIP Data Types describes common data types that are used in CIP.

Keyword Description Number of Bytes

BOOL Boolean 1 (1-bit encoded into 1-byte)

BYTE Bit string - 8 bits 1

USINT Unsigned Short Integer 1

SINT Short Integer 1

WORD Bit string – 16 bits 2

UINT Unsigned Integer 2

INT Integer 2

DWORD Bit string – 32 bits 4

UDINT Unsigned Double Integer 4

DINT Double Integer 4

SHORT_STRING character string (1 byte per character,

1 byte length indicator)

1 + n (first byte indicates length)

STRING character string (1 byte per character,

2 bytes length indicator)

2 + n (first byte indicates length)

STRING2 character string (2 byte per character,

2 bytes length indicator)

2 + n (first byte indicates length)

Table 15: CIP Data Types

The Common Industrial Protocol (CIP) 37/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

2.6 Object Library

The CIP Family of Protocols contains a large collection of commonly defined objects. The overall

set of object classes can be subdivided into three types:

 General-use

 Application-specific

 Network-specific

Objects defined in Volume 1 of the CIP Networks Library are available for use on all network

adaptations of CIP. Some of these objects may require specific changes or limitations when

implemented on some of the network adaptations. These exceptions are noted in the network

specific volume.

The following are objects for general use:

 Assembly

 Acknowledge Handler

 Connection

 Connection Configuration

 Connection Manager

 File

 Identity

 Message Router

 Parameter

 Parameter Group

 Port

 Register

 Selection

The following group of objects is application-specific:

 AC/DC Drive

 Analog Group

 Analog Input Group

 Analog Output Group

 Analog Input Point

 Analog Output Point

 Block Sequencer

 Command Block

 Control Supervisor

 Discrete Group

 Discrete Input Group

 Discrete Output Group

 Discrete Input Point

 Discrete Output Point

 Group

 Motor Data

 Overload

 Position Controller

 Position Controller Supervisor

 Position Sensor

 Presence Sensing

 S-Analog Actor

 S-Analog Sensor

 S-Device Supervisor

 S-Gas Calibration

 S-Partial Pressure

 S-Single Stage Controller

 Safety Supervisor

 Safety Validation

 Soft start Starter

 Trip Point

The Common Industrial Protocol (CIP) 38/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

The last group of objects is network-specific:

 ControlNet

 ControlNet Keeper

 ControlNet Scheduling

 DeviceNet

 Ethernet Link

 TCP/IP Interface

The general-use objects can be found in many different devices, while the application-specific

objects are typically found only in devices hosting such applications. New objects are added on an

ongoing basis.

Although this looks like a large number of object types, typical devices implement only a subset of

these objects. Figure 7 shows the object model of such a typical device.

Figure 7: Typical Device Object Model

The objects required in a typical device are:

 Either a Connection Object or a Connection Manager Object

 An Identity Object

 One or several network-specific link objects (EtherNet/IP requires the TCP/IP Interface

Object and the Ethernet Link Object)

 A Message Router Object (at least its function)

Further objects are added according to the functionality of the device. This enables scalability for

each implementation so that small devices, such as proximity sensors on DeviceNet, are not

burdened with unnecessary overhead. Developers typically use publicly defined objects (see

above list), but can also create their own objects in the vendor-specific areas, e.g. Class ID 100 -

The Common Industrial Protocol (CIP) 39/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

199. However, they are strongly encouraged to work with the (Joint) Special Interest Groups

(JSIGs/SIGs) of ODVA and ControlNet International to create common definitions for additional

objects instead of inventing private ones.

Out of the general use objects, several will be described in more detail:

2.7 CIP Device Profiles

It would be possible to design products using only the definitions of communication networks and

objects, but this could easily result in similar products having quite different data structures and

behavior. To overcome this situation and to make the application of CIP devices much easier,

devices of similar functionality have been grouped into Device Types with associated profiles. Such

a CIP profile contains the full description of the object structure and behavior. The following Device

Types and associated profiles are defined in Volume 1 (see [1]) (profile numbers are bracketed):

 AC Drives Device (0x02)

 CIP Modbus Device (0x28)

 CIP Modbus Translator (0x29)

 CIP Motion Drive (0x25)

 Communications Adapter (0x0C)

 CompoNet Repeater (0x26)

 Contactor (0x15)

 ControlNet Physical Layer Component

(0x32)

 ControlNet Programmable Logic

Controller (0x0E)

 DC Drives (0x13)

 DC Power Generator (0x1F)

 Encoder (0x22)

 Fluid Flow Controller (0x24)

 General Purpose Discrete I/O (0x07)

 Generic Device (0x2B)

 Human Machine Interface (0x18)

 Inductive Proximity Switch (0x05)

 Limit Switch (0x04)

 Managed Switch (0x2C)

 Mass Flow Controller (0x1A)

 Mass Flow Controller, Enhanced (0x27)

 Motor Overload Device (0x03)

 Motor Starter (0x16)

 Photoelectric Sensor (0x06)

 Pneumatic Valve (0x1B)

 Position Controller (0x10)

 Process Control Valve (0x1D)

 Residual Gas Analyzer (0x1E)

 Resolver (0x09)

 RF Power Generator (0x20)

 Safety Analog I/O Device (0x2A)

 Safety Discrete I/O (0x23)

 Soft start Starter (0x17)

 Turbo molecular Vacuum Pump (0x21)

 Vacuum/Pressure Gauge (0x1C)

The Common Industrial Protocol (CIP) 40/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Device developers must use a profile. Any device that does not fall into the scope of one of the

specialized profiles must use the Generic Device profile or a vendor-specific profile. What profile is

used and which parts of it are implemented must be described in the user’s device documentation.

Every profile consists of a set of objects - some required, some optional - and a behavior

associated with that particular type of device. Most profiles also define one or several I/O data

formats (Assemblies) that define the meaning of the individual bits and bytes of the I/O data. In

addition to the publicly-defined object set and I/O data Assemblies, vendors can add objects and

Assemblies of their own if their devices provide additional functionality. In addition, vendors can

create profiles within the vendor-specific profile range. They are then free to define whatever

behavior and objects are required for their device as long as they adhere to some general rules for

profiles. Whenever additional functionality is used by multiple vendors, ODVA and ControlNet

International encourage coordinating these new features through discussion in the Joint Special

Interest Groups (JSIGs), which can then create new profiles and additions to existing profiles for

everybody’s use and for the benefit of the device users.

All open (ODVA/CI defined) profiles carry numbers in the 0x00 through 0x63 or 0x0100 through

0x02FF ranges, while vendor-specific profiles carry numbers in the 0x64 through 0xC7 or 0x0300

through 0x02FF ranges. All other profile numbers are reserved by CIP.

The Common Industrial Protocol (CIP) 41/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

2.8 EDS (Electronic Data Sheet)

An EDS is a simple ASCII text file that can be generated on any ASCII editor. Since the CIP

Specification lays down a set of rules for the overall design and syntax of an EDS which makes

configuration of devices much easier. Specialized EDS editing tools, such as ODVA’s EZ-EDS, can

simplify the creation of EDS files. The main purpose of the EDS is to give information on several

aspects of the device’s capabilities, the most important ones being the I/O Connections it supports

and what parameters for display or configuration exist within the device. It is highly recommended

that an EDS describe all supported I/O Connections, as this makes the application of a device

much easier. When it comes to parameters, it is up to the developer to decide which items to make

accessible to the user.

Let’s look at some details of the EDS. First, an EDS is structured into sections, each of which starts

with a section name in square brackets []. The first two sections are mandatory for all EDSs.

[File]: Describes the contents and revision of the file.

 [Device]: Is equivalent to the Identity Object information and is used to match an EDS to a

device.

 [Device Classification]: Describes what network the device can be connected to. This

section is optional for DeviceNet, required for ControlNet and EtherNet/IP.

 [Params]: Identifies all configuration parameters in the device.

 [Assembly]: Describes the structure of data items.

 [Connection Manager]: Describes connections supported by the device. Typically used in

ControlNet and EtherNet/IP.

 [Capacity]: Specifies the communication capacity of EtherNet/IP and ControlNet devices.

A tool with a collection of EDSs will first use the [Device] section to try to match an EDS with each

device it finds on a network. Once this is done and a particular device is chosen, the tool can then

display device properties and parameters and allows their modification (if necessary). A tool may

also display what I/O Connections a device may allow and which of these are already in use. EDS-

based tools are mainly used for slave or adapter devices, as scanner devices typically are too

complex to be configured through EDSs. For those devices, the EDS is used primarily to identify

the device, then guide the tool to call a matching configuration applet.

A particular strength of the EDS approach lies in the methodology of parameter configuration. A

configuration tool typically takes all of the information supplied by an EDS and displays it in a user-

friendly manner. In many cases, this enables the user to configure a device without needing a

detailed manual, as the tool presentation of the parameter information, together with help texts,

enables decisions making for a complete device configuration (provided, of course, the developer

has supplied all required information).

Available CIP Classes in the Hilscher EtherNet/IP Stack 42/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

3 Available CIP Classes in the Hilscher EtherNet/IP
Stack

The following subsections describe all default CIP object classes that are available within the

Hilscher EtherNet/IP stack.

Figure 8 gives an overview about the available CIP objects and their instances assuming a default

configuration (assembly instances 100 and 101).

Figure 8: Default Hilscher Device Object Model

Available CIP Classes in the Hilscher EtherNet/IP Stack 43/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

3.1 Introduction

Every CIP class is described using two tables. One table describes the class attributes and one

describes the instance attributes.

A Class Attribute is an attribute whose scope is that of the class as a whole, rather than any one

particular instance. Therefore, the list of Class Attributes is different than the list of Instance

Attributes. CIP defines the Instance ID value zero (0) to designate the Class level versus a specific

Instance within the Class. Class Attributes are defined using the following terms:

Class Attributes (Instance 0)

Attr

ID

Access Rule NV Name Data Type Description of

Attribute

Semantics of Values

From

Network

From

Host1)

1 2 3 4 5 6 7 8

1) Related to API command EIP_OBJECT_CIP_SERVICE_REQ/CNF – CIP Service Request

Table 16: Class Attributes

1. The Attribute ID is an integer identification value assigned to an attribute. Use the Attribute

ID in the Get_Attributes and Set_Attributes services list. The Attribute ID identifies the

particular attribute being accessed.

2. The Access Rule From Network specifies how a requestor can access an attribute from

the EtherNet/IP network. The definitions for access rules are:

 Settable (Set) - The attribute can be accessed by at least on of the set services

(Set_Attribute_Single/ Set_Attribute_All).

 Gettable (Get) - The attribute can be accessed by at least one of the get services

(Get_Attribute_Single/ Get_Attribute_All).

3. The Access Rule From Host specifies how the Host Application (running on the netX or

on a host processor) can access an attribute using the packet API of the stack (see

description of EIP_OBJECT_CIP_SERVICE_REQ/CNF – CIP Service Request).

The definitions for access rules are:

 Settable (Set) - The attribute can be accessed by at least one of the set services

(Set_Attribute_Single/ Set_Attribute_All).

 Gettable (Get) - The attribute can be accessed by at least one of the get services

(Get_Attribute_Single/ Get_Attribute_All).

4. NV indicates whether an attribute values maintained through power cycles. This column is

used in object definitions where non-volatile storage of attribute values is required. An entry

of ‘NV’ indicates value shall be saved, ‘V’ means not saved.

5. Name refers to the attribute.

6. Data Type – See section CIP Data Types on page 36.

7. Description of Attribute provides general information about the attribute.

8. Semantics of values specifies the meaning of the value of the attribute.

An Instance Attribute is an attribute that is unique to an object instance and not shared by the

object class. Instance Attributes are defined in the same terms as Class Attributes.

Available CIP Classes in the Hilscher EtherNet/IP Stack 44/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Instance Attributes (Instance 1, 2, …, n)

Att

ID

Access Rule NV Name Data Type Description of

Attribute

Semantics of Values

From

Network

From

Host1)

1 2 3 4 5 6 7 8

1) Related to API command EIP_OBJECT_CIP_SERVICE_REQ/CNF – CIP Service Request

Table 17: Instance Attributes

3.2 Identity Object (Class Code: 0x01)

The Identity Object provides identification and general information about the device. The first and

only instance identifies the whole device. It is used for electronic keying and by applications

wishing to determine what devices are on the network.

3.2.1 Class Attributes

Attr ID Access Rule Name Data

Type

Description of Attribute Semantics of Values

From

Network

From

Host1)

1 Get Get Revision UINT Revision of this object The current value assigned to
this attribute is 2.

2 Get Get Max.
Instance

UINT Maximum instance
number of an object
currently created in this
class level of the device.

The largest instance number of a
created object at this class
hierarchy level.

6 Get Get Maximum
ID
Number
Class

Attributes

UINT The attribute ID number
of the last class attribute
of the class definition
implemented in the
device.

7 Get Get Maximum
ID
Number
Instance

Attributes

UINT The attribute ID number
of the last instance
attribute of the class
definition implemented in
the device.

1) Related to API EIP_OBJECT_CIP_SERVICE_REQ/CNF – CIP Service Request.

Table 18: Identity Object - Class Attributes

Available CIP Classes in the Hilscher EtherNet/IP Stack 45/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

3.2.2 Instance Attributes

Attr

ID

Access Rule NV Name Data Type Description of

Attribute

Semantics of

Values
From

Network

From

Host1)

1 Get Get NV Vendor ID UINT Vendor Identification

2 Get Get NV Device Type UINT Indication of general
type

of product

3 Get Get NV Product Code UINT Identification of a
particular product of an

individual vendor

4 Get Get NV Revision STRUCT of

Major Revision USINT

Minor Revision USINT

5 Get Get,
Set 2)

V Status WORD Summary status of
device

6 Get Get NV Serial Number UDINT Serial number of device

7 Get Get NV Product Name SHORT
_STRING

Human readable

identification

8 Get Get
Set 3)

V State USINT Present state of the
device

0 = Non-existent
1 = Device Self
Testing
2 = Standby
3 = Operational
4 = Major
Recoverable Fault
5 = Major
Unrecoverable Fault

9 Get Get NV Conf. Consist.
Value

UINT Configuration

Consistency Value

1) Related to API command EIP_OBJECT_CIP_SERVICE_REQ/CNF – CIP Service Request.

2) Set service is possible, but only bit 0 (Owned), 2 (Configured) and bits 8 to 15 are settable. Do not overwrite other
bits in this attribute. The host has to read, modify and write the attribute data. For more information about this
attribute have a look at the definition of the identity object (Cip Volume 1).

3) Setting of the state attribute is not possible by default, but can be activated using the
EIP_OBJECT_SET_PARAMETER_REQ (0x1AF2) (see flag
EIP_OBJECT_PRM_APPLICATION_CONTROLS_IDENTITY_STATE_ATTRIBUTE in section 6.2.14).

Table 19: Identity Object - Instance Attributes

3.2.3 Supported Services

 Get_Attribute_Single (Service Code: 0x0E)

 Set_Attribute_Single (Service Code: 0x10)

 GetAttributeAll (Service Code: 0x01)

 Reset (Service Code: 0x05)

 Reset Type 0 is supported by default

 Additionally, the support of reset type 1 can be activated using API command

EIP_OBJECT_SET_PARAMETER_REQ/CNF – Set Parameter

Available CIP Classes in the Hilscher EtherNet/IP Stack 46/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

3.3 Message Router Object (Class Code: 0x02)

The Message Router Object provides a messaging connection point through which a client may

address a service to any object class or instance residing in the physical device.

3.3.1 Supported Services

Since the message router (in the Hilscher Implementation) does not have any class or instance

attributes, there are no services supported.

Available CIP Classes in the Hilscher EtherNet/IP Stack 47/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

3.4 Assembly Object (Class Code: 0x04)

The Assembly Object binds attributes of multiple objects, which allows data to or from each object

to be sent or received over a single connection. Assembly Objects can be used to bind produced

data or consumed data.

3.4.1 Class Attributes

Attr ID Access Rule Name Data

Type

Description of Attribute Semantics of Values

From

Network

From

Host1)

1 Get Get Revision UINT Revision of this object The current value assigned to
this attribute is 2 (02).

1) Related to API command EIP_OBJECT_CIP_SERVICE_REQ/CNF – CIP Service Request.

Table 20: Assembly Object - Class Attributes

3.4.2 Instance Attributes

Attr

ID

Access Rule Name Data Type Description of

Attribute

Semantics of

Values
From

Network

From

Host1)

3 Get,
Set 2)

Get,
Set 3)

Data ARRAY of
BYTE

4 Get Get Size UINT Number of bytes in
Attribute 3

1) Related to API command EIP_OBJECT_CIP_SERVICE_REQ/CNF – CIP Service Request.

2) Set service only available for consuming assemblies that are not part of an active implicit
 connection

3) Set service is only available for configuration assembly instances (registered with the flag EIP_AS_FLAG_CONFIG,
see Table 100)

Table 21: Assembly Object - Instance Attributes

3.4.3 Supported Services

 Get_Attribute_Single (Service Code: 0x0E)

 Set_Attribute_Single (Service Code: 0x10)

Available CIP Classes in the Hilscher EtherNet/IP Stack 48/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

3.5 Connection Manager Object (Class Code: 0x06)

The Connection Manager Class allocates and manages the internal resources associated with

both I/ O and Explicit Messaging Connections.

3.5.1 Class Attributes

Attr ID Access Rule Name Data

Type

Description of Attribute Semantics of Values

From

Network

From

Host1)

1 Get Get Revision UINT Revision of this object The current value assigned to
this attribute is one (01).

2 Get Get Max.
Instance

UINT Maximum instance
number of an object
currently created in this
class level of the device.

The largest instance number of a
created object at this class
hierarchy level.

1) Related to API command EIP_OBJECT_CIP_SERVICE_REQ/CNF – CIP Service Request.

Table 22: Assembly Object - Class Attributes

3.5.2 Supported Services

 Get_Attribute_Single (Service Code: 0x0E)

 Forward_Open (Service Code: 0x54)

 Forward_Close (Service Code: 0x4E)

Available CIP Classes in the Hilscher EtherNet/IP Stack 49/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

3.6 TCP/IP Interface Object (Class Code: 0xF5)

The TCP/IP Interface Object provides the mechanism to configure a device’s TCP/IP network

interface. Examples of configurable items include the device’s IP Address, Network Mask, and

Gateway Address.

The EtherNet/IP Adapter stack supports exactly one instance of the TCP/IP Interface Object.

3.6.1 Class Attributes

Attr ID Access Rule Name Data

Type

Description of Attribute Semantics of Values

From

Network

From

Host1)

1 Get Get Revision UINT Revision of this object The current value assigned to this
attribute is 4.

2 Get Get Max.
Instance

UINT Maximum instance
number of an object
currently created in this
class level of the device.

The largest instance number of a
created object at this class
hierarchy level.

1) Related to API command EIP_OBJECT_CIP_SERVICE_REQ/CNF – CIP Service Request.

Table 23: TCP/IP Interface - Class Attributes

3.6.2 Instance Attributes

Attr

ID

Access Rule NV Name Data Type Description of

Attribute

Semantics of

Values
From

Network

From

Host1)

1 Get Get,
Set6)

V Status DWORD Interface status See section 3.6.2.1

2 Get Get,
Set

NV Configuration

Capability

DWORD Interface capability flags See section 3.6.2.2

35) Get,
Set

Get NV Configuration

Control

DWORD Interface control flags See section 3.6.2.3

4 Get Get NV Physical Link

Object

STRUCT of Path to physical link
object

See section 3.6.2.4

Path size UINT Size of Path Number of 16 bit
words in Path

Path Padded
EPATH

Logical segments
identifying the physical
link object

The path is restricted
to one logical class
segment and one
logical instance
segment. The
maximum size is 12
bytes.

55) Get,
Set4)

Get,
Set 2)

NV Interface

Configuration

STRUCT of See section 3.6.2.5

Available CIP Classes in the Hilscher EtherNet/IP Stack 50/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Attr

ID

Access Rule NV Name Data Type Description of

Attribute

Semantics of

Values
From

Network

From

Host1)

IP Address UDINT The device’s IP address. Value of 0 indicates

no IP address has
been configured.
Otherwise, the IP
address shall be set
to a valid Class A, B,
or C address and
shall not be set to the
loopback address
(127.0.0.1).

Network Mask UDINT The device’s network

mask

Value of 0 indicates
no network mask
address has been
configured.

Gateway
Address

UDINT Default gateway

address

Value of 0 indicates
no IP address has
been configured.
Otherwise, the IP
address shall be set
to a valid Class A, B,
or C address and
shall not be set to the
loopback address
(127.0.0.1).

Name Server UDINT Primary name server Value of 0 indicates
no name server
address has been
configured.
Otherwise, the name
server address shall
be set to a valid
Class A, B, or C
address.

Name Server 2 UDINT Secondary name

server

Value of 0 indicates
no secondary name
server address has
been configured.
Otherwise, the name
server address shall
be set to a valid
Class A, B, or C
address.

Domain Name STRING Default domain name ASCII characters.

Maximum length is
48 characters. Shall
be padded to an
even number of
characters (pad not
included in length). A
length of 0 shall
indicate no Domain
Name has been
configured.

Available CIP Classes in the Hilscher EtherNet/IP Stack 51/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Attr

ID

Access Rule NV Name Data Type Description of

Attribute

Semantics of

Values
From

Network

From

Host1)

65) Get,
Set

Get,
Set

NV Host Name STRING The Host Name attribute
contains the device’s
host name, which can
be used for informational
purposes.

ASCII characters.
Maximum length is
64 characters. Shall
be padded to an
even number of
characters (pad not
included in length).

A length of 0 shall
indicate no Host
Name has been
configured.

73) Get Get,
Set

 Safety Network
Number

6 octets See CIP Safety
Specfication,

Volume 5, Chapter 3

83) 5) Get,
Set

Get,
Set

NV TTL Value USINT TTL value for
EtherNet/IP multicast
packets

Time-to-Live value
for IP multicast
packets. Default
value is 1. Minimum
is 1; maximum is 255

See section 3.6.2.6

93) 5) Get,
Set

Get,
Set

NV Mcast Config STRUCT

of

IP multicast address
configuration

See section 3.6.2.7

Alloc Control USINT Multicast address
allocation control word.
Determines how
addresses are allocated.

See section 3.6.2.7
for details.
Determines whether
multicast addresses
are generated via
algorithm or are
explicitly set.

Reserved USINT Reserved for future use Shall be 0.

Num Mcast UINT Number of IP Multicast
addresses to allocate for
EtherNet/IP

The number of IP
multicast addresses
allocated, starting at
“Mcast Start Addr”.
Maximum value is
128 (Hilscher
specific).

Mcast Start

Addr

UDINT Starting multicast
address from which to
begin allocation.

IP multicast address
(Class D). A block of
“Num Mcast”
addresses is
allocated starting
with this address.

105) Get,
Set

Get,
Set

NV SelectAcd BOOL Activates the use of
ACD

Enable ACD (1,
default),

Disable ACD (0).

See section 3.6.2.8

Available CIP Classes in the Hilscher EtherNet/IP Stack 52/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Attr

ID

Access Rule NV Name Data Type Description of

Attribute

Semantics of

Values
From

Network

From

Host1)

115) Get,
Set

Get,
Set

NV when
Configura
tion
Method is
0.

V when
obtained
via
BOOTP
or DHCP

LastConflictDete
cted

STRUCT

of:

Structure containing
information related to
the last conflict detected

ACD Diagnostic
Parameters.

See section 3.6.2.9

AcdActivity USINT State of ACD activity
when last conflict
detected

ACD activity

Default = 0

Remote
MAC

Array of 6

USINT
MAC address of

remote node from

the ARP PDU in

which a conflict was

detected

MAC Entry from
Ethernet Frame
Header
Default = 0

ArpPdu ARRAY
of 28

USINT

Copy of the raw
ARP PDU in which
a conflict was

detected.

ARP PDU
Default = 0

12
3) 5)

Get,
Set

Get,
Set

NV EtherNet/IP

Quick Connect

BOOL Enable/Disable of Quick
Connect feature

0 = Disable (default)

1 = Enable

See section 9.4
“Quick Connect”

135) Get,Set Get,
Set

NV Encapsulation
Inactivity
Timeout

UINT Number of seconds of
inactivity before TCP
connection is closed

0 = Disable

1-3600 = timeout in
seconds

Default = 120

See section 3.6.2.10

1) Related to API command EIP_OBJECT_CIP_SERVICE_REQ/CNF – CIP Service Request.

2) All entries are settable except: IP, Gateway, and subnet mask. These must be set by either of the following
API commands:

EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ/CNF – Configure the Device with Configuration

Parameter TCPIP_IP_CMD_SET_CONFIG_REQ/CNF (0x00000200) - TcpIp Stack (see reference [3])

3) Attribute is not available in the EtherNet/IP stack per default. If the attribute shall be activated use API

command EIP_OBJECT_CIP_OBJECT_ATTRIBUTE_ACTIVATE_REQ/CNF – CIP Object Attribute Activate

Request

4) This attribute is only settable from the network if attribute 3 of this object (configuration control) has value 0
(STATIC). Otherwise, the set request will be rejected with error code 0x0C (“Object State Conflict”)

5) If the attribute value is changed, the host application is notified via the indication

EIP_OBJECT_CIP_OBJECT_CHANGE_IND/RES – CIP Object Change Indication (see section 6.2.18 on page

201)

6) The host application is allowed to set this attribute, but only the lower 4bits (Interface Configuration Status).
All other bits are managed by the EtherNet/IP protocol stack itself.

Table 24: TCP/IP Interface - Instance Attributes

Available CIP Classes in the Hilscher EtherNet/IP Stack 53/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

3.6.2.1 Status

The Status attribute is a bitmap that shall indicate the status of the TCP/IP network interface.

Bit(s) Name Definition

0-3 Interface
Configuration
Status

Indicates the status
of the Interface
Configuration
attribute.

0 = The Interface Configuration attribute has not been configured.

1 = The Interface Configuration attribute contains configuration
obtained from BOOTP, DHCP or nonvolatile storage.

2 = The IP address member of the Interface Configuration attribute
contains configuration, obtained from hardware settings
(e.g.: pushwheel, thumbwheel, etc.)

3-15 = Reserved for future use.

4 Mcast Pending Indicates a pending configuration change in the TTL Value and/or Mcast Config attributes.
This bit shall be set when either the TTL Value or Mcast Config attribute is set, and shall be
cleared the next time the device starts.

5 Interface
Configuration
Pending

Indicates a pending configuration change in the Interface Configuration attribute. This bit
shall be 1 (TRUE) when Interface Configuration attribute are set and the device requires a
reset in order for the configuration change to take effect (as indicated in the Configuration
Capability attribute). The intent of the Interface Config Pending bit is to allow client software
to detect that a device’s IP configuration has changed, but will not take effect until the
device is reset.

6 AcdStatus Indicates when an IP address conflict has been detected by ACD. This bit shall default to 0
(FALSE) on startup. If ACD is supported and enabled, then this bit shall be set to 1 (TRUE)
any time an address conflict is detected as defined by the [ConflictDetected] transitions in
Figure F-1.1 ACD Behavior.

7 Acd Fault Indicates when an IP address conflict has been detected by ACD or the defense failed, and
that the current Interface Configuration cannot be used due to this conflict. This bit SHALL
be 1 (TRUE) if an address conflict has been detected and this interface is currently in the
Notification & FaultAction or AcquireNewIpv4Parameters ACD state as defined in Appendix
F, and SHALL be 0 (FALSE) otherwise.

Notice that when this bit is set, then this CIP port will not be usable. However, for devices
with multiple ports, this bit provides a way of determining if the port has an ACD fault and
thus cannot be used.

8-31 Reserved Reserved for future use. Is set to zero.

Table 25: TCP/IP Interface - Instance Attribute 1 - Status

Available CIP Classes in the Hilscher EtherNet/IP Stack 54/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

3.6.2.2 Configuration Capability

The Configuration Capability attribute is a bitmap that indicates the device’s support for optional

network configuration capability. Devices are not required to support any one particular item,

however must support at least one method of obtaining an initial IP address.

Bit(s) Name Definition

0 BOOTP Client 1 (TRUE) shall indicate the device is capable of obtaining its network configuration via
BOOTP.

1 DNS Client 1 (TRUE) shall indicate the device is capable of resolving host names by querying a DNS
server.

2 DHCP Client 1 (TRUE) shall indicate the device is capable of obtaining its network configuration via
DHCP.

3 DHCP-DNS

Update (not
supported)

Shall be 0, behavior to be defined in a future specification edition.

4 Configuration

Settable

1 (TRUE) shall indicate the Interface Configuration attribute is settable.

5 Hardware
Configurable

1 (TRUE) shall indicate the IP Address member of the Interface Configuration attribute can
be obtained from hardware settings (e.g., pushwheel, thumbwheel, etc.). If this bit is
FALSE the Status Instance Attribute (1), Interface Configuration Status field value shall
never be 2 (The Interface Configuration attribute contains valid configuration, obtained
from hardware settings).
This bit can be configured by the host application using the packet

EIP_OBJECT_CIP_SERVICE_REQ/CNF – CIP Service Request.

6 Interface
Configuration
Change
Requires Reset

1 (TRUE) shall indicate that the device requires a restart in order for a change to the
Interface Configuration attribute to take effect. If this bit is FALSE a change in the Interface
Configuration attribute will take effect immediately.

7 AcdCapable (1) TRUE shall indicate that the device is capable of ACD.

8-31 Reserved Reserved for future use. Is set to zero.

Table 26: TCP/IP Interface - Instance Attribute 2 – Configuration Capability

Available CIP Classes in the Hilscher EtherNet/IP Stack 55/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

3.6.2.3 Configuration Control

The Configuration Control attribute is a bitmap used to control network configuration options.

Bit(s) Name Definition

0-3 Configuration
Method

Determines how
the device shall
obtain its IP-related
configuration

0 = The device shall use statically-assigned IP configuration values.

1 = The device shall obtain its interface configuration values via
BOOTP.

2 = The device shall obtain its interface configuration values via
DHCP.

3-15 = Reserved for future use.

4 DNS Enable
(not supported)

If 1 (TRUE), the device shall resolve host names by querying a DNS server.

5-31 Reserved Reserved for future use. Is set to zero.

Table 27: TCP/IP Interface - Instance Attribute 3 – Configuration Control

Configuration Method:

The Configuration Method determines how a device shall obtain its IP-related configuration:

 If the Configuration Method is 0, the device shall use statically-assigned IP configuration

contained in the Interface Configuration attribute (or assigned via non-CIP methods, as noted

below).

 If the Configuration Method is 1, the device shall obtain its IP configuration via BOOTP.

 If the Configuration Method is 2, the device shall obtain its IP configuration via DHCP.

 Devices that optionally provide hardware means (e.g., rotary switch) to configure IP

addressing behavior shall set the Configuration Method to reflect the configuration set via

hardware: 0 if a static IP address has been configured, 1 if BOOTP has been configured, 2 if

DHCP has been configured.

If a device has been configured to obtain its configuration via BOOTP or DHCP it will continue

sending requests until a response from the server is received. Devices that elect to use default IP

configuration in the event of no response from the server shall continue issuing requests until a

response is received, or until the Configuration Method is changed to static.

Once the device receives a response from the server it stops sending the BOOTP/DHCP client

requests (DHCP clients shall follow the lease renewal behavior per the RFC).

Setting the Configuration Method to 0 (static address) causes the Interface Configuration to be

saved to NV storage.

Note: Usually the host application of the EtherNet/IP stack is responsible for storing the new

Interface Configuration values. See also section 6.2.18

EIP_OBJECT_CIP_OBJECT_CHANGE_IND/RES – CIP Object Change Indication.

Setting the Configuration Method to 1 (BOOTP) or 2 (DHCP) causes the device right away to start

the BOOTP / DHCP client to obtain new IP address configuration. The device does not require a

reset in order to start the BOOTP / DHCP client.

Note: This behavior must be implemented by the host application.

Available CIP Classes in the Hilscher EtherNet/IP Stack 56/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

3.6.2.4 Physical Link

This attribute identifies the object associated with the underlying physical communications interface

(e.g., an 802.3 interface). There are two components to the attribute: a Path Size (in UINTs) and a

Path. The Path shall contain a Logical Segment, type Class, and a Logical Segment, type Instance

that identifies the physical link object. The maximum Path Size is 6 (assuming a 32 bit logical

segment for each of the class and instance).

The physical link object itself typically maintains link-specific counters as well as any link specific

configuration attributes. If the CIP port associated with the TCP/IP Interface Object has an Ethernet

physical layer, this attribute shall point to an instance of the Ethernet Link Object (class code =

0xF6). When there are multiple physical interfaces that correspond to the TCP/IP interface, this

attribute shall either contain a Path Size of 0, or shall contain a path to the object representing an

internal communications interface (often used in the case of an embedded switch).

For example, the path could be as follows:

Path Meaning

[20][F6][24][01] [20] = 8 bit class segment type; [F6] = Ethernet Link Object class;

[24] = 8 bit instance segment type; [01] = instance 1.

Table 28: TCP/IP Interface - Instance Attribute 4 – Physical Link

3.6.2.5 Interface Configuration

The Interface Configuration attribute contains the configuration parameters required for a device to

operate as a TCP/IP node. The contents of the Interface Configuration attribute shall depend upon

how the device has been configured to obtain its IP parameters:

 If configured to use a static IP address (Configuration Method value is 0), the Interface

Configuration values shall be those which have been statically assigned and stored in NV

storage.

 If configured to use BOOTP or DHCP (Configuration Method value is 1 or 2), the Interface

Configuration values shall contain the configuration obtained from the BOOTP or DHCP

server. The Interface Configuration attribute shall be 0 until the BOOTP/DHCP reply is

received.

 Some devices optionally provide additional, non-CIP mechanisms for setting IP-related

configuration (e.g., a web server interface, rotary switch for configuring IP address, etc.).

When such a mechanism is used, the Interface Configuration attribute shall reflect the IP

configuration values in use.

Available CIP Classes in the Hilscher EtherNet/IP Stack 57/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Name Meaning

IP Address The device’s IP address.

Network mask The device’s network mask. The network mask is used when the IP network has been
partitioned into subnets. The network mask is used to determine whether an IP address is
located on another subnet.

Gateway address The IP address of the device’s default gateway. When a destination IP address is on a
different subnet, packets are forwarded to the default gateway for routing to the destination
subnet.

Name server The IP address of the primary name server. The name server is used to resolve host names.
For example, that might be contained in a CIP connection path.

Note: The name server functionality is not supported by the Hilscher Ethernet/IP stack

Name server 2 The IP address of the secondary name server. The secondary name server is used when the
primary name server is not available, or is unable to resolve a host name.

Note: The name server functionality is not supported by the Hilscher Ethernet/IP stack

Domain name The default domain name. The default domain name is used when resolving host names that
are not fully qualified. For example, if the default domain name is “odva.org”, and the device
needs to resolve a host name of “plc”, then the device will attempt to resolve the host name as
“plc.odva.org”.

Note: The domain name functionality is not supported by the Hilscher Ethernet/IP stack

Table 29: TCP/IP Interface - Instance Attribute 5 – Interface Control

Set Behavior

In order to prevent incomplete or incompatible configuration, the parameters making up the

Interface Configuration attribute cannot be set individually. To modify the Interface Configuration

attribute, client software should first Get the Interface Configuration attribute, change the desired

parameters, and then Set the attribute.

An attempt to set any of the parameters of the Interface Configuration attribute to invalid values will

result in an error response with status code 0x09 ‘Invalid Attribute Value’ to be returned. In this

scenario, all of the parameters of the Interface Configuration attribute retain the values that existed

prior to the invocation of the set service.

When the value of the Configuration Method (Configuration Control attribute) is 0, the set attribute

service will store the new Interface Configuration values in non-volatile memory.

Note: Usually the host application of the EtherNet/IP stack is responsible for storing the new

Interface Configuration values. See also section 6.2.18

“EIP_OBJECT_CIP_OBJECT_CHANGE_IND/RES – CIP Object Change Indication”.

Although the Name Server, Name Server 2 and Domain Name parameters are not

supported by the Hilscher EtherNet/IP stack, they need to be stored along with the

other parameters.

Changing the IP setting causes the device right away to apply the new address configuration. The

device does not require a reset.

Note: This behavior must be implemented by the host application.

Available CIP Classes in the Hilscher EtherNet/IP Stack 58/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

3.6.2.6 TTL Value

TTL Value is value the device shall use for the IP header Time-to-Live field when sending

EtherNet/IP packets via IP multicast. By default, TTL Value shall be 1. The maximum value for TTL

is 255.

When set, the TTL Value attribute shall be saved in non-volatile memory.

Note: Usually the host application of the EtherNet/IP stack is responsible for storing the new

Interface Configuration values. See also section 6.2.18

“EIP_OBJECT_CIP_OBJECT_CHANGE_IND/RES – CIP Object Change Indication”.

If the TTL Value is set, the Hilscher EtherNet/IP Stack automatically sets the Mcast Pending bit in

the Interface Status attribute. This indicates that there is a pending configuration. The device then

needs to be reset in order for the new configuration to be applied. The Mcast Pending bit will be

cleared automatically the next time the device starts.

When a new TTL Value is pending, Get_Attribute_Single or Get_Attributes_All requests will return

the pending value.

Note: Users should exercise caution when setting the TTL Value greater than 1, to prevent

unwanted multicast traffic from propagating through the network.

3.6.2.7 Mcast Config

The Mcast Config attribute contains the configuration of the device’s IP multicast addresses to be

used for EtherNet/IP multicast packets. There are three elements to the Mcast Config structure:

Alloc Control, Num Mcast, and Mcast Start Addr.

Alloc Control determines how the device shall allocate IP multicast addresses (e.g., whether by

algorithm, whether they are explicitly set, etc.). Table 30 shows the details for Alloc Control.

Value Definition

0 Multicast addresses shall be generated using the default allocation algorithm (automatically
done by the Hilscher EtherNet/IP stack). When this value is specified on a set-attribute or set-
attributes-all, the values of Num Mcast and Mcast Start Addr in the set-attribute request must
be 0.

1 Multicast addresses shall be allocated according to the values specified in Num Mcast and
Mcast Start Addr.

2 Reserved

Table 30: TCP/IP Interface - Instance Attribute 9 – Mcast Config (Alloc Control Values)

Num Mcast is the number of IP multicast addresses allocated. The maximum number of multicast

addresses is 128 (Hilscher specific).

Mcast Start Addr is the starting multicast address from which Num Mcast addresses are allocated.

When set, the Mcast Config attribute must be saved in non-volatile memory.

Note: Usually the host application of the EtherNet/IP stack is responsible for storing the new

Interface Configuration values. See also section 6.2.18

“EIP_OBJECT_CIP_OBJECT_CHANGE_IND/RES – CIP Object Change Indication”.

Available CIP Classes in the Hilscher EtherNet/IP Stack 59/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

If the Mcast Config is set, the Hilscher EtherNet/IP Stack automatically sets the Mcast Pending bit

in the Interface Status attribute. This indicates that there is a pending configuration.

When a new Mcast Config value is pending, Get_Attribute_Single or Get_Attributes_All requests

will return the pending value. The Mcast Pending bit will be cleared the next time the device starts.

When the multicast addresses are generated using the default algorithm, Num Mcast and Mcast

Start Addr will report the values generated by the algorithm.

3.6.2.8 Select ACD

SelectAcd is an attribute used to Enable/Disable ACD.

If SelectAcd is 0 then ACD is disabled. If SelectAcd is 1 then ACD is enabled (default value is 1).

When the value of SelectAcd is changed by a Set_Attribute service, the new value of SelectAcd

will not be applied until the device executes a restart.

3.6.2.9 Last Conflict Detected

The LastConflictDetected attribute is a diagnostic attribute presenting information about the ACD

state when the last IP Address conflict was detected. This attribute will be updated by the device

whenever an incoming ARP packet is received that represents a conflict with the device’s IP

address as described in IETF RFC 5227.

To reset this attribute the Set_Attribute_Single service must be invoked with an attribute value of

all 0. If the Set_Attribute_Single service is received from an EtherNet/IP Scanner, values other

than 0 will result in an error response: status code 0x09, Invalid Attribute Value. If this attribute is

set from the host application e.g. using Set_Attribute_Single service with command

EIP_OBJECT_CIP_SERVICE_REQ, any data is valid.

AcdActivity – The ACD contains the state of the ACD algorithm when the last IP address conflict

was detected. The ACD activities are defined in the following table.

Value AcdMode Description

0 NoConflictDetected (Default) No conflict has been detected since this attribute was last cleared.

1 ProbeIpv4Address Last conflict detected during ProbeIpv4Address state.

2 OngoingDetection Last conflict detected during OngoingDetection state or subsequent
DefendWithPolicyB state.

3 SemiActiveProbe Last conflict detected during SemiActiveProbe state or subsequent
DefendWithPolicyB state.

Table 31: TCP/IP Interface - Instance Attribute 11 – Last Conflict Detected (Acd Activity)

Available CIP Classes in the Hilscher EtherNet/IP Stack 60/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

RemoteMac - The IEEE 802.3 source MAC address from the header of the received Ethernet

packet which was sent by a device reporting a conflict.

ArpPdu – The ARP Response PDU in binary format.

The ArpPdu is a copy of the ARP message that caused the address conflict. It is a raw copy of the

ARP message as it appears on the Ethernet network, i.e.: ArpPdu[1] contains the first byte of the

ArpPdu received.

Field Size Field Description Field Value

2 Hardware Address Type 1 for Ethernet H/W

2 Protocol Address Type 0x800 for IP

1 HADDR LEN 6 for Ethernet h/w

1 PADDR LEN 4 for IP

2 OPERATION 1 for Req or 2 for Rsp

6 SENDER HADDR Sender’s h/w addr (MAC address)

4 SENDER PADDR Sender’s proto addr (IP address)

6 TARGET HADDR Target’s h/w addr (MAC address)

4 TARGET PADDR Target’s proto addr (IP address)

Table 32: TCP/IP Interface - Instance Attribute 11 – Last Conflict Detected (Arp PDU)

3.6.2.10 Encapsulation Inactivity Timeout

The Encapsulation Inactivity Timeout attribute is used to enable TCP socket cleanup (closing)

when the defined number of seconds have elapsed with no Encapsulation activity.

3.6.3 Supported Services

 Get_Attribute_Single (Service Code: 0x0E)

 Set_Attribute_Single (Service Code: 0x10)

 GetAttributeAll (Service Code: 0x01)

Available CIP Classes in the Hilscher EtherNet/IP Stack 61/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

3.7 Ethernet Link Object (Class Code: 0xF6)

The Ethernet Link Object maintains link-specific status information for the Ethernet

communications interface. If the device is a multi-port device, it holds more than one instance of

this object. Usually, when using the 2-port switch, instance 1 is assigned Ethernet port 0 and

instance 2 is assigned Ethernet port 1.

3.7.1 Class Attributes

Attribute

ID

Access Rule Name Data

Type

Description of Attribute Semantics of Values

From

Network

From

Host1)

1 Get Get Revision UINT Revision of this object The current value assigned to
this attribute is four (04).

2 Get Get Max.
Instance

UINT Maximum instance
number of an object
currently created in this
class level of the device.

The largest instance number of a
created object at this class
hierarchy level.

3 Get Get Number of
Instances

UINT Number of object
instances currently
created at this class level
of the device

The number of object instances
at this class hierarchy level. This
basically relates to the number of
ethernet ports the device
supports.

1) Related to API EIP_OBJECT_CIP_SERVICE_REQ/CNF – CIP Service Request.

Table 33: Ethernet Link - Class Attributes

3.7.2 Instance Attributes

Att

ID

Access Rule NV Name Data Type Description of

Attribute

Semantics of Values

From

Network

From

Host1)

1 Get Get V Interface Speed UDINT Interface speed currently

in use

Speed in Mbps (e.g.,
0,

10, 100, 1000, etc.)

2 Get Get V Interface Flags DWORD Interface status flags Bit map of interface
flags.

See section 3.7.2.2

3 Get Get NV Physical
Address

ARRAY of

6 USINTs
MAC layer address See section 3.7.2.3

4 Get Get V Interface
Counters

STRUCT of: See section 3.7.2.4

In Octets UDINT Octets received on the
interface

IN Ucast
Packets

UDINT Unicast packets
received on the interface

In NUcast
Packets

UDINT Non-unicast packets
received on the interface

In Discards UDINT Inbound packets
received on the interface
but discarded

In Errors UDINT Inbound packets that
contain errors (does not
include In Discards)

In Unknown
Protos

UDINT Inbound packets with
unknown protocol

Available CIP Classes in the Hilscher EtherNet/IP Stack 62/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Att

ID

Access Rule NV Name Data Type Description of

Attribute

Semantics of Values

From

Network

From

Host1)

Out Octets UDINT Octets sent on the
interface

Out Ucast
Packets

UDINT Unicast packets sent on
the interface

Out NUcast
Packets

UDINT Non-unicast packets
sent on the interface

Out Discards UDINT Outbound packets
discarded

Out Errors UDINT Outbound packets that
contain errors

5 Get Get V Media Counters STRUCT of: Media-specific counters See section 3.7.2.5

Alignment
Errors

UDINT Frames received that
are not an integral
number of octets in
length

FCS Errors UDINT Frames received that do
not pass the FCS check

Single
Collisions

UDINT Successfully transmitted
frames which
experienced exactly one
collision

Multiple
Collisions

UDINT Successfully transmitted
frames which
experienced more than
one collision

SQE Test
Errors

UDINT Number of times SQE
test error message is
generated

Deferred
Transmissions

UDINT Frames for which first
transmission attempt is
delayed because the
medium is busy

Late Collisions UDINT Number of times a
collision is detected later
than 512 bit-times into
the transmission of a
packet

Excessive
Collisions

UDINT Frames for which
transmission fails due to
excessive collisions

MAC Transmit
Errors

UDINT Frames for which
transmission fails due to
an internal MAC sub
layer transmit error

Carrier Sense
Errors

UDINT Times that the carrier
sense condition was lost
or never asserted when
attempting to transmit a
frame

Frame Too
Long

UDINT Frames received that
exceed the maximum
permitted frame size

MAC Receive
Errors

UDINT Frames for which
reception on an interface
fails due to an internal
MAC sub layer receive
error

Available CIP Classes in the Hilscher EtherNet/IP Stack 63/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Att

ID

Access Rule NV Name Data Type Description of

Attribute

Semantics of Values

From

Network

From

Host1)

62) Get,
Set

Get NV Interface
Control

STRUCT

of
Configuration for
physical interface

See section 3.7.2.6

Control Bits WORD Interface Control Bits

Forced
Interface

Speed

UINT Speed at which the
interface shall be forced
to operate

7 Get Get NV3) Interface Type USINT Type of interface:
twisted pair, fiber,
internal, etc

See section 3.7.2.7

8 Get Get V Interface State USINT Current state of the
interface: operational,
disabled, etc

See section 3.7.2.8

9 Get, Set Get,
Set

NV Admin State USINT Administrative state:
enable, disable

See section 3.7.2.9

10 Get Get,
Set

NV Interface Label SHORT_

STRING

Human readable

identification

See section 3.7.2.10

11 Get Get NV Interface
Capability

STRUCT of Indication of capabilities
of the interface

See section 0

Capability Bits WORD Interface capabilities,
other than speed/duplex

Bit map

Speed/Duplex

Options

STRUCT of Indicates speed/duplex

pairs supported in the

Interface Control
attribute

 USINT Speed/Duplex Array

Count

Number of elements

 ARRAY of

STRUCT of

Speed/Duplex Array

 UINT Interface Speed Semantics are the
same as the Forced
Interface Speed in the
Interface Control
attribute: speed in
Mbps

 USINT Interface Duplex Mode 0=half duplex
1=full duplex
2-255=Reserved

1) Related to API command EIP_OBJECT_CIP_SERVICE_REQ/CNF – CIP Service Request.

2) If the attribute value is changed from the network side, the host application is notified via the indication

 EIP_OBJECT_CIP_OBJECT_CHANGE_IND/RES – CIP Object Change Indication (see section 6.2.18 on page 201)

3) Although this attribute is of type NV (non-volatile), it does not need to be stored in remanent memory by the
 application, since there is only one interface type (twisted pair) supported at this time.

Table 34: Ethernet Link - Instance Attributes

Available CIP Classes in the Hilscher EtherNet/IP Stack 64/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

3.7.2.1 Interface Speed

The Interface Speed attribute indicates the speed at which the interface is currently running (e.g.,

10 Mbps, 100 Mbps) A value of 0 is used to indicate that the speed of the interface is

indeterminate. The scale of the attribute is in Mbps, so if the interface is running at 100 Mbps then

the value of Interface Speed attribute is 100. The Interface Speed is intended to represent the

media bandwidth; the attribute is not doubled if the interface is running in full-duplex mode.

3.7.2.2 Interface Status Flags

The Interface Flags attribute contains status and configuration information about the physical

interface and shall be as follows:

Bit(s) Name Definition

0 Link Status Indicates whether or not the IEEE 802.3 communications interface is
connected to an active network.

0 indicates an inactive link.

1 indicates an active link.

1 Half/Full Duplex Indicates the duplex mode currently in use.

0 indicates the interface is running half duplex

1 indicates full duplex.

Note: If the Link Status flag is 0, then the value of the Half/Full

Duplex flag is indeterminate.

2-4 Negotiation Status Indicates the status of link auto-negotiation

0 = Auto-negotiation in progress

1 = Auto-negotiation and speed detection failed. Using default values
for speed and duplex (defaults are 10Mbps and half duplex).

2 = Auto negotiation failed but detected speed. Duplex was defaulted
(default is half duplex).

3 = Successfully negotiated speed and duplex.

4 = Auto-negotiation not attempted. Forced speed and duplex.

5 Manual Setting Requires Reset 0 indicates the interface can activate changes to link parameters
(auto-negotiate, duplex mode, interface speed) automatically.

1 indicates the device requires a Reset service be issued to its
Identity Object in order for the changes to take effect.

Note: The Hilscher EtherNet/IP stack always requires a reset to the

identity object in order for the configuration to take affect.

6 Local Hardware Fault 0 indicates the interface detects no local hardware fault;

1 indicates a local hardware fault is detected. The meaning of this is
product-specific. Examples are an AUI/MII interface detects no
transceiver attached or a radio modem detects no antennae
attached. In contrast to the soft, possible self-correcting nature of the
Link Status being inactive, this is assumed a hard-fault requiring user
intervention.

Note: The Hilscher EtherNet/IP stack never sets this hardware Fault

flag.

7-31 Reserved Is set to zero

Table 35: Ethernet Link - Instance Attribute 2 – Interface Status Flags

Available CIP Classes in the Hilscher EtherNet/IP Stack 65/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

3.7.2.3 Physical Address

The Physical Address attribute contains the interface’s MAC layer address. The Physical Address

is an array of octets. Note that the Physical Address is not a settable attribute. The Ethernet

address must be assigned by the manufacturer, and must be unique per IEEE 802.3 requirements.

Devices with multiple ports but a single MAC interface (e.g., a device with an embedded switch

technology) may use the same value for this attribute in each instance of the Ethernet Link Object.

The general requirement is that the value of this attribute must be the MAC address used for

packets to and from the device’s own MAC interface over this physical port.

3.7.2.4 Interface Counters

The Interface Counters attribute contains counters relevant to the receipt of packets on the

interface.

3.7.2.5 Media Counters

The Media Counters attribute contains counters specific to Ethernet media.

3.7.2.6 Interface Control

The Interface Control attribute is a structure consisting of Control Bits and Forced Interface Speed

and shall be as follows:

Control Bits

Bit(s) Name Definition

0 Auto-negotiate 0 indicates 802.3 link auto-negotiation is disabled. 1 indicates auto-
negotiation is enabled. If auto-negotiation is disabled, then the
device shall use the settings indicated by the Forced Duplex Mode
and Forced Interface Speed bits.

1 Forced Duplex

Mode

If the Auto-negotiate bit is 0, the Forced Duplex Mode bit indicates
whether the interface shall operate in full or half duplex mode.
0 indicates the interface duplex should be half duplex.
1 indicates the interface duplex should be full duplex.

If auto-negotiation is enabled, attempting to set the Forced Duplex
Mode bits results in a GRC hex 0x0C (Object State Conflict).

2-15 Reserved Is set to zero

Table 36: Ethernet Link - Instance Attribute 6 – Interface Control (Control Bits)

Forced Interface Speed

If the Auto-negotiate bit is 0, the Forced Interface Speed bits indicate the speed at which the

interface shall operate. Speed is specified in megabits per second (e.g., for 10 Mbps Ethernet, the

Interface Speed shall be 10). If a requested speed is not supported by the Interface, the device

returns a GRC hex 0x09 (Invalid Attribute Value).

If auto-negotiation is enabled, attempting to set the Forced Interface Speed results in a GRC hex

0x0C (Object State Conflict).

Available CIP Classes in the Hilscher EtherNet/IP Stack 66/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

3.7.2.7 Interface Type

The Interface Type attribute indicates the type of the physical interface. Table 37 shows the

Interface Type values.

Bit(s) Type of interface

0 Unknown interface type

1 The interface is internal to the device, for example, in the case of an embedded
switch.

2 Twisted-pair (e.g., 10Base-T, 100Base-TX, 1000Base-T, etc.)

3 Optical fiber (e.g., 100Base-FX)

4-255 Reserved

Table 37: Ethernet Link - Instance Attribute 7 – Interface Types

3.7.2.8 Interface State

The Interface State attribute shall indicate the current operational state of the interface. Table 38

shows the Interface State values.

Bit(s) Interface State

0 Unknown interface state

1 The interface is enabled and is ready to send and receive data

2 The interface is disabled

3 The interface is testing

4-255 Reserved

Table 38: Ethernet Link - Instance Attribute 8 – Interface State

3.7.2.9 Admin State

The Admin State attribute shall allow administrative setting of the interface state. Table 39 shows

the Admin State values. This attribute shall be stored in non-volatile memory.

Bit(s) Admin State

0 Reserved

1 Enable the interface

2 Disable the interface

3-255 Reserved

Table 39: Ethernet Link - Instance Attribute 9 – Admin State

Available CIP Classes in the Hilscher EtherNet/IP Stack 67/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

3.7.2.10 Interface Label

The Interface Label attribute is a text string that describes the interface. The content of the string is

vendor specific. The maximum number of characters in this string is 64. This attribute shall be

stored in non-volatile memory.

Note:

1. The default Interface Label values in the Hilscher EtherNet/IP stack for Ethernet port 0 and

port 1 (Instances 1 and 2) are “port1” and “port2”, respectively.

The default values can be changed using the packet command

EIP_OBJECT_CIP_SERVICE_REQ/CNF – CIP Service Request.

2. The Interface Label values for instance 1 and instance 2 should correspond to the port labels

that are present on the devices hardware ports.

3. The Interface Label values for instance 1 and instance 2 must correspond to the Interface

Label entries in the EDS file (section “[Ethernet Link Class]”).

3.7.2.11 Interface Capability

The Interface Capability attribute indicates the set of capabilities for the interface. The attribute is a

structure with two main elements: Capability bits and Speed/Duplex options. Capability bits

contains an array of bits that indicate whether the interface supports capabilities such as auto-

negotiation and auto-MDIX. Table 40 specifies the capability bits.

Bit(s) Called Definition

0 Manual Setting

Requires Reset

Indicates whether or not the device requires a reset to apply changes made to

the Interface Control attribute (#6).

0 = Indicates that the device automatically applies changes made to the Interface

Control attribute (#6) and, therefore, does not require a reset in order for changes

to take effect.

This is the value this bit shall have when the Interface Control attribute (#6) is not

implemented.

1 = Indicates that the device does not automatically apply changes made to the

Interface Control attribute (#6) and, therefore, will require a reset in order for

changes to take effect.

Note: this bit shall also be replicated in the Interface Flags attribute (#2) in order

to retain backwards compatibility with previous object revisions.

1 Auto-negotiate 0 = Indicates that the interface does not support link auto-negotiation

1 = Indicates that the interface supports link auto-negotiation

2 Auto-MDIX 0 = Indicates that the interface does not support auto MDIX operation

1 = Indicates that the interface supports auto MDIX operation

3 Manual Speed/Duplex 0 = Indicates that the interface does not support manual setting of speed/duplex.

The Interface Control attribute (#6) shall not be supported.

1 = Indicates that the interface supports manual setting of speed/duplex via the

Interface Control attribute (#6)

4-31 Reserved Shall be set to 0

Table 40: Ethernet Link - Instance Attribute 11 – Capability Bits

Available CIP Classes in the Hilscher EtherNet/IP Stack 68/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

The Speed/Duplex Options element holds an array that indicates the speed/duplex pairs that may

be set via the Interface Control instance attribute (#6). One speed/duplex pair (e.g., 10 Mbps-half

duplex, 100 Mbps-full duplex, etc.) shall be returned for each combination supported by the

interface.

3.7.3 Supported Services

 Get_Attribute_Single (Service Code: 0x0E)

 Set_Attribute_Single (Service Code: 0x10)

 Get_and_Clear (Service Code: 0x4C)

3.8 Time Sync Object (Class Code: 0x43)

A detailed description of CIP Sync and the Time Sync object (class ID 0x43) can be found in

reference [9].

Available CIP Classes in the Hilscher EtherNet/IP Stack 69/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

3.9 DLR Object (Class Code: 0x47)

The Device Level Ring (DLR) Object provides status information interface for the DLR protocol.

The DLR protocol is a layer 2 protocol that enables the use of an Ethernet ring topology. For

further information regarding DLR see section DLR on page 246.

3.9.1 Class Attributes

Attribute

ID

Access Rule Name Data

Type

Description of Attribute Semantics of Values

From

Network

From

Host1)

1 Get Get Revision UINT Revision of this object The current value assigned to
this attribute is three (03).

2 Get Get Max.
Instance

UINT Maximum instance
number of an object
currently created in this
class level of the device.

The largest instance number of a
created object at this class
hierarchy level.

The current value assigned to
this attribute is one (01).

1) Related to API command EIP_OBJECT_CIP_SERVICE_REQ/CNF – CIP Service Request.

Table 41: DLR - Class Attributes

3.9.2 Instance Attributes

Att

ID

Access Rule NV Name Data Type Description of

Attribute

Semantics of Values

From

Network

From

Host1)

1 Get Get V Network
Topology

USINT Current network
topology mode

0 indicates “Linear”

1 indicates “Ring”

See section 3.9.2.1

2 Get Get V Network Status USINT Current status of

network

0 indicates “Normal”
1 indicates “Ring Fault”
2 indicates “Unexpected
Loop Detected”
3 indicates “Partial
Network Fault”
4 indicates “Rapid

Fault/Restore Cycle”

See section 3.9.2.2

10 Get Get V Active
Supervisor

Address

STRUCT

of:

IP and/or MAC
address of the
active ring

supervisor

See section 3.9.2.3

UDINT Supervisor IP

Address
A Value of 0 indicates no
IP Address has been
configured for the device

ARRAY
of 6

USINTs

Supervisor MAC

Address
Ethernet MAC address

12 Get Get NV Capability Flags DWORD Describes the DLR
capabilities of the

device

See section 3.9.2.4

1) Related to API command EIP_OBJECT_CIP_SERVICE_REQ/CNF – CIP Service Request.

Table 42: DLR - Instance Attributes

Available CIP Classes in the Hilscher EtherNet/IP Stack 70/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

3.9.2.1 Network Topology

The Network Topology attribute indicates the current network topology mode. A value of 0 shall

indicate “Linear” topology. A value of 1 shall indicate “Ring” topology.

3.9.2.2 Network Status

The Network Status attribute provides current status of the network based the device’s view of the

network, as specified in the DLR behavior in Chapter 9. Table 5-5.3 shows the possible values:

Bit(s) Definition

0 Normal operation in both Ring and Linear Network Topology modes.

1 Ring Fault. A ring fault has been detected. Valid only when Network Topology is Ring.

2 Unexpected Loop Detected. A loop has been detected in the network. Valid only when the Network
Topology is Linear.

3 Partial Network Fault. A network fault has been detected in one direction only. Valid only when Network
Topology is Ring and the node is the active ring supervisor (Ring Supervisor not supported by Hilscher
EtherNet/IP stack).

4 Rapid Fault/Restore Cycle. A series of rapid ring fault/restore cycles has been detected (DLR Supervisor
only).

Table 43: DLR - Instance Attribute 2 – Network Status

3.9.2.3 Active Supervisor Address

This attribute contains the IP address and/or Ethernet MAC address of the active ring supervisor.

The initial values of IP address and Ethernet MAC address is 0, until the active ring supervisor is

determined.

3.9.2.4 Capability Flags

The Capability Flags describe the DLR capabilities of the device.

Bit(s) Name Definition

0 Announce-based Ring
Node1)

Set if device’s ring node implementation is based on processing of Announce
frames. (The Hilscher implementation is Beacon-based; see definition of next bit)

1 Beacon-based Ring
Node11)

Set if device’s ring node implementation is based on processing of Beacon frames.
(This is the Hilscher Implementation)

2-4 Reserved Is set to zero.

5 Supervisor Capable Set if device is capable of providing the supervisor function (not supported by the
Hilscher EtherNet/IP stack).

6 Redundant Gateway
Capable

Set if device is capable of providing the redundant gateway function. (not supported
by the Hilscher EtherNet/IP stack)

7 Flush_Table frame
Capable

Set if device is capable of supporting the Flush_Tables frame.

8-31 Reserved Is set to zero.

1) Bits 0 and 1 are mutually exclusive. Exactly one of these bits shall be set in the attribute value that a device

reports.

Table 44: DLR - Instance Attribute 12 – Capability Flags

3.9.3 Supported Services

 Get_Attribute_Single (Service Code: 0x0E) is supported for class and instance attributes.

 Get_Attribute_All (Service Code: 0x01) is supported for instance attributes only.

Available CIP Classes in the Hilscher EtherNet/IP Stack 71/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

3.10 Quality of Service Object (Class Code: 0x48)

Quality of Service (QoS) is a general term that is applied to mechanisms used to treat traffic

streams with different relative priorities or other delivery characteristics. Standard QoS

mechanisms include IEEE 802.1D/Q (Ethernet frame priority) and Differentiated Services (DiffServ)

in the TCP/IP protocol suite.

The QoS Object provides a means to configure certain QoS-related behaviors in EtherNet/IP

devices.

The QoS Object is required for devices that support sending EtherNet/IP messages with nonzero

DiffServ code points (DSCP), or sending EtherNet/IP messages in 802.1Q tagged frames or

devices that support the DLR functionality.

3.10.1 Class Attributes

Attribute

ID

Access Rule Name Data

Type

Description of Attribute Semantics of Values

From

Network

From

Host1)

1 Get Get Revision UINT Revision of this object The current value assigned to
this attribute is 1.

2 Get Get Max.
Instance

UINT Maximum instance
number of an object
currently created in this
class level of the device.

The largest instance number of a
created object at this class
hierarchy level.

1) Related to API command EIP_OBJECT_CIP_SERVICE_REQ/CNF – CIP Service Request.

Table 45: QoS - Class Attributes

Available CIP Classes in the Hilscher EtherNet/IP Stack 72/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

3.10.2 Instance Attributes

Att

ID

Access Rule NV Name Data Type Description of Attribute Semantics of

Values
From

Network

From

Host1)

12) Get,
Set

Get NV 802.1Q Tag
Enable

USINT Enables or disables sending
802.1Q frames on CIP and
IEEE 1588 messages

A value of 0
indicates tagged
frames disabled.
A value of 1
indicates tagged
frames enabled.
The default value
shall be 0.

23) Get, Set Get NV DSCP PTP
Event

USINT DSCP value for PTP (IEEE
1588) event messages

33) Get, Set Get NV DSCP PTP
General

USINT DSCP value for PTP (IEEE
1588) general messages

42) Get,
Set

Get NV DSCP Urgent USINT DSCP value for CIP
transport class 0/1 Urgent
priority messages

52) Get,
Set

Get NV DSCP
Scheduled

USINT DSCP value for CIP
transport class 0/1
Scheduled priority
messages

62) Get,
Set

Get NV DSCP High USINT DSCP value for CIP
transport class 0/1 High
priority messages

72) Get,
Set

Get NV DSCP Low USINT DSCP value for CIP
transport class 0/1 low
priority messages

82) Get,
Set

Get NV DSCP Explicit USINT DSCP value for CIP explicit
messages (transport class
2/3 and UCMM) and all
other EtherNet/IP
encapsulation messages

1) Related to API command EIP_OBJECT_CIP_SERVICE_REQ/CNF – CIP Service Request.

2) If the attribute value is changed from the network side, the host application is notified via the indication

 EIP_OBJECT_CIP_OBJECT_CHANGE_IND/RES – CIP Object Change Indication (see section 6.2.18 on page 201)

3) This attribute is only available when the CIP Time Sync object is used.

Table 46: QoS - Instance Attributes

3.10.2.1 802.1Q Tag Enable

The 802.1Q Tag Enable attribute enables or disables sending 802.1Q frames on CIP. When the

attribute is enabled, the device sends 802.1Q frames for all CIP.

A value of 1 indicates enabled. A value of 0 indicates disabled. The default value for the attribute is

0. A change to the value of the attribute takes effect the next time the device restarts.

Note: Devices always use the corresponding DSCP values regardless of whether 802.1Q

frames are enabled or disabled.

Available CIP Classes in the Hilscher EtherNet/IP Stack 73/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

3.10.2.2 DSCP Value Attributes

Attributes 4 through 8 contain the DSCP values that are used for the different types of EtherNet/IP

traffic.

The valid range of values for these attributes is 0-63. Table 47 shows the default DSCP values and

traffic usages.

Attr

ID

Name Traffic Type Usage Default DSCP

dec bin hex

2 DSCP PTP Event

(not supported)

PTP (IEEE 1588) event messages 59 111011 3B

3 DSCP PTP
General

(not supported)

PTP (IEEE 1588) general messages 47 101111 2F

4 DSCP Urgent CIP transport class 0/1 messages with Urgent priority 55 110111 37

5 DSCP Scheduled CIP transport class 0/1 messages with Scheduled priority 47 101111 2F

6 DSCP High CIP transport class 0/1 messages with High priority 43 101011 2B

7 DSCP Low CIP transport class 0/1 messages with Low priority 31 011111 1F

8 DSCP Explicit CIP UCMM

CIP transport class 2/3
All other EtherNet/IP encapsulation messages

27 011011 1B

Table 47: QoS - Instance Attribute 4-8 – DSCP Values

A change to the value of the above attributes will take effect the next time the device restarts.

3.10.3 Supported Services

 Get_Attribute_Single (Service Code: 0x0E)

 Set_Attribute_Single (Service Code: 0x10)

Getting Started/Configuration 74/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

4 Getting Started/Configuration

4.1 Task Structure of the EtherNet/IP Adapter Stack

The figure below displays the internal structure of the tasks which together represent the

EtherNet/IP Adapter Stack:

Figure 9: Task Structure of the EtherNet/IP Adapter Stack

The dual-port memory is used for exchange of information, data and packets. Configuration and IO

data will be transferred using this way.

The user application only accesses the task located in the highest layer namely the EIS_APS-Task

which constitute the application interface of the EtherNet/IP Adapter Stack.

The EIS_OBJECT task, EIS_ENCAP task and EIS_CL1 task represent the core of the EtherNet/IP

Adapter Stack.

The TCP/IP task represents the TCP/IP Stack, which is used by the EtherNet/IP Adapter.

Getting Started/Configuration 75/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

4.1.1 EIS_APS task

The EIS_APS task provides the interface to the user application and the control of the stack. It also

completely handles the Dual Port Memory interface of the communication channel. In detail, it is

responsible for the following:

 Handling the communication channels DPM-interface

 Process data exchange

 channel mailboxes

 Watchdog

 Provides Status and diagnostic

 Handling applications packets (all packets described in Protocol Interface Manual)

 Configuration packets

 Packet Routing

 Handling stacks indication packets

 Provide information about state of every Connection contained in configuration

 Evaluation of data base files

 Preparation of configuration data

4.1.2 EIS_OBJECT task

The EIP_OBJECT task is the main part of the EtherNet/IP Stack. The task is responsible for the

following items:

 CIP object directory

 Connection establishment

 Explicit messaging

 Connection management

4.1.3 EIS_ENCAP task

The EIS_ENCAP task implements the encapsulation layer of the EtherNet/IP. It handles the

interface to the TCP/IP Stack and manages all TCP connections.

4.1.4 EIS_CL1 task

The EIS_CL1 task has the highest priority. The Task is responsible for the implicit messaging. The

Task has an interface to the EDD and manages the handling of the cyclic communication.

4.1.5 EIP_DLR task

The EIS_DLR task provides support for the DLR technology for creating a single ring topology with

media redundancy. For more information see next section.

Getting Started/Configuration 76/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

4.1.6 TCP/IP task

The TCP/IP task coordinates the EtherNet/IP stack with the underlying TCP/IP stack. It provides

services required by the EIS_ENCAP task.

4.2 Configuration Procedures

The following ways are available to configure the EtherNet/IP Adapter:

 Using the Packet API of the EtherNet/IP Protocol Stack

 By netX configuration and diagnostic utility

 Using the Configuration Tool SYCON.net

4.2.1 Using the Packet API of the EtherNet/IP Protocol Stack

Depending of the interface the host application has to the EtherNet/IP stack, there are different

possibilities of how configuration can be performed.

For more information how to accomplish this, please see section 4.3 “Configuration Using the

Packet API”.

4.2.2 Using the Configuration Tool SYCON.net

The easiest way to configure the EtherNet/IP Adapter is using Hilscher’s configuration tool

SYCON.net. This tool is described in a separate documentation.

Getting Started/Configuration 77/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

4.3 Configuration Using the Packet API

In section 3 “Available CIP Classes in the Hilscher EtherNet/IP Stack” the default Hilscher CIP

Object Model is displayed. This section explains how these objects can be configured using the

Packet API of the EtherNet/IP stack.

In order to determine what packets you should use first you need to select one of the following

scenarios the EtherNet/IP Protocol Stack can be run with.

 Scenario: Loadable Firmware (LFW)

The host application and the EtherNet/IP Adapter Protocol Stack run on different processors.

While the host application runs on a separate CPU the EtherNet/IP Adapter Protocol Stack

runs on the netX processor together with a connecting software layer, the AP task.

The connection of host application and Protocol Stack is accomplished via a driver (Hilscher

cifX Driver, Hilscher netX Driver) as software layer on the host side and the AP task as

software layer on the netX side. Both communicate via a dual port memory as shown in

Figure 10.

Figure 10: Loadable Firmware Scenario

 Scenario: Linkable Object Module (LOM)

Both the host application and the EtherNet/IP Adapter Protocol Stack run on the same

processor, the netX as shown in Figure 11. There is no need for drivers or a stack-specific

AP task. Application and Protocol Stack are statically linked.

Figure 11: Linkable Object Modules Scenario

After making the scenario decision there are some Packet Sets available. The Packet Set must be

chosen depending on the requirements for the device you want to develop and on the CIP Object

Model you want the device to have.

Getting Started/Configuration 78/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Table 48: Packet Sets shows the available sets and describes the general functionalities that come

with the corresponding set.

Scenario Name of Packet Set Description

Loadable
Firmware

Basic

(see section 4.3.1
“Basic Packet Set” for
a detailed packet list)

This set provides a basic functionality

 Cyclic communication/ implicit messaging (Transport class1 and Class0).
Two assembly instances are available, one for input and one for output
data.

 Acyclic access (explicit messaging) to all predefined Hilscher CIP objects
(unconnected/connected).

 Support of Device Level Ring (DLR) protocol.

 Support of ACD (Address Conflict Detection)

 Support of Quick Connect

Using this configuration the device’s CIP object model will look like the one that
is illustrated in Figure 8.

Note: If your application/device needs a special functionality that is not covered

by the basic Packet Set, please use the Extended Packet Set described below.

Extended

(see section 4.3.2
“Extended Packet Set”
for a detailed packet
list)

Using this Configuration Set, the host application is free to design the device’s
CIP object model in all aspects. In addition to the functionalities that come with
the Basic Configuration Set, this set provides the following:

 Up to 32 assembly instances possible.

 Additional configuration assembly possible (necessary if the device needs
configuration parameters from the Scanner/Master/PLC before going into
cyclic communication).

 Use additional CIP objects (that might be necessary when using a special
CIP Profile (see section 2.7)). These objects are also accessible via
acyclic/explicit messages.

This Configuration Set can, of course, also be used if only a basic configuration
is desired.

Linkable
object
module

Stack

(see section 4.3.3
“Stack Configuration
Set” for a detailed
packet list)

This Configuration Set corresponds basically to the Extended Configuration Set
of the Loadable Firmware. There are only some differences in the packet
handling independent of the configuration.

Table 48: Packet Sets

Getting Started/Configuration 79/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

4.3.1 Basic Packet Set

4.3.1.1 Configuration Packets

To configure the EtherNet/IP Stack’s default CIP objects the following packets are necessary:

Section Packet Name Command

Code

(REQ/CNF)

Page

6.1.1 EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ/CNF – Configure

the Device with Configuration Parameter

0x3612/

0x3613

92

- RCX_REGISTER_APP_REQ – Register the Application at the stack in order

to receive indications (see reference [2])

0x2F10/

0x2F11

- RCX_CHANNEL_INIT_REQ – Perform channel initialization

(see reference [2])

0x2F80/

0x2F81

Table 49: Basic Packet Set - Configuration Packets

The packets of Packet Set “Basic” (Table 49) should be sent in the order that is illustrated in Figure

12.

Figure 12: Configuration Sequence Using the Basic Packet Set

Getting Started/Configuration 80/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

4.3.1.2 Optional Request Packets

In addition to the request packets related to configuration, there are some more request packets

the application can use:

No. of section Packet Name Command

code

(IND/RES)

Page

6.1.5 EIP_APS_GET_MS_NS_REQ/CNF – Get Module Status/Network

Status

0x360E/

0x360F

113

- RCX_UNREGISTER_APP_REQ – Unregister the Application

(see reference [2])

0x2F12/

0x2F13

6.1.2 EIP_APS_CLEAR_WATCHDOG_REQ/CNF – Clear Watchdog error 0x3602/

0x3603

104

Table 50: Additional Request Packets Using the Basic Packet Set

4.3.1.3 Indication Packets the Host Application Needs to Handle

In addition to the request packets, there are some indication packets the application needs to

handle:

No. of section Packet Name Command

code

(IND/RES)

Page

6.2.18 EIP_OBJECT_CIP_OBJECT_CHANGE_IND/RES – CIP Object

Change Indication

0x1AFA/

0x1AFB

201

6.2.8 EIP_OBJECT_RESET_IND/RES – Indication of a Reset Request from 0x1A24/

0x1A25

157

6.2.2 EIP_OBJECT_CONNECTION_IND/RES – Connection State Change

Indication

0x1A2E/

0x1A2F

122

6.2.1 EIP_OBJECT_FAULT_IND/RES – Fault Indication 0x1A30/

0x1A31

119

6.2.20 RCX_LINK_STATUS_CHANGE_IND/RES – Link Status Change 0x2F8A/

0x2F8B

209

Table 51: Indication Packets Using the Basic Packet Set

Getting Started/Configuration 81/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

4.3.2 Extended Packet Set

4.3.2.1 Configuration Packets

When using the Extended Packet Set the packets listed in Table 52 “Extended Packet Set -

Configuration Packets” are available. Please note, that there are required and optional packets

depending on the desired functionalities your device shall support.

Affects No. of

section

Packet Name Comman

d Code

REQ/

CNF

Page Required

/Optional

General

Configuration

 RCX_REGISTER_APP_REQ – Register

Application

(see DPM Manual for more information)

Registers the EtherNet/IP Adapter application at

the AP-Task. All necessary indication packets

can now be received by the application.

0x2F10/

0x2F11

See

reference

[1]

Required

Identity Object

(0x01)

6.2.6 EIP_OBJECT_ID_SETDEVICEINFO_REQ/CNF

– Set the Device’s Identity Information

Setting all necessary attributes of the CIP

Identity Object.

0x1A16/

0x1A17

148 Required

Addressed CIP

Object

6.2.17 EIP_OBJECT_CIP_SERVICE_REQ/CNF – CIP

Service Request

Used to set attribute data of stack’s internal CIP

Objects

0x1AF8/

0x1AF9

196 Required

Assembly

Object (0x04)

Cyclic

Communication/

Implicit

Messaging

6.2.5 EIP_OBJECT_AS_REGISTER_REQ/CNF –

Register a new Assembly Instance

Register an assembly instance as output, input

or configuration assembly.

0x1A0C/

0x1A0D

141 Optional1

Device’s general

CIP Object

Model

6.2.3 EIP_OBJECT_MR_REGISTER_REQ/CNF –

Register an additional Object Class at the

Message Router

Registers an additional CIP object class at the

Message Router Object. Additional CIP Objects

may be necessary when the device shall use a

specific CIP Profile (see section 2.7 “CIP Device

Profiles”)

0x1A02/

0x1A03

130 Optional

 6.2.11 EIP_OBJECT_REGISTER_SERVICE_REQ/CNF

– Register Service

Register an additional CIP service.

0x1A44/

0x1A45

168 Optional

QoS Object

(0x48)

6.2.16 EIP_OBJECT_CFG_QOS_REQ/CNF – Configure

the QoS Object

Configures the QoS (Quality of Service) Object

0x1A42/

0x1A43

192 Optional2

Device’s general

CIP Object

Model

6.2.19 EIP_OBJECT_CIP_OBJECT_ATTRIBUTE_ACT

IVATE_REQ/CNF – CIP Object Attribute

Activate Request

0x1AFC/

0x1AFD

205 Optional

Getting Started/Configuration 82/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

 6.2.14 EIP_OBJECT_SET_PARAMETER_REQ/CNF –

Set Parameter

Enable/disable specific functionalities within the

EtherNet/IP Stack.

(Please have a look at the packet description for

further details)

0x1AF2/

0x1AF3

181 Optional

 6.1.3 EIP_APS_SET_PARAMETER_REQ/CNF – Set

Parameter Flags

Enable/disable specific functionalities within the

AP-Task.

(Please have a look at the packet description for

further details)

0x360A/

0x360B

107 Optional

TCP/IP Interface

Object (0xF5)

Ethernet Link

Object

See

referenc

e [3]

TCPIP_IP_CMD_SET_CONFIG_REQ – Set the

TCP/IP Configuration

Sets TCP/IP Parameters and Ethernet Port

Configuration

0x200/

0x201

See

reference

[3]

Required

 RCX_START_STOP_COMM_REQ

(see DPM Manual for more information)

Starts or stops the network communication, i.e.

used to set or clear the netX’s BUS_ON signal,

according to the contained parameter

0x2F30/

0x2F31

See

reference

[2]

Required

1 Required if implicit messaging (cyclic I/O data exchange) shall be supported

2 Required if DLR (Device Level Ring) shall be supported

Table 52: Extended Packet Set - Configuration Packets

The following Figure 13 illustrates an example packet sequence using the Extended Packet Set.

Using the shown sequence and packets will basically give you a configuration that is equal to the

configuration you get when using the Basic Packet Set. Of course, you can use additionally

packets to further extend your Device’s object model or activate additional functionalities.

Getting Started/Configuration 83/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Figure 13: Configuration Sequence Using the Extended Packet Set

Getting Started/Configuration 84/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

4.3.2.2 Optional Request Packets

In addition to the request packets related to configuration, there are some more request packets

the application can use during runtime:

No. of section Packet Name Command

code

(IND/RES)

Page

6.1.5 EIP_APS_GET_MS_NS_REQ/CNF – Get Module Status/Network

Status

0x360E/

0x360F

113

 RCX_UNREGISTER_APP_REQ – Unregister the Application

(see reference [2])

0x2F12/

0x2F13

6.1.2 EIP_APS_CLEAR_WATCHDOG_REQ/CNF – Clear Watchdog error 0x3602/

0x3603

104

Table 53: Additional Request Packets Using the Extended Packet Set

4.3.2.3 Indication Packets the Host Application Needs to Handle

In addition to the request packets, there are some indication packets the application needs to

handle:

No. of

section

Packet Name Command

code

(IND/RES)

Page Required/Optional

6.2.18 EIP_OBJECT_CIP_OBJECT_CHANGE_IND/RES – CIP

Object Change Indication

0x1AFA/

0x1AFB

201 Required

6.2.8 EIP_OBJECT_RESET_IND/RES – Indication of a Reset

Request from

0x1A24/

0x1A25

157 Required

6.2.2 EIP_OBJECT_CONNECTION_IND/RES – Connection

State Change Indication

0x1A2E/

0x1A2F

122 Required

6.2.12 EIP_OBJECT_CONNECTION_CONFIG_IND/RES –

Indication of Configuration Data received during

Connection Establishment

0x1A40/

0x1A41

171 Conditional1

6.2.1 EIP_OBJECT_FAULT_IND/RES – Fault Indication 0x1A30/

0x1A31

119 Required

6.2.20 RCX_LINK_STATUS_CHANGE_IND/RES – Link Status

Change

0x2F8A/

0x2F8B

209 Required

6.2.4 EIP_OBJECT_CL3_SERVICE_IND/RES - Indication of

acyclic Data Transfer

0x1A3E/

0x1A3F

134 Conditional2

6.1.4 EIP_APS_MS_NS_CHANGE_IND/RES – Module Status/

Network Status Change Indication

0x360C/

0x360D

110 Conditional3

Getting Started/Configuration 85/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

No. of

section

Packet Name Command

code

(IND/RES)

Page Required/Optional

1 Only necessary if configuration assembly has been registered using command

EIP_OBJECT_AS_REGISTER_REQ (0x1A0C)

2 Only necessary if additional service or CIP object has been registered using command

EIP_OBJECT_REGISTER_SERVICE_REQ (0x1A44) or EIP_OBJECT_MR_REGISTER_REQ (0x1A02)

3 Only necessary if functionality has been activated using command

EIP_APS_SET_PARAMETER_REQ (0x360A)

Table 54: Indication Packets Using the Extended Packet Set

Getting Started/Configuration 86/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

4.3.3 Stack Configuration Set

4.3.3.1 Configuration Packets

When using the Stack Packet Set the packets listed in Table 55 “Stack Packet Set - Configuration

Packets” are available. Please note, that there are required and optional packets depending on the

desired functionalities your device shall support.

Affects No. of

section

Packet Name Comman

d Code

REQ/CNF

Page Required/

Optional

Identity

Object (0x01)

6.2.6 EIP_OBJECT_ID_SETDEVICEINFO_REQ/CNF –

Set the Device’s Identity Information

Setting all necessary attributes of the CIP Identity

Object.

0x1A16/

0x1A17

148 Required

Addressed

CIP Object

6.2.17 EIP_OBJECT_CIP_SERVICE_REQ/CNF – CIP

Service Request

Used to set attribute data of stack’s internal CIP

Objects

0x1AF8/

0x1AF9

196 Required

Assembly

Object (0x04)

Cyclic

Communicati

on/ Implicit

Messaging

6.2.5 EIP_OBJECT_AS_REGISTER_REQ/CNF –

Register a new Assembly Instance

Register an assembly instance as output, input or

configuration assembly.

0x1A0C/

0x1A0D

141 Optional1

Device’s

general CIP

Object Model

6.2.3 EIP_OBJECT_MR_REGISTER_REQ/CNF –

Register an additional Object Class at the

Message Router

Registers an additional CIP object class at the

Message Router Object. Additional CIP Objects

may be necessary when the device shall use a

specific CIP Profile (see section 2.7 “CIP Device

Profiles”)

0x1A02/

0x1A03

130 Optional

 6.2.11 EIP_OBJECT_REGISTER_SERVICE_REQ/CNF –

Register Service

Register an additional CIP service.

0x1A44/

0x1A45

168 Optional

QoS Object

(0x48)

6.2.16 EIP_OBJECT_CFG_QOS_REQ/CNF – Configure the

QoS Object

Configures the QoS (Quality of Service) Object

0x1A42/

0x1A43

192 Optional2

Device’s

general CIP

Object Model

6.2.19 EIP_OBJECT_CIP_OBJECT_ATTRIBUTE_ACTIV

ATE_REQ/CNF – CIP Object Attribute Activate

Request

0x1AFC/

0x1AFD

205 Optional

 6.2.14 EIP_OBJECT_SET_PARAMETER_REQ/CNF – Set

Parameter

Enable/disable specific functionalities within the

EtherNet/IP Stack.

(Please have a look at the packet description for

further details)

0x1AF2/

0x1AF3

181 Optional

Getting Started/Configuration 87/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

TCP/IP

Interface

Object (0xF5)

Ethernet Link

Object

See

referenc

e [3]

TCPIP_IP_CMD_SET_CONFIG_REQ – Set the

TCP/IP Configuration

Sets TCP/IP Parameters and Ethernet Port

Configuration

0x200/

0x201

See

referen

ce [3]

Required

Cyclic

Communicati

on/ Implicit

Messaging

6.2.10 EIP_OBJECT_READY_REQ/CNF – Set Ready and

Run/Idle State

 165 Required

1 Required if implicit messaging (cyclic I/O data exchange) shall be supported

2 Required if DLR (Device Level Ring) shall be supported

Table 55: Stack Packet Set - Configuration Packets

The following Figure 14 illustrates an example packet sequence using the Stack Packet Set. Using

the shown sequence and packets will basically give you a configuration that is equal to the

configuration you get when using the Basic Packet Set. Of course, you can use additionally

packets to further extend your Device’s object model or activate additional functionalities.

Getting Started/Configuration 88/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Figure 14: Configuration Sequence Using the Stack Packet Set

Getting Started/Configuration 89/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

4.3.3.2 Indication Packets the Host Application Needs to Handle

In addition to the request packets, there are some indication packets the application needs to

handle:

No. of

section

Packet Name Command

code

(IND/RES)

Page Required

/Optional

6.2.18 EIP_OBJECT_CIP_OBJECT_CHANGE_IND/RES – CIP

Object Change Indication

0x1AFA/

0x1AFB

201 Required

6.2.8 EIP_OBJECT_RESET_IND/RES – Indication of a Reset

Request from

0x1A24/

0x1A25

157 Required

6.2.2 EIP_OBJECT_CONNECTION_IND/RES – Connection State

Change Indication

0x1A2E/

0x1A2F

122 Required

6.2.12 EIP_OBJECT_CONNECTION_CONFIG_IND/RES – Indication

of Configuration Data received during Connection

Establishment

0x1A40/

0x1A41

171 Conditional1

6.2.1 EIP_OBJECT_FAULT_IND/RES – Fault Indication 0x1A30/

0x1A31

119 Required

6.2.4 EIP_OBJECT_CL3_SERVICE_IND/RES - Indication of

acyclic Data Transfer

0x1A3E/

0x1A3F

134 Conditional2

1 Only necessary if configuration assembly has been registered using command

EIP_OBJECT_AS_REGISTER_REQ/CNF – Register a new Assembly Instance

2 Only necessary if additional service or CIP object has been registered using command

EIP_OBJECT_REGISTER_SERVICE_REQ (0x1A44) or EIP_OBJECT_MR_REGISTER_REQ (0x1A02)

Table 56: Indication Packets Using the Stack Packet Set

Status information 90/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

5 Status information

The EtherNet/IP Adapter provides status information in the dual-port memory. The status

information has a common block (protocol-independent) and a protocol-specific block (extended

status). For the EtherNet/IP Adapter protocol implementation, the extended status is not used.

For a description of the common status block, see reference [1].

The Application Interface 91/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

6 The Application Interface

This chapter defines the application interface of the Ethernet/IP Adapter.

The following send and receive packets are exchanged with the task via its queues in the structure

like it is described in the netX DPM Interface manual. All packets should be exchanged with the

APS-Task queue.

The structures of these packets and their values are described in the sections below.

In order to know what packets are needed to configure the stack please read section 4.3

“Configuration Using the Packet API”.

6.1 The EIS_APS-Task

The EIS_APS-Task is the interface between dual port memory and the EtherNet/IP-Adapter stack.

All services should be sent to this task. For addressing a packet to the EIS_APS-Task the

destination address 0x20 is used.

In detail, the following functionality is provided by the EIS_APS-Task:

Overview over the Packets of the APS-Task

No. of

section

Packet Command

code

(REQ/CNF or

IND/RES)

Page

6.1.1 EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ/CNF – Configure

the Device with Configuration Parameter

0x3612/

0x3613

92

 RCX_REGISTER_APP_REQ – Register the Application at the stack in

order to receive indications

(see reference [2])

0x2F10/

0x2F11

 RCX_UNREGISTER_APP_REQ – Unregister the Application

(see reference [2])

0x2F12/

0x2F13

6.1.2 EIP_APS_CLEAR_WATCHDOG_REQ/CNF – Clear Watchdog error 0x3602/

0x3603

104

6.1.3 EIP_APS_SET_PARAMETER_REQ/CNF 0x360A/

0x360B

107

6.1.4 EIP_APS_MS_NS_CHANGE_IND/RES 0x360C/

0x360D

110

6.1.5 EIP_APS_GET_MS_NS_REQ/CNF 0x360E

0x360F

113

6.1.7 Modify Configuration Parameters 0x2F86/

0x2F87

117

Table 57: Overview over the Packets of the EIS_APS-Task of the EtherNet/IP-Adapter Protocol Stack

The Application Interface 92/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

6.1.1 EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ/CNF –

Configure the Device with Configuration Parameter

Note: This packet replaces the packet

EIP_APS_SET_CONFIGURATION_REQ(cmd:0x3608). For compatibility reasons this

packet is still supported. However, for new developments only the packet

EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ (cmd: 0x3612) shall be

used.

This service can be used by the host application in order to configure the device with configuration

parameters. This packet is part of the basic packet set and provides a basic configuration to all

default CIP objects within the stack.

Using this configuration method the stack automatically creates two assembly instances that can

be used implicit/cyclic communication. The I/O data of theses instances will start at offset 0 at the

dual port memory (relative offset to the input and output areas of the DPM).

Note: If you set usVendId, usProductType and usProductCode to zero, Hilscher’s

firmware standard values will be applied for the according variables.

The following rules apply for the behavior of the EtherNet/IP Adapter Stack when receiving a set

configuration command:

 The configuration data is checked for consistency and integrity.

 In case of failure no data is accepted.

 In case of success the configuration parameters are stored internally (within the RAM).

 The parameterized data will be activated only after a channel init

(RCX_CHANNEL_INIT_REQ).

 This packet does not perform any registration at the stack automatically. Registering must be

performed with a separate packet such as the registration packet described in the netX Dual-

Port-Memory Manual (RCX_REGISTER_APP_REQ, code 0x2F10).

 This request will be denied if the “configuration locked” flag is set in the DPM (for more

information see reference [1]).

Figure 15: Sequence Diagram for the EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ/CNF Packet

The Application Interface 93/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Structure Reference

typedef struct EIP_DPMINTF_QOS_CONFIG_Ttag

{

 TLR_UINT32 ulQoSFlags;

 TLR_UINT8 bTag802Enable;

 TLR_UINT8 bDSCP_PTP_Event;

 TLR_UINT8 bDSCP_PTP_General;

 TLR_UINT8 bDSCP_Urgent;

 TLR_UINT8 bDSCP_Scheduled;

 TLR_UINT8 bDSCP_High;

 TLR_UINT8 bDSCP_Low;

 TLR_UINT8 bDSCP_Explicit;

} EIP_DPMINTF_QOS_CONFIG_T;

typedef struct EIP_DPMINTF_TI_ACD_LAST_CONFLICT_Ttag

{

 TLR_UINT8 bAcdActivity; /*!< State of ACD activity when last

 conflict detected */

 TLR_UINT8 abRemoteMac[6]; /*!< MAC address of remote node from

 the ARP PDU in which a conflict was

 detected */

 TLR_UINT8 abArpPdu[28]; /*!< Copy of the raw ARP PDU in which

 a conflict was detected. */

} EIP_DPMINTF_TI_ACD_LAST_CONFLICT_T;

typedef struct _APS_CONFIGURATION_PARAMETER_SET_V3_T tag

{

 TLR_UINT32 ulSystemFlags;

 TLR_UINT32 ulWdgTime;

 TLR_UINT32 ulInputLen;

 TLR_UINT32 ulOutputLen;

 TLR_UINT32 ulTcpFlag;

 TLR_UINT32 ulIpAddr;

 TLR_UINT32 ulNetMask;

 TLR_UINT32 ulGateway;

 TLR_UINT16 usVendId;

 TLR_UINT16 usProductType;

 TLR_UINT16 usProductCode;

 TLR_UINT32 ulSerialNumber;

 TLR_UINT8 bMinorRev;

 TLR_UINT8 bMajorRev;

 TLR_UINT8 abDeviceName[32];

 TLR_UINT32 ulInputAssInstance;

 TLR_UINT32 ulInputAssFlags;

 TLR_UINT32 ulOutputAssInstance;

 TLR_UINT32 ulOutputAssFlags;

 EIP_DPMINTF_QOS_CONFIG_T tQoS_Config;

 TLR_UINT32 ulNameServer;

 TLR_UINT32 ulNameServer_2;

 TLR_UINT8 abDomainName[48 + 2];

 TLR_UINT8 abHostName[64+2];

 TLR_UINT8 bSelectAcd;

 EIP_DPMINTF_TI_ACD_LAST_CONFLICT_T tLastConflictDetected;

 TLR_UINT8 bQuickConnectFlags;

 TLR_UINT8 abAdminState[2]

 TLR_UINT8 abReserved[9];

 TLR_UINT16 usEncapInactivityTimeout;

} EIP_APS_CONFIGURATION_PARAMETER_SET_V3_T;

typedef struct EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ_Ttag

{

 TLR_UINT32 ulParameterVersion; /*!< Version related to the following configuration union */

 union

 {

 EIP_APS_CONFIGURATION_PARAMETER_SET_V1_T tV1;

 EIP_APS_CONFIGURATION_PARAMETER_SET_V2_T tV2;

 EIP_APS_CONFIGURATION_PARAMETER_SET_V2_T tV3;

 } unConfig;

} EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ_T;

typedef struct EIP_APS_PACKET_SET_CONFIGURATION_PARAMETERS_REQ_Ttag

{

 TLR_PACKET_HEADER_T tHead;

The Application Interface 94/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

 EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ_T tData;

}EIP_APS_PACKET_SET_CONFIGURATION_PARAMETERS_REQ_T;

Packet Description

structure EIP_APS_PACKET_SET_CONFIGURATION_PARAMETERS_REQ_T Type: Request

Variable Type Value / Range Description

tHead - Structure TLR_PACKET_HEADER_T

ulDest UINT32 0x20/

DPMINTF_QUE

Destination Queue-Handle

ulSrc UINT32 0 ... 232-1 Source Queue-Handle

ulDestId UINT32 See rules in
section 3.2.1

Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.
Set to 0 for the Initialization Packet

ulSrcId UINT32 See rules in
section 3.2.1

Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 282 Packet Data Length in bytes

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by
the Source Process of the Packet

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x3612 EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ -

Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility
reasons

ulRout UINT32 x Routing, do not touch

tData - Structure EIP_APS_SET_CONFIGURATION_ PARAMETERS_REQ_T

ulParameterVersion UINT32 3 (latest
version)

Version of the following parameter structure

unConfig.tV3 UNION

 For parameter set version 2 the structure in Table 59
must be used.

Table 58: EIP_APS_PACKET_SET_CONFIGURATION_PARAMETERS_REQ – Set Configuration Parameters Request

The Application Interface 95/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Structure EIP_APS_CONFIGURATION_PARAMETER_SET_V3_T

ulSystemFlags UINT32 (Bit
field)

0, 1 System flags area

The start of the device can be performed either
application controlled or automatically:

Automatic (0): Network connections are opened
automatically without taking care of the state of the
host application. Communication with a controller after

a device start is allowed without BUS_ON flag, but the

communication will be interrupted if the BUS_ON flag

changes state to 0

Application controlled (1): The channel firmware is
forced to wait for the host application to wait for the
Application Ready flag in the communication change of
state register (see section 3.2.5.1 of the netX DPM
Interface Manual). Communication with controller is

allowed only with the BUS_ON flag.

For more information concerning this topic see section
4.4.1 “Controlled or Automatic Start” of the netX DPM
Interface Manual.

ulWdgTime UINT32 0, 20..65535 Watchdog time (in milliseconds).

0 = Watchdog timer has been switched off

Default value: 1000

ulInputLen UINT32 0..504 Length of Input data (OT direction, data the device
receives from a Scanner)

ulOutputLen UINT32 0..504 Length of Output data (TO direction, data the device
sends to a Scanner)

ulTcpFlag UINT32 Default value:

0x00000410

The TCP flags configure the TCP stack behavior
related the IP Address assignment (STATIC, BOOTP,
DHCP) and the Ethernet port settings (such as Auto-
Neg, 100/10MBits, Full/Half Duplex).

For more information see Table 63 on page 101.

Default value:

0x00000410 (both ports set to DHCP + Autoneg)

ulIPAddr UINT32 All valid IP-
addresses

IP Address

See detailed explanation in the corresponding TCP/IP
Manual (reference [3])

ulNetMask UINT32 All valid masks Network Mask

See detailed explanation in the corresponding TCP/IP
Manual (reference [3])

ulGateway UINT32 All valid IP-
addresses

Gateway Address

See detailed explanation in the corresponding TCP/IP
Manual (reference [3])

usVendorID UINT16 0..65535 Vendor identification:

This is an identification number for the manufacturer of
an EtherNet/IP device.

Vendor IDs are managed by ODVA (see
www.odva.org).

The value zero is not valid.

Default value: 283 (Hilscher)

http://www.odva.org/

The Application Interface 96/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

usProductType UINT16 0..65535 CIP Device Type (former “Product Type”)

The list of device types is managed by ODVA (see
www.odva.org). It is used to identify the device profile
that a particular product is using. Device profiles define
minimum requirements a device must implement as
well as common options.

Publicly defined: 0x00 - 0x64
Vendor specific: 0x64 - 0xC7
Reserved by CIP: 0xC8 - 0xFF
Publicly defined: 0x100 - 0x2FF
Vendor specific: 0x300 - 0x4FF
Reserved by CIP: 0x500 - 0xFFFF

Default: 0x0C (Communication Device)

The value 0 is not a valid Product Type. However,
when using value 0 here, the stack automatically
chooses the default Product Type (0x0C).

usProductCode UINT16 0..65535 Product code

The vendor assigned Product Code identifies a
particular product within a device type. Each vendor
assigns this code to each of its products. The Product
Code typically maps to one or more catalog/model
numbers. Products shall have different codes if their
configuration and/or runtime options are different. Such
devices present a different logical view to the network.
On the other hand for example, two products that are
the same except for their color or mounting feet are the
same logically and may share the same product code.
The value zero is not valid.

The value 0 is not a valid Product Code. However,
when using value 0 here, the stack automatically
chooses the default Product Code dependent on the
chip type (netX50/100 etc.) that is used.

ulSerialNumber UINT32 0..0xFFFFFFFF Serial Number of the device

This parameter is a number used in conjunction with
the Vendor ID to form a unique identifier for each
device on any CIP network. Each vendor is
responsible for guaranteeing the uniqueness of the
serial number across all of its devices.
Usually, this number will be set automatically by the
firmware, if a security memory is available. In this case
leave this parameter at value 0.

bMinorRev UINT8 1..255 Major revision

Value 0 is not a valid major revision number.

If major revision and minor revision both are set to 0,
the stack uses the default value predefined in the
firmware.

bMajorRev UINT8 1..127 Minor revision

Value 0 is not a valid minor revision number.

If major revision and minor revision both are set to 0,
the stack uses the default value predefined in the
firmware.

http://www.odva.org/

The Application Interface 97/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

abDeviceName UINT8[32] Device Name

This text string should represent a short description of
the product/product family represented by the product
code. The same product code may have a variety of
product name strings.

Byte 0 indicates the length of the name. Bytes 1 -30
contain the characters of the device name)

Example: “Test Name”

abDeviceName[0] = 9
abDeviceName[1..9] = “Test Name”

Note: If an empty device name (“”) is configured, the
firmware will use the default device name. For an
overview of default names see Table 60.

ulInputAssInstance UINT32 0 (no input
assembly)

1- 0xFFFFFFFF

Instance number of input assembly (OT direction)

See Table 98 “Assembly Instance Number Ranges”

Default: 100

Note: If instance number is != 0: the value of

ulInputAssInstance must differ from the value of
ulOutputAssInstance.

ulInputAssFlags UINT32 Bit mask Input assembly (OT) flags

See Table 64 “Input Assembly Flags/ Output Assembly
Flags”

ulOutputwAssInstanc

e

UINT32 0 (no output
assembly)

1- 0xFFFFFFFF

Instance number of output assembly (TO direction)

See Table 98 “Assembly Instance Number Ranges”

Default: 101

Note: If instance number is != 0: the value of

ulInputAssInstance must differ from the value of
ulOutputAssInstance.

ulOutputAssFlags UINT32 Bit mask Output assembly (TO) flags

See Table 64 “Input Assembly Flags/ Output Assembly
Flags”

tQoS_Config EIP_DPMINTF_
QOS_CONFIG
_T

 Quality of Service configuration

This parameter set configures the Quality of Service
Object (CIP ID 0x48)

For a detailed description of the parameters see
command EIP_OBJECT_CFG_QOS_REQ/CNF –

Configure the QoS Object

ulNameServer UINT32 See section
3.6

Name Server 1

This parameter configures the NameServer element of
attribute 5 of the TCP/IP Interface Object.

See section 3.6 “TCP/IP Interface Object (Class Code:
0xF5) for more information.

Default: 0.0.0.0

ulNameServer_2 UINT32 See section
3.6

Name Server 2

This parameter configures the NameServer2 element
of attribute 5 of the TCP/IP Interface Object.

See section 3.6 “TCP/IP Interface Object (Class Code:
0xF5) for more information.

abDomainName[48 +

2]

UINT8[] See section
3.6

Domain Name

This parameter configures the DomainName element
of attribute 5 of the TCP/IP Interface Object.

See section 3.6 “TCP/IP Interface Object (Class Code:
0xF5) for more information.

The Application Interface 98/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

abHostName[64+2] UINT8[] See section
3.6

Host Name

This parameter configures attribute 6 of the TCP/IP
Interface Object.

See section 3.6 “TCP/IP Interface Object (Class Code:
0xF5) for more information.

bSelectAcd UINT8 See section
3.6

Select ACD

This parameter configures attribute 10 of the TCP/IP
Interface Object.

See section 3.6 “TCP/IP Interface Object (Class Code:
0xF5) for more information.

tLastConflictDetect

ed

EIP_DPMINTF_
TI_ACD_LAST_
CONFLICT_T

See section
3.6

Last Detected Conflict

This parameter configures attribute 11 of the TCP/IP
Interface Object.

See section 3.6 “TCP/IP Interface Object (Class Code:
0xF5) for more information.

bQuickConnectFlags UINT8 0,1,3 Quick Connect Flags

This parameter enables/disables the Quick Connect
functionality within the stack. This affects the TCP
Interface Object (0xF5) attribute 12. See section 3.6
“TCP/IP Interface Object (Class Code: 0xF5) for more
information.

Bit 0 (EIP_OBJECT_QC_FLAGS_ACTIVATE_ATTRIBUTE):

If set (1), the Quick Connect Attribute 12 of the TCP
Interface Object (0xF5) is activated (i.e. it is present
and accessible via CIP services). The actual value of
attribute 12 can be configured with bit 1.

Bit 1 (EIP_OBJECT_QC_FLAGS_ENABLE_QC):

This bit configures the actual value of attribute 12. If
set, attribute 12 has the value 1 (Quick Connect
enabled). If not set, Quick connect is disabled. This bit
will be evaluated only if bit 0 is set (1).

abAdminState[2] UINT8 1, 2 Admin State

This parameter configures attribute 9 of the Ethernet
Link Object.

See section 3.7 “Ethernet Link Object (Class Code:
0xF6)“ for more information.

abReserved[9] UINT8 0 Set to zero

usEncapInactivityTi

meout

UINT16 0-3600 This parameter corresponds to attribute 13 of the
TCP/IP Interface Object (CIP Id 0xF5).

The Encapsulation Inactivity Timeout is used to close
sockets when the defined time (seconds) elapsed
without Encapsulation activity. This attribute shall be
stored in non-volatile memory.

Table 59: EIP_APS_PACKET_SET_CONFIGURATION_PARAMETERS_REQ – Configuration Parameter Set V3

The following table gives an overview of the default device names depending on the used loadable

firmware:

Loadable firmware Default device name

COMX 100 "COMX 100XX-RE/EIS"

COMX 51 "COMX 51XX-RE/EIS"

netJACK 51 "NJ 51X-RE/EIS"

netJACK 50 "NJ 50X-RE/EIS"

netJACK 100 "NJ 100X-RE/EIS"

netX 100 "NETX 100 RE/EIS"

The Application Interface 99/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

netX 51 "NETX 51 RE/EIS"

netX 50 "NETX 50 RE/EIS"

netX 500 "NETX 500 RE/EIS"

CIFX "CIFX RE/EIS"

Table 60: Default device name for loadable firmwares

The Application Interface 100/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

The following flags are available in the area ulTcpFlag:

In general, this 32 bit area can be devided into two 16-bit areas, the lower area (bits 15 – 0, Table

61) and the upper area (bits 31 – 16, Table 62).

The upper area gets active only if the Extended Flag (bit 15) is set to 1. Setting flags in the upper

area without setting the Extended Flag will not have any effect.

Table 63 describes in more detail what the corresponding flags are used for.

ulTcpFlag - Lower 16 bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

E
x
te

n
d
e

d
 F

la
g

R
e

s
e

rv
e

d

S
p

e
e

d
 S

e
le

c
ti
o
n

D
u

p
le

x
 O

p
e

ra
ti
o

n

A
u

to
-N

e
g

o
ti
a

ti
o

n

R
e

s
e

rv
e

d

D
H

C
P

B
O

O
T

P

G
a

te
w

a
y
 A

d
d

re
s
s

N
e

t
M

a
s
k

IP
 A

d
d

re
s
s

Table 61: Definition of area ulTcpFlag (Lower 16 bit)

ulTcpFlag - Upper 16 bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
e
s
e

rv
e

d

S
p

e
e

d
 S

e
le

c
ti
o
n

,
P

o
rt

 1

D
u
p

le
x
 O

p
e

ra
ti
o

n
,
P

o
rt

 1

A
u

to
-N

e
g

o
ti
a

ti
o

n
,
P

o
rt

 1

R
e
s
e

rv
e

d

M
D

I
M

o
d

e
,

P
o

rt
 1

M
D

I
M

o
d

e
,

P
o

rt
 0

Table 62: Definition of area ulTcpFlag (Upper 16 bit)

Bits Description

31.. 29 Reserved

28 Speed Selection (Ethernet Port 2):

Only evaluated if bit 15 is set. Behaves the same as bit 12.

27 Duplex Operation (Ethernet Port 2):

Only evaluated if bit 15 is set. Behaves the same as bit 11.

26 Auto-Negotiation (Ethernet Port 2):

Only evaluated if bit 15 is set. Behaves the same as bit 10.

25..20 Reserved

19..18 MDI mode for Port 1

0: use default (Auto MDI-X except for Quick Connect)
1: Auto MDI-X
2: MDI
3: MDI-X

The Application Interface 101/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Bits Description

17..16 MDI mode for Port 0

0: use default (Auto MDI-X except for Quick Connect)
1: Auto MDI-X
2: MDI
3: MDI-X

15 Extended Flag:

This flag can be used if the device has two Ethernet ports. In that case the two ports can be configured
individually regarding “Speed Selection”, “Duplex Operation”, “Auto-Negotiation” and “MDI Mode”

If not set (0), both ports are configured with the same parameters using the bits 10 to 12. In that case the
default MDI mode “Auto MDI-X” is used.

If set (1), port 1 is configured using bits 10 to 12. Port 2 is configured using the bits 26 to 28. In addition, the
MDI mode can be configured for both ports individually using the bits 16-17 (port 0) and 18-19 (port 1)

13..14 Reserved

12 Speed Selection: (Ethernet Port 1)
If set (1), the device will operate at 100 MBit/s, otherwise at 10 MBit/s.

This parameter will only be evaluated, if auto-negotiation (bit 10) is not set (0).

11 Duplex Operation: (Ethernet Port 1)
If set (1), full-duplex operation will be enabled, otherwise the device will operate in half duplex mode

This parameter will only be evaluated, if auto-negotiation (bit 10) is not set (0).

10 Auto-Negotiation: (Ethernet Port 1)
If set (1), the device will negotiate speed and duplex with connected link partner.

If set (1), this flag overwrites Bit 11 and Bit 12 .

9..5 Reserved

4 Enable DHCP:
If set (1), the device tries to obtain its IP configuration from a DHCP server.

3 Enable BOOTP:
If set (1), the device tries to obtain its IP configuration from a BOOTP server.

2 Gateway:

If set (1), the content of the ulGateway parameter will be evaluated.

If the flag is not set (0), ulGateway must be set to 0.0.0.0.

1 Netmask:

If set (1), the content of the ulNetMask parameter will be evaluated. If the flag is not set the device will

assume to be an isolated host which is not connected to any network. The ulGateway parameter will be

ignored in this case.

0 IP address:

If set (1), the content of the ulIpAddr parameter will be evaluated. In this case the parameter ulNetMask

must be a valid net mask.

Table 63: Description of available flags for the area ulTcpFlag

The Application Interface 102/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

The input assembly flags and the output assembly flags are defined as follows:

Flag Meaning

Bit 0 This flag is used internally and must be set to 0.

Bit 1 This flag is used internally and must be set to 0.

Bit 2 This flag is used internally and must be set to 0.

Bit 3 If set (1), the assembly instance’s real time format is modeless, i.e. it does not contain

run/idle information.

If not set (0), the assembly instance’s real time format is the 32-Bit Run/Idle header.

For more information about real time format see section 2.4.3.1 “Real Time Format”.

Bit 4 This flag is used internally and must be set to 0

Bit 5 This flag is used internally and must be set to 0

Bit 6 This flag decides whether the assembly data which is mapped into the DPM memory

area is cleared upon closing or timeout of the connection or whether the last

sent/received data is left unchanged in the memory.

If the bit is set (1) the data will be left unchanged.

Bit 7 This flag decides whether the assembly instance allows a connection to be established

with a smaller connection size than defined in ulInputLen/ulOutputLen or whether

only the exact match is accepted. If the bit is set (1), the connection size in a

ForwardOpen must directly correspond to ulInputLen/ulOutputLen.

Example:

1) ulInputLen = 16 (Bit 7 of ulInputAssFlags is not set (0))

 ulOutputLen = 32 (Bit 7 of ulOutputAssFlags is not set (0))

 A connection can be opened with smaller or matching I/O sizes,

 e.g. 8 for input and 20 for output.

2) ulInputLen = 6 (Bit 7 of ulInputAssFlags is set (1))

 ulOutputLen = 10 (Bit 7 of ulOutputAssFlags is set (1))

 A connection can only be opened with matching I/O sizes, 6 for

 input and 10 for output.

Table 64: Input Assembly Flags/ Output Assembly Flags

The Application Interface 103/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Structure Reference

typedef __PACKED_PRE struct EIP_APS_SET_CONFIGURATION_PARAMETERS_CNF_Ttag

{

 TLR_UINT32 ulPacketVersion; /*!< Version related to the following union entry */

 __PACKED_PRE union

 {

 EIP_APS_CONFIGURATION_PARAMETER_SET_V1_T tV1;

 EIP_APS_CONFIGURATION_PARAMETER_SET_V2_T tV2;

 EIP_APS_CONFIGURATION_PARAMETER_SET_V2_T tV3;

 }__PACKED_POST unConfig;

}__PACKED_POST EIP_APS_SET_CONFIGURATION_PARAMETERS_CNF_T;

typedef struct EIP_APS_PACKET_SET_CONFIGURATION_PARAMETERS_CNF_Ttag

{

 TLR_PACKET_HEADER_T tHead;

 EIP_APS_SET_CONFIGURATION_PARAMETERS_CNF_T tData;

} EIP_APS_PACKET_SET_CONFIGURATION_PARAMETERS_CNF_T;

Packet Description

Structure EIP_APS_PACKET_SET_CONFIGURATION_PARAMETERS_CNF_T Type: Confirmation

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 See rules in
section 3.2.1

Destination Queue Handle

ulSrc UINT32 See rules in
section 3.2.1

Source Queue Handle

ulDestId UINT32 See rules in
section 3.2.1

Destination Queue Reference

ulSrcId UINT32 See rules in
section 3.2.1

Source Queue Reference

ulLen UINT32 size from
request packet

Packet Data Length in bytes

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by the Source
Process of the Packet

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x3613 EIP_APS_SET_CONFIGURATION_PARAMETERS_CNF - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 x Routing, do not touch

tData - Structure EIP_APS_SET_CONFIGURATION_ PARAMETERS_CNF_T

ulParameterV

ersion
UINT32 Version of the following parameter structure (from request packet)

unConfig UNION

 Configuration Set (from request packet)

Table 65: EIP_APS_PACKET_SET_CONFIGURATION_PARAMETERS_CNF – Set Configuration Parameters Confirmation

The Application Interface 104/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

6.1.2 EIP_APS_CLEAR_WATCHDOG_REQ/CNF – Clear Watchdog error

This packet can be sent by the host application task to the AP-Task in order to clear a watchdog

error. Figure 16 below displays a sequence diagram for the

EIP_APS_CLEAR_WATCHDOG_REQ/CNF packet:

Figure 16: Sequence Diagram for the EIP_APS_CLEAR_WATCHDOG_REQ/CNF Packet

Packet Structure Reference

typedef struct EIP_APS_PACKET_CLEAR_WATCHDOG_REQ_Ttag {

 TLR_PACKET_HEADER_T tHead;

} EIP_APS_PACKET_CLEAR_WATCHDOG_REQ_T;

#define EIP_APS_CLEAR_WATCHDOG_REQ_SIZE 0

The Application Interface 105/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Description

Structure Information EIP_APS_PACKET_CLEAR_WATCHDOG_REQ_T

Type: Request

Area Variable Type Value /
Range

Description

tHead Structure
Information

ulDest UINT32 Destination Queue-Handle. Set to

0: Destination is operating system rcX

32 (0x20): Destination is the protocol stack

ulSrc UINT32 Source Queue-Handle. Set to:

0: when working with loadable firmware.

Queue handle returned by TLR_QUE_IDENTIFY()}: when working with
loadable firmware.

ulDestId UINT32 Destination End Point Identifier, specifying the final receiver of the packet
within the Destination Process.

Set to 0, will not be changed

ulSrcId UINT32 Source End Point Identifier, specifying the origin of the packet inside the
Source Process. This variable may be used for low-level addressing
purposes.

ulLen UINT32 0 EIP_APS_CLEAR_WATCHDOG_REQ_SIZE

Packet Data Length (In Bytes)

ulId UINT32 0 ... 232-1 Packet Identification As Unique Number

ulSta UINT32 See Packet Structure Reference

ulCmd UINT32 0x3602 EIP_APS_CLEAR_WATCHDOG_REQ - Command / Response

ulExt UINT32 Reserved

ulRout UINT32 Routing Information

Table 66: EIP_APS_CLEAR_WATCHDOG_REQ – Request to clear watchdog error

The Application Interface 106/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Structure Reference

typedef struct EIP_APS_PACKET_CLEAR_WATCHDOG_CNF_Ttag {

 TLR_PACKET_HEADER_T tHead;

} EIP_APS_PACKET_CLEAR_WATCHDOG_CNF_T;

#define EIP_APS_CLEAR_WATCHDOG_CNF_SIZE 0

Packet Description

Structure Information EIP_APS_PACKET_CLEAR_WATCHDOG_CNF_T

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure
Information

ulDest UINT32 See rules in
section 3.2.1

Destination Queue Handle

ulSrc UINT32 See rules in
section 3.2.1

Source Queue Handle

ulDestId UINT32 See rules in
section 3.2.1

Destination End Point Identifier, specifying the final receiver of the
packet within the Destination Process.

ulSrcId UINT32 See rules in
section 3.2.1

Source End Point Identifier, specifying the origin of the packet
inside the Source Process

ulLen UINT32 0 EIP_APS_CLEAR_WATCHDOG_CNF_SIZE

Packet Data Length (In Bytes)

ulId UINT32 0 ... 232-1 Packet Identification As Unique Number

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x00003603 EIP_APS_CLEAR_WATCHDOG_CNF - Command / Response

ulExt UINT32 Reserved

ulRout UINT32 Routing Information

Table 67: EIP_APS_CLEAR_WATCHDOG_CNF – Confirmation to clear watchdog request

The Application Interface 107/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

6.1.3 EIP_APS_SET_PARAMETER_REQ/CNF – Set Parameter Flags

This packet can be sent by the host application to activate special functionalities or behaviors of the

AP-Task. The request packet therefore contains a flag field in which each bit stands for a specific

functionality.

Table 68 shows all available flags:

Bit Description

0 Flag IP_APS_PRM_SIGNAL_MS_NS_CHANGE (0x00000001)

If set (1), the host application will be notified whenever the network or module status changes. The module and
the network status are displayed by LEDs at EtherNet/IP devices (see section 9.1 “Module and Network
Status” for more information). The notification will be sent with the indication packet

6.1.4EIP_APS_MS_NS_CHANGE_IND/RES – Module Status/ Network Status Change Indication.

If not set (0) no notifications will be sent.

1..31 Reserved for future use.

Table 68: EIP_APS_SET_PARAMETER_REQ Flags

Figure 17 below displays a sequence diagram for the EIP_APS_SET_PARAMETER_REQ/CNF

packet.

Figure 17: Sequence diagram for the EIP_APS_SET_PARAMETER_REQ/CNF packet

Packet Structure Reference

#define EIP_APS_PRM_SIGNAL_MS_NS_CHANGE 0x00000001

typedef struct EIP_APS_SET_PARAMETER_REQ_Ttag

{

 TLR_UINT32 ulParameterFlags; /*!< Parameter flags \n

} EIP_APS_SET_PARAMETER_REQ_T;

#define EIP_APS_SET_PARAMETER_REQ_SIZE (sizeof(EIP_APS_SET_PARAMETER_REQ_T))

typedef struct EIP_APS_PACKET_SET_PARAMETER_REQ_Ttag

{

 TLR_PACKET_HEADER_T tHead;

 EIP_APS_SET_PARAMETER_REQ_T tData;

} EIP_APS_PACKET_SET_PARAMETER_REQ_T;

The Application Interface 108/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Description

structure EIP_APS_PACKET_SET_PARAMETER_REQ_T

Type: Request

Area Variable Type Value / Range Description

tHead structure TLR_PACKET_HEADER_T

ulDest UINT32 0x20/

DPMINTF_QUE
Destination Queue-Handle

ulSrc UINT32 0 ... 232-1 Source Queue-Handle

ulDestId UINT32 See rules in
section 3.2.1

Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process. Set
to 0 for the Initialization Packet

ulSrcId UINT32 See rules in
section 3.2.1

Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 4 Packet Data Length in bytes

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by the
Source Process of the Packet

ulSta UINT32 See Packet Structure Reference

ulCmd UINT32 0x360A EIP_APS_SET_PARAMETER_REQ - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 x Routing, do not touch

tData structure EIP_APS_SET_PARAMETER_REQ_T

ulParameterFlags UINT32 See Table 68 for
possible values

Bit field

Table 69: EIP_APS_SET_PARAMETER_REQ – Set Parameter Flags Request

The Application Interface 109/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Structure Reference

#define EIP_APS_SET_PARAMETER_CNF_SIZE 0

typedef struct EIP_APS_PACKET_SET_PARAMETER_CNF_Ttag

{

 TLR_PACKET_HEADER_T tHead;

} EIP_APS_PACKET_SET_PARAMETER_CNF_T;

Packet Description

structure EIP_APS_PACKET_SET_PARAMETER_CNF_T

Type: Confirmation

Area Variable Type Value / Range Description

tHead structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination Queue-Handle

ulSrc UINT32 Source Queue-Handle

ulDestId UINT32 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process. Set
to 0 for the Initialization Packet

ulSrcId UINT32 Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 0 Packet Data Length in bytes

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by the
Source Process of the Packet

ulSta UINT32 See Packet Structure Reference

ulCmd UINT32 0x360B EIP_APS_SET_PARAMETER_CNF - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 x Routing, do not touch

Table 70: EIP_APS_SET_PARAMETER_CNF – Confirmation to Set Parameter Flags Request

The Application Interface 110/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

6.1.4 EIP_APS_MS_NS_CHANGE_IND/RES – Module Status/ Network

Status Change Indication

This packet indicates a change in either the module or network status. Both module status and

network status are displayed at the device by LEDs.

Note: This functionality must be enabled in advance by setting the flag

EIP_APS_PRM_SIGNAL_MS_NS_CHANGE using the packet

EIP_APS_SET_PARAMETER_REQ/CNF – Set Parameter Flags (section 6.1.3).

Figure 18 below displays a sequence diagram for the EIP_APS_MS_NS_CHANGE_IND/RES packet:

Figure 18: Sequence Diagram for the EIP_APS_MS_NS_CHANGE_IND/RES Packet

The Application Interface 111/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Structure Reference

typedef struct EIP_APS_MS_NS_CHANGE_IND_Ttag

{

 TLR_UINT32 ulModuleStatus; /*!< Module Status \n

 TLR_UINT32 ulNetworkStatus; /*!< Network Status \n

} EIP_APS_MS_NS_CHANGE_IND_T;

#define EIP_APS_MS_NS_CHANGE_IND_SIZE (sizeof(EIP_APS_MS_NS_CHANGE_IND_T))

typedef struct EIP_APS_PACKET_MS_NS_CHANGE_IND_Ttag

{

 TLR_PACKET_HEADER_T tHead;

 EIP_APS_MS_NS_CHANGE_IND_T tData;

} EIP_APS_PACKET_MS_NS_CHANGE_IND_T;

Packet Description

structure EIP_APS_PACKET_MS_NS_CHANGE_IND_T

Type: Indication

Area Variable Type Value / Range Description

tHead structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination Queue-Handle

ulSrc UINT32 Source Queue-Handle

ulDestId UINT32 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.

Set to 0, will not be changed

ulSrcId UINT32 Source End Point Identifier, specifying the origin of the
packet inside the Source Process. This variable may be
used for low-level addressing purposes.

ulLen UINT32 8 Packet Data Length in bytes

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by the
Source Process of the Packet

ulSta UINT32 See Packet Structure Reference

ulCmd UINT32 0x360C EIP_APS_MS_NS_CHANGE_IND - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 x Routing, do not touch

tData structure EIP_APS_MS_NS_CHANGE_IND_T

ulModuleStatus UINT32 0…5 Module Status

The module status describes the current state of the
corresponding MS-LED (provided that it is connected).
See Table 158 for more information.

ulNetworkStatus UINT32 0…5 Network Status

The network status describes the current state of the
corresponding NS-LED (provided that it is connected).
See Table 159 for more information.

Table 71: EIP_APS_MS_NS_CHANGE_IND – Module Status/ Network Status Change Indication

The Application Interface 112/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Structure Reference

#define EIP_APS_MS_NS_CHANGE_RES_SIZE 0

typedef struct EIP_APS_PACKET_MS_NS_CHANGE_RES_Ttag

{

 TLR_PACKET_HEADER_T tHead;

} EIP_APS_PACKET_MS_NS_CHANGE_RES_T;

Packet Description

structure EIP_APS_PACKET_MS_NS_CHANGE_RES_T

Type: Response

Area Variable Type Value / Range Description

tHead structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination Queue-Handle

ulSrc UINT32 Source Queue-Handle

ulDestId UINT32 See rules in
section 3.2.1

Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.

ulSrcId UINT32 See rules in
section 3.2.1

Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 0 Packet Data Length in bytes

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by the
Source Process of the Packet

ulSta UINT32 See Packet Structure Reference

ulCmd UINT32 0x360D EIP_APS_MS_NS_CHANGE_RES - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 x Routing, do not touch

Table 72: EIP_APS_MS_NS_CHANGE_RES – Response to Module Status/ Network Status Change Indication

The Application Interface 113/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

6.1.5 EIP_APS_GET_MS_NS_REQ/CNF – Get Module Status/Network

Status

This packet can be used by the EtherNet/IP Adapter Application in order to obtain information

about the current module and network status for further evaluation.

Table 158 on page 241 lists all possible values of the Module Status (Parameter

ulModuleStatus of the confirmation packet) and their meanings.

Similarly, Table 159 on page 242 lists all possible values of the Network Status (Parameter

ulNetworkStatus of the confirmation packet) and their meanings.

Figure 19 below displays a sequence diagram for the EIP_APS_GET_MS_NS_REQ/CNF packet:

Figure 19: Sequence Diagram for the EIP_APS_GET_MS_NS_REQ/CNF Packet

Packet Structure Reference

#define EIP_APS_GET_MS_NS_REQ_SIZE 0

typedef struct EIP_APS_PACKET_GET_MS_NS_REQ_Ttag {

 TLR_PACKET_HEADER_T tHead;

} EIP_APS_PACKET_GET_MS_NS_REQ_T;

Packet Description

structure EIP_APS_PACKET_GET_MS_NS_REQ_T

Type: Request

Area Variable Type Value / Range Description

tHead structure TLR_PACKET_HEADER_T

ulDest UINT32 0x20/

DPMINTF_QUE
Destination Queue-Handle

ulSrc UINT32 0 ... 232-1 Source Queue-Handle

ulDestId UINT32 See rules in
section 3.2.1

Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process. Set
to 0 for the Initialization Packet

ulSrcId UINT32 See rules in
section 3.2.1

Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 0 Packet Data Length in bytes

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by the
Source Process of the Packet

ulSta UINT32 See Packet Structure Reference

ulCmd UINT32 0x360E EIP_APS_GET_MS_NS_REQ - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 x Routing, do not touch

Table 73: EIP_APS_GET_MS_NS_REQ – Get Module Status/ Network Status Request

The Application Interface 114/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Structure Reference

typedef struct EIP_APS_GET_MS_NS_CNF_Ttag

{

 TLR_UINT32 ulModuleStatus; /*!< Module Status \n

 TLR_UINT32 ulNetworkStatus; /*!< Network Status \n

} EIP_APS_GET_MS_NS_CNF_T;

#define EIP_APS_GET_MS_NS_CNF_SIZE sizeof(EIP_APS_GET_MS_NS_CNF_T)

typedef struct EIP_APS_PACKET_GET_MS_NS_CNF_Ttag

{

 TLR_PACKET_HEADER_T tHead;

 EIP_APS_GET_MS_NS_CNF_T tData;

} EIP_APS_PACKET_GET_MS_NS_CNF_T;

Packet Description

structure EIP_APS_PACKET_GET_MS_NS_CNF_T

Type: Confirmation

Area Variable Type Value / Range Description

tHead structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination Queue-Handle

ulSrc UINT32 Source Queue-Handle

ulDestId UINT32 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process. Set
to 0 for the Initialization Packet

ulSrcId UINT32 Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 Packet Data Length in bytes

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by the
Source Process of the Packet

ulSta UINT32 See Packet Structure Reference

ulCmd UINT32 0x360F EIP_APS_GET_MS_NS_CNF - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 x Routing, do not touch

tData structure EIP_APS_GET_MS_NS_CNF_T

ulModuleStatus UINT32 0..5 Module Status
The module status describes the current state of the
corresponding MS-LED (provided that it is connected).

See Table 158 for more information.

ulNetworkStatus UINT32 0..5 Network Status
The network status describes the current state of the
corresponding NS-LED (provided that it is connected).

See Table 159 for more information.

Table 74: EIP_APS_GET_MS_NS_CNF – Confirmation of Get Module Status/ Network Status Request

The Application Interface 115/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

6.1.6 EIP_APS_SET_MODULE_STATUS_REQ/CNF – Set Module Status

The application can use this packet to set the current module status of the device. This also

implicitly controls the module status LED of the device.

Table 158 on page 241 lists all possible values of the Module Status and their meaning.

By default the EtherNet/IP firmware does not support this service. The application has to activate

this service in advance before using it. If not activated this service will be conformed with status

0xC0000002 (TLR_E_UNEXPECTED).

To activate this service, the application has to use the service

EIP_OBJECT_SET_PARAMETER_REQ and set the flag

EIP_OBJECT_PRM_APPLICATION_CONTROLS_IDENTITY_STATE_ATTRIBUTE.

Note: Using this service also means that the host application must take care of Identity object’s

attribute 8 (state). See section EIP_OBJECT_SET_PARAMETER_REQ/CNF – Set Parameter on

page 181 for more information.

Packet Description

structure EIP_APS_PACKET_SET_MODULE_STATUS_REQ_T

Type: Request

Area Variable Type Value / Range Description

tHead structure TLR_PACKET_HEADER_T

ulDest UINT32 0x20/
DPMINTF_QUE

Destination Queue-Handle

ulSrc UINT32 0 ... 232-1 Source Queue-Handle

ulDestId UINT32 See rules in
section 3.2.1

Destination End Point Identifier, specifying
the final receiver of the packet within the
Destination Process. Set to 0 for the
Initialization Packet

ulSrcId UINT32 See rules in
section 3.2.1

Source End Point Identifier, specifying the
origin of the packet inside the Source
Process

ulLen UINT32 4 Packet Data Length in bytes

ulId UINT32 0 ... 232-1 Packet Identification as unique number
generated by the Source Process of the
Packet

ulSta UINT32 See Packet Structure Reference

ulCmd UINT32 0x3616 EIP_APS_SET_MODULE_STATUS_REQ -

Command

ulExt UINT32 0 Extension not in use, set to zero for
compatibility reasons

ulRout UINT32 x Routing, do not touch

tData structure EIP_APS_SET_MODULE_STATUS_T

ulModuleStatus UINT32 0..5 Module Status

The module status describes the current
state of the corresponding MS-LED
(provided that it is physically connected).

See Table 158 for more information.

Table 75: EIP_APS_SET_MODULE_STATUS_REQ – Set the Module Status

The Application Interface 116/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Description

structure EIP_APS_PACKET_SET_MODULE_STATUS_CNF_T

Type: Confirmation

Area Variable Type Value / Range Description

tHead structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination Queue-Handle

ulSrc UINT32 Source Queue-Handle

ulDestId UINT32 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process. Set
to 0 for the Initialization Packet

ulSrcId UINT32 Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 4 Packet Data Length in bytes

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by the
Source Process of the Packet

ulSta UINT32 See Packet Structure Reference

ulCmd UINT32 0x3617 EIP_APS_SET_MODULE_STATUS_CNF - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 x Routing, do not touch

tData structure EIP_APS_SET_MODULE_STATUS_T

ulModuleStatus UINT32 0..5 Module Status
The module status describes the current state of the
corresponding MS-LED (provided that it is connected).

See Table 158 for more information.

Table 76: EIP_APS_GET_MS_NS_CNF – Confirmation of Get Module Status/ Network Status Request

The Application Interface 117/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

6.1.7 Modify Configuration Parameters

The modifying configuration parameter function allows selectively changing configuration

parameters of the EtherNet/IP Adapter protocol stack that has already been configured by

SYCON.net or by netX Configuration Tool. Modifying a parameter after the device was configured

by a tool requires that the start-up bebavoir is set to 'Controlled start of communication'.

The EtherNet/IP Adapter stack supports the following parameters to be modified:

ParameterID Name Type Description

PID_EIP_IP_CONFIGURATION

(0x3000A001)

ulIP UINT32 IP address

ulNetmask UINT32 Network mask

ulGateway UINT32 Gateway address

PID_EIP_IP_CONFIGCONTROL

(0x3000A002)

ulConfiguration

Control

UINT32 PRM_CFGCTRL_STORED_CFG 0
PRM_CFGCTRL_DHCP 1
PRM_CFGCTRL_BOOTP 2
PRM_CFGCTRL_FIXIP 3

Table 77 RCX_SET_FW_PARAMETER_REQ ParameterID

Section Modify Configuration Settings in reference [2] describes the Set Parameter Request

packet.

The Application Interface 118/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

6.2 The EIS_OBJECT – Task

In detail, the following functionality is provided by the EIS_OBJECT -Task:

Overview over Packets of the EIS_OBJECT – Task

No. of

section

Packet Command code

(REQ/CNF or

IND/RES)

Page

6.2.1 EIP_OBJECT_FAULT_IND/RES – Fault Indication 0x1A30/

0x1A31

119

6.2.2 EIP_OBJECT_CONNECTION_IND/RES – Connection State Change

Indication

0x1A2E/

0x1A2F

122

6.2.3 EIP_OBJECT_MR_REGISTER_REQ/CNF – Register an additional

Object Class at the Message Router

0x1A02/

0x1A03

130

6.2.4 EIP_OBJECT_CL3_SERVICE_IND/RES - Indication of acyclic Data

Transfer

0x1A3E/

0x1A3F

134

6.2.5 EIP_OBJECT_AS_REGISTER_REQ/CNF – Register a new Assembly

Instance

0x1A0C/

0x1A0D

141

6.2.6 EIP_OBJECT_ID_SETDEVICEINFO_REQ/CNF – Set the Device’s

Identity Information

0x1A16/

0x1A17

148

6.2.7 EIP_OBJECT_GET_INPUT_REQ/CNF – Getting the latest Input Data 0x1A20/

0x1A21

154

6.2.8 EIP_OBJECT_RESET_IND/RES – Indication of a Reset Request from 0x1A24/

0x1A25

157

6.2.9 EIP_OBJECT_RESET_REQ/CNF - Reset Request 0x1A26/

0x1A27

162

6.2.10 EIP_OBJECT_READY_REQ/CNF – Set Ready and Run/Idle State 0x1A32/

0x1A33

165

6.2.11 EIP_OBJECT_REGISTER_SERVICE_REQ/CNF – Register Service 0x1A44/

0x1A45

168

6.2.12 EIP_OBJECT_CONNECTION_CONFIG_IND/RES – Indication of

Configuration Data received during Connection Establishment

0x1A40/

0x1A41

171

6.2.13 EIP_OBJECT_TI_SET_SNN_REQ/CNF – Set the Safety Network

Number for the TCP/IP Interface Object

0x1AF0/

0x1AF1

178

6.2.14 EIP_OBJECT_SET_PARAMETER_REQ/CNF – Set Parameter 0x1AF2/

0x1AF3

181

6.2.16 EIP_OBJECT_CFG_QOS_REQ/CNF – Configure the QoS Object 0x1A42/

0x1A43

192

6.2.17 EIP_OBJECT_CIP_SERVICE_REQ/CNF – CIP Service Request 0x1AF8/

0x1AF9

196

6.2.18 EIP_OBJECT_CIP_OBJECT_CHANGE_IND/RES – CIP Object Change

Indication

0x1AFA/

0x1AFB

201

Table 78: Overview over Packets of the EIS_OBJECT -Task of the EtherNet/IP-Adapter Protocol Stack

The Application Interface 119/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

6.2.1 EIP_OBJECT_FAULT_IND/RES – Fault Indication

This indication packet is sent from the EtherNet/IP Adapter protocol stack to the user application in

order to indicate a fault within the EtherNet/IP protocol stack. The error is reported in the ulSta field

of the packet header. This indication is for informational purpose only. There is no action required

on the host application side, except sending the response packet.

Figure 20 and Figure 21 below display a sequence diagram for the

EIP_OBJECT_FAULT_IND/RES packet in case the host application uses the Basic, Extended or

Stack Packet Set (see 4.3 “Configuration Using the Packet API”):

Figure 20: Sequence Diagram for the EIP_OBJECT_FAULT_IND/RES Packet for the Basic and Extended Packet Set

Figure 21: Sequence Diagram for the EIP_OBJECT_FAULT_IND/RES Packet for the Stack Packet Set

Packet Structure Reference

typedef struct EIP_OBJECT_PACKET_FAULT_IND_Ttag

{

 TLR_PACKET_HEADER_T tHead;

} EIP_OBJECT_PACKET_FAULT_IND_T;

#define EIP_OBJECT_FAULT_IND_SIZE 0

The Application Interface 120/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Description

Structure EIP_OBJECT_PACKET_FAULT_IND_T Type: Indication

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination Queue-Handle. Set to

0: Destination is operating system rcX

32 (0x20): Destination is the protocol stack

ulSrc UINT32 Source Queue-Handle. Set to:

0: when working with linkable object modules.

Queue handle returned by TLR_QUE_IDENTIFY()}:
when working with loadable firmware.

ulDestId UINT32 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.

Set to 0, will not be changed

ulSrcId UINT32 Source End Point Identifier, specifying the origin of the
packet inside the Source Process. This variable may be
used for low-level addressing purposes.

ulLen UINT32 0 EIP_OBJECT_FAULT_IND – Packet data length in

bytes

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by
the Source Process of the Packet

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x1A30

EIP_OBJECT_FAULT_IND - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility
reasons

ulRout UINT32 × Routing, do not change

Table 79: EIP_OBJECT_FAULT_IND – Indication Packet of a Fault

The Application Interface 121/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Structure Reference

typedef struct EIP_OBJECT_PACKET_FAULT_RES_Ttag

{

 TLR_PACKET_HEADER_T tHead;

}EIP_OBJECT_PACKET_FAULT_RES_T;

#define EIP_OBJECT_FAULT_RES_SIZE 0

Packet Description

Structure EIP_OBJECT_PACKET_FAULT_RES_T Type: Response

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 See rules in
section 3.2.1

Destination Queue Handle

ulSrc UINT32 See rules in
section 3.2.1

Source Queue Handle

ulDestId UINT32 See rules in
section 3.2.1

Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.

ulSrcId UINT32 See rules in
section 3.2.1

Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 0 EIP_OBJECT_FAULT_RES – Packet data length in

bytes

ulId UINT32 0 ... 232-1 Packet Identification As Unique Number

ulSta UINT32 0 See chapter Status/Error Codes Overview

ulCmd UINT32 0x00001A31 EIP_OBJECT_FAULT_RES - Response

ulExt UINT32 Reserved

ulRout UINT32 Routing Information

Table 80: EIP_OBJECT_FAULT_RES – Response to Indication Packet of a fatal Fault

The Application Interface 122/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

6.2.2 EIP_OBJECT_CONNECTION_IND/RES – Connection State

Change Indication

This indication will be sent to the application task every time a CIP connection is established,

closed or has timed out. This applies to Exclusive Owner, Input Only, Listen Only and Explicit

connections.

Connection State - ulConnectionState

The variable ulConnectionState indicates whether a connection has been established or

closed.

ulConnectionState = Numeric

Value

Meaning

EIP_CONNECTED 1 Connection has been established

EIP_UNCONNECT 2 Connection was closed.

If connection timed out, the value of ulExtendedState will be 1,

otherwise 0.

Table 81: Meaning of variable ulConnectionState

Extended Connection State - ulExtendedState

The variable ulExtendedState (only valid if ulConnectionState is EIP_UNCONNECT (0))

contains information about the extended connection state according to the following table:

ulExtendedState = Numeric

Value

Meaning

EIP_CONN_STATE_UNDEFINED 0 Undefined, not used

EIP_CONN_STATE_TIMEOUT 1 Connection timed out

Table 82: Meaning of variable ulExtendedState

Connection Info - tConnection

For the EtherNet/IP adapter only the union entry tTOConnection is important:

ulClass: Class to which the connection was directed

For implicit connections (class0/1, Exclusive Owner, Input Only) the

ulClass field is 0x04, which is the assembly object class ID.

 For explicit connections the ulClass field is 0x02, which is the Message

Router object class ID.

ulInstance: Corresponding instance of the class provided in ulClass

If ulClass is 0x04, ulInstance is the configuration assembly instance.

If ulClass is 0x02, ulInstance is always 1.

ulOTConnPoint: Input connection point (Only valid if ulClass == 0x04)

 Provides the connection point (assembly instance) in OT direction.

ulTOConnPoint: Output connection point (Only valid if ulClass == 0x04)

Provides the connection point (assembly instance) in TO direction.

The Application Interface 123/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

ulConnectionType: Provides the connection application type

ulConnectionType defines Value Meaning

EIP_CONN_TYPE_UNDEFINED 0 No connection type available

EIP_CONN_TYPE_CLASS_0_1_EXCLUSIVE_OWNER 1 (Implicit) Exclusive owner connection

EIP_CONN_TYPE_CLASS_0_1_REDUNDANT_OWNER 2 (Implicit) Redundant owner connection (not

supported)

EIP_CONN_TYPE_CLASS_0_1_LISTEN_ONLY 3 (Implicit) Listen Only connection

EIP_CONN_TYPE_CLASS_0_1_INPUT_ONLY 4 (Implicit) Input Only connection

EIP_CONN_TYPE_CLASS_3 5 (Explicit) Class 3 connection

Table 83: ulConnectionType - Enum

Extended Connection Info - tExtInfo

tExtInfo contains a structure of type EIP_OBJECT_EXT_CONNECTION_INFO_T providing

additional information concerning incoming connections having been established. This structure

has the following elements:

tExtInfo Element Type Meaning

ulProConnId TLR_UINT32 Producer Connection ID (TO)

ulConConnId TLR_UINT32 Consumer Connection ID (OT)

ulConnSerialNum TLR_UINT32 Connection serial number

usOrigVendorId TLR_UINT16 Originator device vendor ID

ulOrigDeviceSn TLR_UINT32 Originator device serial number

ulProApi TLR_UINT32 Actual packet interval (specified in microseconds) (TO)

usProConnParams TLR_UINT16 Connection parameters (TO) from ForwardOpen

ulConApi TLR_UINT32 Actual packet interval (specified in microseconds) (OT)

usConConnParams TLR_UINT16 Connection parameters (OT) from ForwardOpen

bTimeoutMultiplier TLR_UINT8 Connection timeout multiplier

Table 84: Structure tExtInfo

ulProConnID contains the Connection ID for the Producer Connection (i.e. from target to

originator).

ulConConnID contains the Connection ID for the Consumer Connection (i.e. from originator to

target).

ulConnSerialNum contains the serial number of the connection. This must be a unique 16-bit

value. For more details, see “The CIP Networks Library, Volume 1”, section 3-5.5.1.5.

usOrigVendorId contains the Vendor ID of the connection originator (i.e. the contents of attribute

#1 of instance #1 of the connection originator’s Identity Object).

ulOrigDeviceSn contains the Serial Number of the connection originator (i.e. the contents of

attribute #6 of instance #1 of the connection originator’s Identity Object).

ulProApi contains the actual packet interval for the producer of the connection (TO direction).

The actual packet interval is the time between two subsequent packets (specified in units of

microseconds).

The Application Interface 124/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

usProConnParams contains the producer connection parameter for the connection (TO

direction). It follows the rules for network connection parameters as

specified in section 3-5.5.1.1 “Network Connection Parameters“ in

reference [4].

The 16-bit word of the producer connection parameter (connected to a Forward_Open command)

is structured as follows:

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bits 8-0

Redundant

Owner

Connection Type Reserved Priority Fixed/Variable Connection Size (in bytes)

Table 85: Meaning of Variable ulProParams

The values have the following meaning

 Connection Size

This is the maximum size of data for each direction of the connection to be opened.

 Fixed/Variable

This bit indicates whether the connection size discussed above is variable or fixed to the size

specified as connection size.

If fixed is chosen (bit is equal to 0), then the actual amount of data transferred in one

transmission is exactly the specified connection size.

If variable is chosen (bit is equal to 1), the amount of data transferred in one single

 transmission may be the value specified as connection size or a lower value. This option is

currently not supported.

Note: The option „variable” is NOT supported.

 Priority

These two bits code the priority according to the following table:

Bit 11 Bit 10 Priority

0 0 Low priority

0 1 High priority

1 0 Scheduled

1 1 Urgent

 Table 86: Priority

The Application Interface 125/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

 Connection Type

The connection type can be specified according to the following table:

Bit 30 Bit 29 Connection Type

0 0 Null – connection may be reconfigured

0 1 Multicast

1 0 Point-to-point connection

1 1 Reserved

 Table 87: Connection Type

Note: The option „Multicast” is only supported for connections with CIP transport class 0

and class 1.

 Redundant Owner

The redundant owner bit is set if more than one owner of the connection should be allowed

(Bit 15 = 1). If bit 15 is equal to zero, then the connection is an exclusive owner connection.

Reserved fields should always be set to the value.

Note: Redundant Owner connections are not supported by the EtherNet/IP Stack.

ulConApi contains the actual packet interval for the consumer of the connection (OT direction).

The actual packet interval is the time between two directly subsequent packets (specified in units of

microseconds).

usConConnParams Similarly to usProConnParams, this variable contains the consumer

connection parameter for the connection (OT direction).. It also follows the rules for network

connection parameters as specified in section 3-5.5.1.1 “Network Connection Parameters“ in

reference [4].

bTimeoutMultiplier contains the value of the connection timeout multiplier, which is needed

for the determination of the connection timeout value. The connection timeout value is calculated

by multiplying the RPI value (requested packet interval) with the connection timeout multiplier.

Transmission on a connection is stopped when a timeout occurs after the connection timeout value

calculated by this rule. The multiplier is specified as a code according to the subsequent table:

Code Corresponding Multiplier

0 x4

1 x8

2 x16

3 x32

4 x64

5 x128

6 x256

7 x512

8 - 255 Reserved

Table 88: Coding of Timeout Multiplier Values

For more details, see reference [4] section 3-5.5.1.4.

The Application Interface 126/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Figure 22 and Figure 23 below display a sequence diagram for the

EIP_OBJECT_CONNECTION_IND/RES packet in case the host application uses the Basic,

Extended or Stack Packet Set (see 4.3 “Configuration Using the Packet API”).

Figure 22: Sequence Diagram for the EIP_OBJECT_CONNECTION_IND/RES Packet for the Basic and Extended Packet

Set

Figure 23: Sequence Diagram for the EIP_OBJECT_CONNECTION_IND/RES Packet for the Stack Packet Set

The Application Interface 127/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Structure Reference

typedef struct EIP_OBJECT_OT_CONNECTION_Ttag

{

 TLR_UINT32 ulConnHandle;

 TLR_UINT32 ulReserved[3];

} EIP_OBJECT_OT_CONNECTION_T;

typedef struct EIP_OBJECT_TO_CONNECTION_Ttag

{

 TLR_UINT32 ulClass;

 TLR_UINT32 ulInstance;

 TLR_UINT32 ulOTConnPoint;

 TLR_UINT32 ulTOConnPoint;

 TLR_UINT32 ulConnectionType;

} EIP_OBJECT_TO_CONNECTION_T;

typedef union EIP_OBJECT_CONNECTION_Ttag

{

 EIP_OBJECT_OT_CONNECTION_T tOTConnection;

 EIP_OBJECT_TO_CONNECTION_T tTOConnection;

} EIP_OBJECT_CONNECTION_T;

typedef struct EIP_OBJECT_EXT_CONNECTION_INFO_Ttag

{

 TLR_UINT32 ulProConnId;

 TLR_UINT32 ulConConnId;

 TLR_UINT32 ulConnSerialNum;

 TLR_UINT16 usOrigVendorId;

 TLR_UINT32 ulOrigDeviceSn;

 /* Producer parameters */

 TLR_UINT32 ulProApi;

 TLR_UINT16 usProConnParams;

 /* Consumer parameters */

 TLR_UINT32 ulConApi;

 TLR_UINT16 usConConnParams;

 TLR_UINT8 bTimeoutMultiplier;

} EIP_OBJECT_EXT_CONNECTION_INFO_T;

typedef struct EIP_OBJECT_CONNECTION_IND_Ttag

{

 TLR_UINT32 ulConnectionState; /*!< Reason of changing the connection state */

 TLR_UINT32 ulConnectionCount; /*!< Number of active connections */

 TLR_UINT32 ulOutConnectionCount; /*!< Number of active originate connections */

 TLR_UINT32 ulConfiguredCount;

 TLR_UINT32 ulActiveCount;

 TLR_UINT32 ulDiagnosticCount;

 TLR_UINT32 ulOrginator;

 EIP_OBJECT_CONNECTION_T tConnection; /*!< Gives extended information concerning

 the connection state (ulConnectionState)*/

 TLR_UINT32 ulExtendedState;

 EIP_OBJECT_EXT_CONNECTION_INFO_T tExtInfo;

}EIP_OBJECT_CONNECTION_IND_T;

#define EIP_OBJECT_CONNECTION_IND_SIZE \

 sizeof(EIP_OBJECT_CONNECTION_IND_T)

typedef struct EIP_OBJECT_PACKET_CONNECTION_IND_Ttag {

 TLR_PACKET_HEADER_T tHead;

 EIP_OBJECT_CONNECTION_IND_T tData;

} EIP_OBJECT_PACKET_CONNECTION_IND_T;

The Application Interface 128/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Description

Structure EIP_OBJECT_PACKET_CONNECTION_IND_T Type: Indication

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination Queue-Handle. Set to

0: Destination is operating system rcX
32 (0x20): Destination is the protocol stack

ulSrc UINT32 Source Queue-Handle. Set to:

0: when working with loadable firmware.

Queue handle returned by TLR_QUE_IDENTIFY()}:
when working with loadable firmware.

ulDestId UINT32 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.

Set to 0, will not be changed

ulSrcId UINT32 Source End Point Identifier, specifying the origin of the
packet inside the Source Process. This variable may be
used for low-level addressing purposes.

ulLen UINT32 83 EIP_OBJECT_CONNECTION_IND – Packet data length

in bytes

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by
the Source Process of the Packet

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x1A2E EIP_OBJECT_CONNECTION_IND - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility
reasons

ulRout UINT32 x Routing, do not touch

tData - Structure EIP_OBJECT_CONNECTION_IND_T

ulConnectionState UINT32 0, 1 Reason of changing the connection state

Connection established (1)
Connection disconnected (0)

ulConnectionCount UINT32 Number of established connections (does not include
Listen Only connections)

ulOutConnectionCo

unt

UINT32 0 Not supported for EtherNet/IP adapter

ulConfiguredCount UINT32 0 Not supported for EtherNet/IP adapter

ulActiveCount UINT32 0 Not supported for EtherNet/IP adapter

ulDiagnosticCount UINT32 0 Not supported for EtherNet/IP adapter

ulOrginator UINT32 0 Will always be 0 for EtherNet/IP adapter

tConnection union

EIP_OBJECT_
CONNECTION
_T

 For the EtherNet/IP adapter only the union entry

tTOConnection is important:

ulClass: Class to which the connection was directed

ulInstance: Corresponding class instance

ulOTConnPoint: Input connection point

ulTOConnPoint: Output connection point

ulConnectionType: Type of the connection

ulExtendedState UINT32 0, 1 0: No extended status
1: Connection timeout

The Application Interface 129/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Structure EIP_OBJECT_PACKET_CONNECTION_IND_T Type: Indication

tExtInfo EIP_OBJECT_
EXT_CONNEC
TION_INFO_T

 Additional connection information for incoming
connections (i.e. ulOrginator == 0)

Table 89: EIP_OBJECT_CONNECTION_IND – Indication of Connection

Packet Structure Reference

struct EIP_OBJECT_PACKET_CONNECTION_RES_Ttag

{

 TLR_PACKET_HEADER_T tHead;

};

Packet Description

Structure EIP_OBJECT_PACKET_CONNECTION_RES_T Type: Response

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 See rules in
section 3.2.1

Destination Queue Handle

ulSrc UINT32 See rules in
section 3.2.1

Source Queue Handle

ulDestId UINT32 See rules in
section 3.2.1

Destination Queue Reference

ulSrcId UINT32 See rules in
section 3.2.1

Source Queue Reference

ulLen UINT32 0 Packet Data Length (In Bytes)

ulId UINT32 0 ... 232-1 Packet Identification As Unique Number

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x00001A2F Command / Response

ulExt UINT32 Reserved

ulRout UINT32 Routing Information

Table 5: EIP_OBJECT_CONNECTION_RES – Response to indication of Connection

The Application Interface 130/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

6.2.3 EIP_OBJECT_MR_REGISTER_REQ/CNF – Register an additional

Object Class at the Message Router

This service can be used by the host application in order to register an additionally object class at

the message router. This automatically extends the object model of the device by the given object

class (see Figure 8 for the basic object model).

All explicit messages addressing this additional object class will then be forwarded to the host

application via the indication EIP_OBJECT_CL3_SERVICE_IND (section 6.2.4).

Note: If using the Stack Packet Set: The source queue of this packet is directly bound to the

new object. All indications for the new object will be sent to ulSrc and ulSrcId of the

request packet (packet header).

The ulClass parameter represents the class code of the registered class. The predefined class

codes are described in at the CIP specification Vol. 1 chapter 5.

CIP Class IDs are divided into the following address ranges to provide for extensions to device

profiles.

Address Range Meaning

0x0001 - 0x0063 Open

0x0064 - 0x00C7 Vendor Specific

0x00C8 - 0x00EF Reserved by ODVA for future use

0x00F0 - 0x02FF Open

0x0300 - 0x04FF Vendor Specific

0x0500 - 0xFFFF Reserved by ODVA for future use

Table 90: Address Ranges for the ulClass parameter

Figure 24 and Figure 25 below display a sequence diagram for the

EIP_OBJECT_MR_REGISTER_REQ/CNF packet in case the host application uses the Extended or

Stack Packet Set (see 4.3 “Configuration Using the Packet API”).

Figure 24: Sequence Diagram for the EIP_OBJECT_MR_REGISTER_REQ/CNF Packet for the Extended Packet Set

The Application Interface 131/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Figure 25: Sequence Diagram for the EIP_OBJECT_MR_REGISTER_REQ/CNF Packet for the Stack Packet Set

Packet Structure Reference

typedef struct EIP_OBJECT_MR_REGISTER_REQ_Ttag {

 TLR_HANDLE hObjectQue;

 TLR_UINT32 ulClass;

 TLR_UINT32 ulAccessTyp;

} EIP_OBJECT_MR_REGISTER_REQ_T;

#define EIP_OBJECT_MR_REGISTER_REQ_SIZE \

 sizeof(EIP_OBJECT_MR_REGISTER_REQ_T)

typedef struct EIP_OBJECT_MR_PACKET_REGISTER_REQ_Ttag {

 TLR_PACKET_HEADER_T tHead;

 EIP_OBJECT_MR_REGISTER_REQ_T tData;

} EIP_OBJECT_MR_PACKET_REGISTER_REQ_T;

The Application Interface 132/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Description

Structure EIP_OBJECT_PACKET_MR_REGISTER_REQ_T Type: Request

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 0x20/

OBJECT_QUE

Destination Queue-Handle. Set to

0: Destination is operating system rcX

32 (0x20): Destination is the protocol stack

ulSrc UINT32 0 ... 232-1 Source Queue-Handle. Set to:

0: when working with loadable firmware.

Queue handle returned by TLR_QUE_IDENTIFY()}:
when working with loadable firmware.

ulDestId UINT32 0 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.

Set to 0, will not be changed

ulSrcId UINT32 0 ... 232-1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process. This variable may be
used for low-level addressing purposes.

ulLen UINT32 12 EIP_OBJECT_MR_REGISTER_REQ_SIZE

– Packet data length in bytes

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by
the Source Process of the Packet

ulSta UINT32 0 See Table 44: EIP_OBJECT_MR_REGISTER_REQ –
Packet Status/Error

ulCmd UINT32 0x1A02

EIP_OBJECT_MR_REGISTER_REQ - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility
reasons

ulRout UINT32 × Routing, do not change

tData - Structure EIP_OBJECT_MR_REGISTER_REQ_T

hObjectQue HANDLE 0 Deprecated, set to 0

ulClass UINT32 1..0xFFFF Class identifier (predefined class code as described in
the CIP specification Vol. 1 chapter 5 (reference [4])
Take care of the address ranges specified above within

Table 90: Address Ranges for the ulClass parameter.

ulAccessTyp UINT32 0 Reserved, set to 0.

Table 91: EIP_OBJECT_MR_REGISTER_REQ – Request Command for register a new class object

The Application Interface 133/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Structure Reference

typedef struct EIP_OBJECT_PACKET_MR_REGISTER_CNF_Ttag {

 TLR_PACKET_HEADER_T tHead;

} EIP_OBJECT_PACKET_MR_REGISTER_CNF_T;

Packet Description

Structure EIP_OBJECT_PACKET_MR_REGISTER_CNF_T Type: Confirmation

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 See rules in
section 3.2.1

Destination Queue Handle

ulSrc UINT32 See rules in
section 3.2.1

Source Queue Handle

ulDestId UINT32 See rules in
section 3.2.1

Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.

ulSrcId UINT32 See rules in
section 3.2.1

Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 0 Packet data length in bytes

ulId UINT32 0 ... 232-1 Packet Identification, unchanged

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x1A03 EIP_OBJECT_MR_REGISTER_CNF - Command

ulExt UINT32 0 Extension, reserved

ulRout UINT32 See rules in
section 3.2.1

Destination Queue Handle

Table 92: EIP_OBJECT_MR_REGISTER_CNF – Confirmation Command of register a new class object

The Application Interface 134/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

6.2.4 EIP_OBJECT_CL3_SERVICE_IND/RES - Indication of acyclic

Data Transfer

This packet indicates an acyclic service coming from the network. It will only be received if:

 an additional object class has been registered using the command

EIP_OBJECT_MR_REGISTER_REQ/CNF (see section 6.2.3 on page 130 of this document)

 or a service has been registered for an existing object using

EIP_OBJECT_REGISTER_SERVICE_REQ/CNF (see section 6.2.11 on page 168 of this

document)

It delivers the following parameters:

 the OT connection ID of the class 3 connection, in case the service request is bound to a

class 3 connection (connected)

 a CIP Service Code

 the CIP Object Class ID

 the CIP Instance number

 the CIP Attribute number

 an array containing unstructured data (depending on the service code)

The parameters service code, class ID, instance and attribute correspond to the normal CIP

Addressing. These fields are used for the most common services that use the addressing format

“Service Class Instance Attribute”. In case the service uses another format, the path

information is put into the data part (abData[]) of this packet.

The data segment abData[] may not be present for services that do not need data sent along with

the request (e.g. Get services). The ulLen field of the packet header can be evaluated to determine

whether there is data available.

 service_data_size = tHead.ulLen - EIP_OBJECT_CL3_SERVICE_IND_SIZE

The parameter ulService holds the requested CIP service that shall be applied to the object

instance selected by the variables ulObject and ulInstance of the indication packet.

CIP services are divided into different address ranges. The subsequent Table 93: Specified

Ranges of numeric Values of Service Codes (Variable ulService) gives an overview. This table is

taken from the CIP specification (“Volume 1 Common Industrial Protocol Specification Chapter 4,

Table 4-9.6”, see reference [4]).

The Application Interface 135/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Range of numeric value

of service code

(variable ulService)

Meaning

0x00-0x31 Open. The services associated with this range of service codes are referred to as

Common Services. These are defined in Appendix A of the CIP Networks Library, Volume

1 (reference #3).

0x32-0x4A Range for service codes for vendor specific services

0x4B-0x63 Range for service codes for object class specific services

0x64-0x7F Reserved by ODVA for future use

0x80-0xFF Reserved for use as Reply Service Code (see Message Router Response Format in

Chapter 2 of reference [5])

Table 93: Specified Ranges of numeric Values of Service Codes (Variable ulService)

Note: Not every service is available on every object.

If you use a Class IDs that are in the Vendor Specific range (see Table 7: Ranges for

Object Class Identifiers), use need to define by yourself what services and attributes

are supported by this object class.

If you use a Class IDs that are not in the Vendor Specific range, the CIP specification

describes all required and optional services and attributes the class supports.

Depending on this the host application must implement the handling of incoming

services.

Table 94: Service Codes for the Common Services according to the CIP specification lists the

service codes for the Common Services. This table is taken from the CIP specification (“Volume 1

Common Industrial Protocol Specification Chapter 5, Table 5-1.1”, see reference [4]).

Service code (numeric value of

ulService)

Service to be executed

00 Reserved

01 Get_Attributes_All

02 Set_Attributes_All

03 Get_Attribute_List

04 Set_Attribute_List

05 Reset

06 Start

07 Stop

08 Create

09 Delete

0A Multiple_Service_Packet

0B Reserved for future use

0D Apply_Attributes

0E Get_Attribute_Single

0F Reserved for future use

The Application Interface 136/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Service code (numeric value of

ulService)

Service to be executed

10 Set_Attribute_Single

11 Find_Next_Object_Instance

12-13 Reserved for future use

14 Error Response (used by DevNet only)

15 Restore

16 Save

17 No Operation (NOP)

18 Get_Member

19 Set_Member

1A Insert_Member

1B Remove_Member

1C GroupSync

1D-31 Reserved for additional Common Services

Table 94: Service Codes for the Common Services according to the CIP specification

Depending on what services, instances and attributes are supported by the addressed object, the

host application must answer the service with either success or with an appropriate error code.

Therefore, the response packet holds two error fields: ulGRC and ulERC

The Generic Error Code (ulGRC) can be used to indicate whether the service request could be

processed successfully or not. A list of all possible codes is provided in section 8.5 “General

EtherNet/IP Error Codes” of this document. The most common General Error Codes are:

General Status Code

(specified hexadecimally)

Status Name Description

00 Success The service has successfully been performed by the specified
object.

05 Path destination
unknown

The path references an unknown object class, instance or
structure element causing the abort of path processing.

08 Service not
supported

The requested service has not been implemented or has not
been defined for this object class or instance.

09 Invalid attribute value Detection of invalid attribute data

0A Attribute list error An attribute in the Get_Attribute_List or Set_Attribute_List
response has a status not equal to 0.

0C Object state conflict The object is not able to perform the requested service in the
current mode or state

0E Attribute not settable It has been tried to change a non-modifiable attribute.

10 Device state conflict The current mode or state of the device prevents the execution
of the requested service.

13 Not enough data The service did not supply all required data to perform the
specified operation.

14 Attribute not
supported

An unsupported attribute has been specified in the request

15 Too much data More data than was expected were supplied by the service.

The Application Interface 137/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

General Status Code

(specified hexadecimally)

Status Name Description

1F Vendor specific error A vendor specific error has occurred. This error should only
occur when none of the other general error codes can correctly
be applied.

20 Invalid parameter A parameter which was associated with the request was invalid.
The parameter does not meet the requirements of the CIP
specification and/or the requirements defined in the specification
of an application object.

 Table 95: Most common General Status Codes

The Extended Error Code (ERC) can be used to describe the occurred error having already been

classified by the generic error code in more detail.

If the service will be answered with success, additional data can be sent with the reply in the

abData field. The byte size of the data must be added to the basic packet length

(EIP_OBJECT_CL3_SERVICE_RES_SIZE) in the ulLen field of the packet header.

Figure 26 and Figure 29 below display a sequence diagram for the

EIP_OBJECT_CL3_SERVICE_IND/RES packet in case the host application uses the Extended or

Stack Packet Set (see 4.3 “Configuration Using the Packet API”).

Figure 26: Sequence Diagram for the EIP_OBJECT_CL3_SERVICE_IND/RES Packet for the Extended Packet Set

The Application Interface 138/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Figure 27: Sequence Diagram for the EIP_OBJECT_CL3_SERVICE_IND/RES Packet for the Stack Packet Set

Packet Structure Reference

 typedef struct EIP_OBJECT_CL3_SERVICE_IND_Ttag

{

 TLR_UINT32 ulConnectionId; /*!< Connection Handle */

 TLR_UINT32 ulService;

 TLR_UINT32 ulObject;

 TLR_UINT32 ulInstance;

 TLR_UINT32 ulAttribute;

 TLR_UINT8 abData[1];

} EIP_OBJECT_CL3_SERVICE_IND_T;

typedef struct EIP_OBJECT_PACKET_CL3_SERVICE_IND_Ttag

{

 TLR_PACKET_HEADER_T tHead;

 EIP_OBJECT_CL3_SERVICE_IND_T tData;

} EIP_OBJECT_PACKET_CL3_SERVICE_IND_T;

#define EIP_OBJECT_CL3_SERVICE_IND_SIZE (sizeof(EIP_OBJECT_CL3_SERVICE_IND_T)-1)

The Application Interface 139/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Description

Structure EIP_OBJECT_PACKET_CL3_SERVICE_IND_T Type: Indication

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination Queue-Handle. Set to

0: Destination is operating system rcX

32 (0x20): Destination is the protocol stack

ulSrc UINT32 Source Queue-Handle. Set to:

0: when working with loadable firmware.

Queue handle returned by TLR_QUE_IDENTIFY()}:
when working with loadable firmware.

ulDestId UINT32 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.

Set to 0, will not be changed

ulSrcId UINT32 Source End Point Identifier, specifying the origin of the
packet inside the Source Process. This variable may be
used for low-level addressing purposes.

ulLen UINT32 20 + n Packet Data Length (In Bytes)

n = Length of Service Data Area

ulId UINT32 0 ... 232-1 Packet Identification As Unique Number

ulSta UINT32 See Packet Structure Reference

ulCmd UINT32 0x1A3E EIP_OBJECT_CL3_SERVICE_IND - Command /

Response

ulExt UINT32 Reserved

ulRout UINT32 Routing Information

tData - Structure EIP_OBJECT_CL3_SERVICE_IND_T

ulConnectionId UINT32 0 ... 232-1 For connected (class 3) service request, this field holds
the OT connection ID of that connection.

If the service request is unconnected this filed is always
0.

ulService UINT32 1-0xFF CIP Service Code

ulObject UINT32 1-0xFFFF CIP Class ID

ulInstance UINT32 1-0xFFFF CIP Instance Number

ulAttribute UINT32 0-0xFFFF CIP Attribute Number

The attribute number is 0, if the service does not
address a specific attribute but the whole instance.

abData[] Array of UINT8 n bytes of service data (depending on service)

This may also contain path information for instance in
case that the service does not address an object with
the format Class / Instance / Attribute.

Table 96: EIP_OBJECT_CL3_SERVICE_IND - Indication of acyclic Data Transfer

The Application Interface 140/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Structure Reference

 typedef struct EIP_OBJECT_CL3_SERVICE_RES_Ttag

{

 TLR_UINT32 ulConnectionId; /*!< Connection Handle */

 TLR_UINT32 ulService;

 TLR_UINT32 ulObject;

 TLR_UINT32 ulInstance;

 TLR_UINT32 ulAttribute;

 TLR_UINT32 ulGRC; /*!< Generic Error Code */

 TLR_UINT32 ulERC; /*!< Extended Error Code */

 TLR_UINT8 abData[1];

}EIP_OBJECT_CL3_SERVICE_RES_T;

typedef struct EIP_OBJECT_PACKET_CL3_SERVICE_RES_Ttag

{

 TLR_PACKET_HEADER_T tHead;

 EIP_OBJECT_CL3_SERVICE_RES_T tData;

} EIP_OBJECT_PACKET_CL3_SERVICE_RES_T;

#define EIP_OBJECT_CL3_SERVICE_RES_SIZE (sizeof(EIP_OBJECT_CL3_SERVICE_RES_T)-1)

Packet Description

Structure EIP_OBJECT_PACKET_CL3_SERVICE_RES_T Type: Response

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 See rules in
section 3.2.1

Destination Queue Handle

ulSrc UINT32 See rules in
section 3.2.1

Source Queue Handle

ulDestId UINT32 See rules in
section 3.2.1

Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.

ulSrcId UINT32 See rules in
section 3.2.1

Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 28 + n Packet Data Length (In Bytes)
where n = Length of Service Data Area

ulId UINT32 0 ... 232-1 Packet Identification As Unique Number

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x00001A3F EIP_OBJECT_CL3_SERVICE_RES - Command /

Response

ulExt UINT32 Reserved

ulRout UINT32 Routing Information

tData - Structure EIP_OBJECT_CL3_SERVICE_RES_T

ulConnectionId UINT32 0 ... 232-1 Connection Id from the indication packet

ulService UINT32 1-0xFF CIP Service Code from the indication packet

ulObject UINT32 1-0xFFFF CIP Object from the indication packet

ulInstance UINT32 1-0xFFFF CIP Instance from the indication packet

ulAttribute UINT32 0-0xFFFF CIP Attribute from the indication packet

ulGRC UINT32 Generic Error Code

ulERC UINT32 Extended Error Code

abData[] Array of UINT8 n bytes of service data (depending on service)

Table 97: EIP_OBJECT_CL3_SERVICE_RES – Response to Indication of acyclic Data Transfer

The Application Interface 141/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

6.2.5 EIP_OBJECT_AS_REGISTER_REQ/CNF – Register a new

Assembly Instance

This service can be used by the host application in order to create a new Assembly Instance (for

more information about assembly instances, see section The CIP Messaging Model on page 25).

The parameter ulInstance is the assembly instance number that hast to be registered at the

assembly class object.

Table 98 lists the Assembly Instance Number Ranges specified by the CIP Networks Library

(reference [4]).

Assembly Instance

Number Range

Device Profile Usage Vendor-specific Device Profile Usage

0x0001 – 0x0063 Open (defined in device profile) Vendor Specific

0x0064 – 0x00C7 Vendor Specific Vendor Specific

0x00C8 – 0x00D1 Open (defined in device profile) Vendor Specific

0x00D2 – 0x00EF Reserved by CIP for future use Reserved by CIP for future use

0x00F0 – 0x00FF Vendor Specific Vendor Specific

0x0100 – 0x02FF Open (defined in device profile) Vendor Specific

0x0300 – 0x04FF Vendor Specific Vendor Specific

0x0500 – 0xFFFF Open (defined in device profile) Vendor Specific

0x00010000 – 0x000FFFFF Open (defined in device profile) Vendor Specific

0x00100000 – 0xFFFFFFFF Reserved by CIP for future use Reserved by CIP for future use

Table 98: Assembly Instance Number Ranges

Note: The instance numbers 192 and 193 (0xC0 and 0xC1) are the Hilscher’s default

assembly instances for Listen Only and Input Only connections. These instances

numbers must not be used for additional assembly instances.

Data belonging to this specific assembly instance will be mapped into the dual port memory at the

offset address ulDPMOffset.

Note: This offset (ulDPMOffset) is not the total DPM offset. It is the relative offset within the

beginning of the corresponding input/output data images abPd0Input[5760] and

abPd0Output[5760].

So, usually the first instance (for each data direction) that is created will have

ulDPMOffset = 0.

If multiple assembly instances are registered, make sure that the data range of this

instance do not overlap in the DPM.

Note: When using the Stack Packet Set actually no DPM Offset is necessary. However, the

stack still checks this parameter. So make sure that there are no overlapping data

areas.

The data length (in bytes) the assembly instance shall hold can be provided in ulSize. The

maximum size of an instance may not exceed 504 bytes.

With the parameter ulFlags the properties of the assembly instance can be configured.

Properties can be set according to Table 100: Assembly Instance below.

The Application Interface 142/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

As long as no data has ever been set and no connection has been established, the Assembly

Object Instance holds zeroed data.

For host applications using the Stack Packet Set: The confirmation of the command returns a tri-

state buffer (hDataBuf). This triple buffer is used to update the assembly instance’s process data.

Figure 28 and Figure 29 below display a sequence diagram for the

EIP_OBJECT_AS_REGISTER_REQ/CNF packet in case the host application uses Extended or

Stack Packet Set (see 4.3 “Configuration Using the Packet API”).

Figure 28: Sequence Diagram for the EIP_OBJECT_AS_REGISTER_REQ/CNF Packet for the Extended Packet Set

Figure 29: Sequence Diagram for the EIP_OBJECT_AS_REGISTER_REQ/CNF Packet for the Stack Packet Set

Packet Structure Reference

typedef struct EIP_OBJECT_AS_REGISTER_REQ_Ttag {

 TLR_UINT32 ulInstance;

 TLR_UINT32 ulDPMOffset;

 TLR_UINT32 ulSize;

 TLR_UINT32 ulFlags;

} EIP_OBJECT_AS_REGISTER_REQ_T;

#define EIP_OBJECT_AS_REGISTER_REQ_SIZE \

 sizeof(EIP_OBJECT_AS_REGISTER_REQ_T)

typedef struct EIP_OBJECT_AS_PACKET_ REGISTER_REQ_Ttag {

 TLR_PACKET_HEADER_T tHead;

 EIP_OBJECT_AS_REGISTER_REQ_T tData;

} EIP_OBJECT_AS_PACKET_REGISTER_REQ_T;

The Application Interface 143/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Description

Structure EIP_OBJECT_A_PACKET _REGISTER_REQ_T Type: Request

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 0, 0x20 Destination Queue-Handle. Set to

0: Destination is operating system rcX

32 (0x20): Destination is the protocol stack

ulSrc UINT32 0 ... 232-1 Source Queue-Handle. Set to:

0: when working with loadable firmware.

Queue handle returned by TLR_QUE_IDENTIFY()}:
when working with loadable firmware.

ulDestId UINT32 0 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.

Set to 0, will not be changed

ulSrcId UINT32 0 ... 232-1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process. This variable may be
used for low-level addressing purposes.

ulLen UINT32 16 EIP_OBJECT_AS_REGISTER_REQ_SIZE

- Packet data length in bytes

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by
the Source Process of the Packet

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x1A0C EIP_OBJECT_AS_REGISTER_REQ - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility
reasons

ulRout UINT32 × Routing, do not change

tData - Structure EIP_OBJECT_AS_REGISTER_REQ_T

ulInstance UINT32 0x0000001...0xF
FFFFFFF

(except 0xC0
and 0xC1, see
description
above)

Assembly instance number

See Table 98: Assembly Instance Number Ranges

ulDPMOffset UINT32 0..5760 DPM offset of the instance data area

Note: This offset is not the total DPM offset. It is the

relative offset within the beginning of the corresponding

input/output data images abPd0Input[5760] and

abPd0Output[5760].

So, usually the first instance (for each data direction)

that is created will have ulDPMOffset = 0.

If multiple assembly instances are registered, make
sure that the data range of these instances does not
overlap in the DPM.

ulSize UINT32 1..504 Size of the data area for the assembly instance data in
bytes.

Note: the size of the assembly instance also depends

on the flags that are set in the field ulFlags.

ulFlags UINT32 Bitmap Property Flags for the assembly instance
See Table 100: Assembly Instance

Table 99: EIP_OBJECT_AS_REGISTER_REQ – Request Command for create an Assembly Instance

The Application Interface 144/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

The following table shows the meaning of the single bits which can be used to configured specific

assembly instance properties:

Bits Name (Bitmask) Description

31 -
11

Reserved Reserved for future use

10 EIP_AS_FLAG_FORWARD_SEQUENCE_COUNT
(0x00000400)

For input assemblies (consuming data from the network), this
flag decides whether the 4 byte sequence count is mapped into
the IO data when being written into the triple buffer or DPM.
Four additional bytes have to be reserved in the assembly’s
size and offsets. The lower two bytes will contain the sequence
count value consistent to the assembly’s data. The byte order is
little endian.

This flag can only be used in conjunction with flag
EIP_AS_FLAG_FORWARD_RUNIDLE. Mapping only the
sequence count without mapping the run/idle header is not
possible.

The sequence counter wraps-around to zero at value 65536.

If the bit is set, the sequence count will be part of the IO data
image. In that case the triple buffer / DPM layout of assembly
data looks like the following:

| ulSize = 4 + 4 + size of data |

|--|

| 32 Bit | 32 Bit | |

|---------------|---------------|------------|

| Seq. Count | Run/Idle | data |

Note: In case the assembly instance does not receive a

run/idle header from the network, the run/idle header in the IO
image will always show "run" (0x00000001).

Note: For class 0 connections, there is no sequence count that

can be received from the network. In that case, the sequence
count value in the IO image will be incremented each time the

EtherNet/IP stack receives a process data frame. For class 1
connections, the most recent sequence count field
encountered on the network is copied into the triple buffer
(LOM) and DPM (LFW).

Note: The sequence count is incremented only when the

connected PLC application updates its production data.

Note: The sequence count is not designed to detect lost

packets

Note: The sequence count information remains unchanged

when the assembly data is modified over an EtherNet/IP
explicit service, whereas the data may has changed.

9 EIP_AS_FLAG_INVISIBLE

(0x00000200)

This bit decides whether or not the assembly instance can be
accessed via explicit services from the network.

If the bit is set (1), the assembly instance is not accessible

(invisible).

If the bit is cleared (0), the assembly instance is accessible
(visible)

The Application Interface 145/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Bits Name (Bitmask) Description

8 EIP_AS_FLAG_FORWARD_RUNIDLE

(0x00000100)

For input assemblies instances, this flag decides whether the
run/idle header shall be present in the triple buffer (LOM) or
DPM (LFW).

This way the host application has the possibility to evaluate the
run/idle information on its own. 4 additional bytes have to be
reserved in the assembly’s size and offsets.

If the bit is set (1), the run/idle header will be part of the input
data image.

Note: This property only applies to assembly instances that

have bit 0 set (1).

In that case, the triple buffer / DPM layout of assembly data
looks like the following:

| ulSize = 4 + size of data |

|------------------------------------|

| 32 Bit | |

|---------------|--------------------|

| Run/Idle | data |

7 EIP_AS_FLAG_FIX_SIZE

(0x00000080)

This flag decides whether the assembly instance allows a
connection to be established with a smaller connection size

than defined in ulSize or whether only the exact match is

accepted.
If the bit is set (1), the connection size in a ForwardOpen must

directly correspond to ulSize.

If the bit is not set (0), the connection size can be smaller or

equal to ulSize.

Example:

1) ulSize = 16 (Bit 7 of ulFlags is 0)
 A connection to this assembly instance can

 be opened with a smaller or matching I/O

 size, e.g. 8.

2) ulSize = 6 (Bit 7 of ulFlags is 1)
 A connection can only be opened with

 a matching I/O size, i.e. 6.

6 EIP_AS_FLAG_HOLDSTATE

(0x00000040)

This flag decides whether the assembly instance data that is
mapped into the DPM memory area is cleared upon closing or
timeout of the connection or whether the last received data is
left unchanged in the memory.

If the bit is set (1), the data will be left unchanged.

This property only applies to assembly instances that have bit 0
set (1), since only those instances receive data from the
network.

5 EIP_AS_FLAG_CONFIG

(0x00000020)

If set (1), this assembly instance is a configuration assembly
instance, which can be used to receive configuration data upon
connection establishment.

For further information have a look at the Packet

EIP_OBJECT_CONNECTION_CONFIG_IND/RES – Indication of

Configuration Data received during Connection Establishment

Note: Compared to input and output assembly instances a

configuration instance is set only once via the Forward_Open
frame. It is not exchange cyclically.

4 EIP_AS_FLAG_NEWDATA

(0x00000010)

This flag is used internally and must be set to 0

The Application Interface 146/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Bits Name (Bitmask) Description

3 EIP_AS_FLAG_MODELESS

(0x00000008)

If set (1), the assembly instance’s real time format is modeless,
i.e. it does not contain run/idle information.

If not set (0), the assembly instance’s real time format is the 32-
Bit Run/Idle header.

For more information about real time format see section 2.4.3.1
“Real Time Format”.

2 EIP_AS_FLAG_TRIPLEBUF

(0x00000004)

This flag is used internally and must be set to 0

1 EIP_AS_FLAG_ACTIVE

(0x00000002)

This flag is used internally and must be set to 0

0 EIP_AS_FLAG_READONLY

(0x00000001)

This flag decides whether the newly registered assembly is an
input or an output assembly.

If set (1), the assembly instance is an output assembly instance
(can be used for the OT direction). It is able to consume data
from the network. Data for this instance will be mapped into the
DPM Input area (data flow: network DPM).

If cleared (0), the assembly instance is an input assembly
instance (can be used for the TO direction). It is able to
produce data on the network. Data for this instance will be
mapped from the DPM Output area (data flow: DPM
network).

Table 100: Assembly Instance Property Flags

Source Code Example

The following sample code shows how to fill in the parameter fields of the

EIP_OBJECT_AS_REGISTER_REQ packet in order to create two assembly instances, one input

and one output instance.

 /* Fill the EIP_OBJECT_AS_REGISTER_REQ packet to create an input (TO) assembly instance 100

 that holds 16 bytes of data, has the modeless real-time format and does not allow smaller

 connection sizes. */

 EIP_OBJECT_AS_PACKET_REGISTER_REQ_T tReq;

 tReq.tHead.ulCmd = EIP_OBJECT_AS_REGISTER_REQ;

 tReq.tHead.ulLen = EIP_OBJECT_AS_REGISTER_REQ_SIZE;

 tReq.tData.ulInstance = 100;

 tReq.tData.ulSize = 16;

 tReq.tData.ulFlags = EIP_AS_FLAG_MODELESS | EIP_AS_FLAG_FIX_SIZE;

 tReq.tData.ulDPMOffset = 0;

 /* Fill the EIP_OBJECT_AS_REGISTER_REQ packet to create an output (OT) assembly instance 101

 that holds 8 bytes of data, has the run/idle realtime format and does allow smaller

 connection sizes. */

 EIP_OBJECT_AS_PACKET_REGISTER_REQ_T tReq;

 tReq.tHead.ulCmd = EIP_OBJECT_AS_REGISTER_REQ;

 tReq.tHead.ulLen = EIP_OBJECT_AS_REGISTER_REQ_SIZE;

 tReq.tData.ulInstance = 101;

 tReq.tData.ulSize = 8;

 tReq.tData.ulFlags = EIP_AS_FLAG_READONLY;

 tReq.tData.ulDPMOffset = 0;

Packet Structure Reference

typedef struct EIP_OBJECT_AS_REGISTER_CNF_Ttag {

 TLR_UINT32 ulInstance;

 TLR_UINT32 ulDPMOffset;

 TLR_UINT32 ulSize;

The Application Interface 147/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

 TLR_UINT32 ulFlags;

 TLR_HANDLE hDataBuf;

} EIP_OBJECT_AS_REGISTER_CNF_T;

#define EIP_OBJECT_AS_REGISTER_CNF_SIZE \

 sizeof(EIP_OBJECT_AS_REGISTER_CNF_T)

typedef struct EIP_OBJECT_AS_PACKET_REGISTER_CNF_Ttag {

 TLR_PACKET_HEADER_T tHead;

} EIP_OBJECT_AS_PACKET_ REGISTER_CNF_T;

Packet Description

Structure EIP_OBJECT_AS_PACKET_ REGISTER_CNF_T Type: Confirmation

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 See rules in
section 3.2.1

Destination Queue-Handle, unchanged

ulSrc UINT32 See rules in
section 3.2.1

Source Queue-Handle, unchanged

ulDestId UINT32 See rules in
section 3.2.1

Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.
Set to 0 for the Initialization Packet

ulSrcId UINT32 See rules in
section 3.2.1

Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 20 EIP_OBJECT_AS_REGISTER_CNF_SIZE

- Packet data length in bytes

ulId UINT32 0 ... 232-1 Packet Identification, unchanged

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x1A0D EIP_OBJECT_AS_REGISTER_CNF - Command

ulExt UINT32 0 Extension, reserved

ulRout UINT32 × Routing, do not change

tData - Structure EIP_OBJECT_AS_REGISTER_CNF_T

ulInstance UINT32 Instance of the Assembly Object (from the request
packet)

ulDPMOffset UINT32 Offset of the data in the dual port memory (from the
request packet)

ulSize UINT32 <=504 Size of the assembly instance data (from the request
packet)

ulFlags UINT32 Property Flags of the assembly instance
(from the request packet)

hDataBuf UINT32 Handle to the tri-state buffer of the assembly instance

Table 101: EIP_OBJECT_AS_REGISTER_CNF – Confirmation Command of register a new class object

The Application Interface 148/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

6.2.6 EIP_OBJECT_ID_SETDEVICEINFO_REQ/CNF – Set the Device’s

Identity Information

This request packet can be used by the host application in order to configure the device’s Identity

Object Instance (CIP Class ID 0x01).

Figure 30 and Figure 31 below display a sequence diagram for the

EIP_OBJECT_ID_SETDEVICEINFO_REQ/CNF packet in case the host application uses Extended

or Stack Packet Set (see section Configuration Using the Packet API on page 77).

Figure 30: Sequence Diagram for the EIP_OBJECT_ID_SETDEVICEINFO_REQ/CNF Packet for the Extended Packet

Set

Figure 31: Sequence Diagram for the EIP_OBJECT_ID_SETDEVICEINFO_REQ/CNF Packet for the Stack Packet Set

Packet Structure Reference

#define EIP_ID_MAX_PRODUKTNAME_LEN 32

typedef struct EIP_OBJECT_ID_SETDEVICEINFO_REQ_Ttag {

 TLR_UINT32 ulVendId;

 TLR_UINT32 ulProductType;

 TLR_UINT32 ulProductCode;

 TLR_UINT32 ulMajRev;

 TLR_UINT32 ulMinRev;

 TLR_UINT32 ulSerialNumber;

 TLR_UINT8 abProductName[EIP_ID_MAX_PRODUKTNAME_LEN]

} EIP_OBJECT_ID_SETDEVICEINFO_REQ_T;

#define EIP_OBJECT_ID_SETDEVICEINFO_REQ_SIZE \

 (sizeof(EIP_OBJECT_ID_SETDEVICEINFO_REQ_T))

typedef struct EIP_OBJECT_PACKET_ID_SETDEVICEINFO_REQ_Ttag {

 TLR_PACKET_HEADER_T tHead;

 EIP_OBJECT_ID_SETDEVICEINFO_REQ_T tData;

} EIP_OBJECT_PACKET_ID_SETDEVICEINFO_REQ_T;

The Application Interface 149/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Description

Structure EIP_OBJECT_PACKET_ID_SETDEVICEINFO_REQ_T Type: Request

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 0x20/

OBJECT_QUE
Destination Queue-Handle. Set to

0: Destination is operating system rcX

32 (0x20): Destination is the protocol stack

ulSrc UINT32 0 ... 232-1 Source Queue-Handle. Set to:

0: when working with loadable firmware.

Queue handle returned by TLR_QUE_IDENTIFY()}:
when working with loadable firmware.

ulDestId UINT32 0 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.

Set to 0, will not be changed

ulSrcId UINT32 0 ... 232-1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process. This variable may be
used for low-level addressing purposes.

ulLen UINT32 24 + n 24 + n - Packet data length in bytes

n is the Application data count of abProductName[] in

bytes

n = 0 … EIP_ID_MAX_PRODUKTNAME_LEN (32)

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by
the Source Process of the Packet

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x1A16 EIP_OBJECT_ID_SETDEVICEINFO_REQ - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility
reasons

ulRout UINT32 × Routing, do not change

tData - Structure EIP_OBJECT_ID_SETDEVICEINFO_REQ_T

ulVendID UINT32 0..65535 Vendor identification:

This is an identification number for the manufacturer of
an EtherNet/IP device.

Vendor IDs are managed by ODVA (see
www.odva.org).

Default value: 283 (Hilscher)

The value 0 is not a valid Vendor ID. However, when
using value 0 here, the stack automatically chooses the
default Vendor ID (283 - Hilscher GmbH).

http://www.odva.org/

The Application Interface 150/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Structure EIP_OBJECT_PACKET_ID_SETDEVICEINFO_REQ_T Type: Request

ulProductType UINT32 0..65535 CIP Device Type (former “Product Type”)

The list of device types is managed by ODVA (see
www.odva.org). It is used to identify the device profile
that a particular product is using. Device profiles define
minimum requirements a device must implement as well
as common options.

Default: 0x0C (Communication Device)

Publicly defined: 0x00 - 0x64
Vendor specific: 0x64 - 0xC7
Reserved by CIP: 0xC8 - 0xFF
Publicly defined: 0x100 - 0x2FF
Vendor specific: 0x300 - 0x4FF
Reserved by CIP: 0x500 - 0xFFFF

The value 0 is not a valid Product Type. However, when
using value 0 here, the stack automatically chooses the
default Product Type (0x0C).

ulProductCode UINT32 0..65535 Product code

The vendor assigned Product Code identifies a
particular product within a device type. Each vendor
assigns this code to each of its products. The Product
Code typically maps to one or more catalog/model
numbers. Products shall have different codes if their
configuration and/or runtime options are different. Such
devices present a different logical view to the network.
On the other hand for example, two products that are
the same except for their color or mounting feet are the
same logically and may share the same product code.
The value zero is not valid.

The value 0 is not a valid Product Code. However,
when using value 0 here, the stack automatically
chooses the default Product Code dependent on the
chip type (netX50/100 etc.) that is used.

ulMajRev UINT32 1..127 Major revision

Value 0 is not a valid major revision number.

If major revision and minor revision both are set to 0,
the stack uses the default value predefined in the
firmware.

ulMinRev UINT32 1..255 Minor revision

Value 0 is not a valid minor revision number.

If major revision and minor revision both are set to 0,
the stack uses the default value predefined in the
firmware.

ulSerialNumber UINT32 0..65535 Serial Number of the device

This parameter is a number used in conjunction with the
Vendor ID to form a unique identifier for each device on
any CIP network. Each vendor is responsible for
guaranteeing the uniqueness of the serial number
across all of its devices.
Usually, this number will be set automatically by the
firmware, if a security memory is available. In this case
leave this parameter at value 0.

http://www.odva.org/

The Application Interface 151/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Structure EIP_OBJECT_PACKET_ID_SETDEVICEINFO_REQ_T Type: Request

abProductName[32] UINT8[] Product/Device Name

This text string should represent a short description of
the product/product family represented by the product
code. The same product code may have a variety of
product name strings.

Byte 0 indicates the length of the name. Bytes 1 -30
contain the characters of the device name)

Example: “Test Name”

abProductName [0] = 9
abProductName [1..9] = “Test Name”

Note: If an empty device name (“”) is configured, the

firmware will use the default device name. For an
overview of default names see Table 60.

Table 102: EIP_OBJECT_ID_SETDEVICEINFO_REQ – Request Command for open a new connection

The Application Interface 152/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Source Code Example

#define MY_VENDOR_ID 283

#define PRODUCT_COMMUNICATION_ADAPTER 12

void APS_SetDeviceInfo_req(EIP_APS_RSC_T FAR* ptRsc)

{

 EIP_APS_PACKET_T* ptPck;

 if(TLR_POOL_PACKET_GET(ptRsc->tLoc.hPool,&ptPck) == TLR_S_OK) {

 ptPckt->tDeviceInfoReq.tHead.ulCmd = EIP_OBJECT_ID_SETDEVICEINFO_REQ;

 ptPckt->tDeviceInfoReq.tHead.ulSrc = (UINT32)ptRsc->tLoc.hQue;

 ptPckt->tDeviceInfoReq.tHead.ulSta = 0;

 ptPckt->tDeviceInfoReq.tHead.ulId = ulIdx;

 ptPckt->tDeviceInfoReq.tHead.ulLen = EIP_OBJECT_ID_SETDEVICEINFO_REQ_SIZE;

 ptPckt->tDeviceInfoReq.tData.ulVendId = MY_VENDOR_ID;

 ptPckt->tDeviceInfoReq.tData.ulProductType = PRODUCT_COMMUNICATION_ADAPTER;

 ptPckt->tDeviceInfoReq.tData.ulProductCode = 1;

 ptPckt->tDeviceInfoReq.tData.ulMajRev = 1;

 ptPckt->tDeviceInfoReq.tData.ulSerialNumber = 1;

 ptPckt->tDeviceInfoReq.tData.abProductName[0] =15;

 TLR_MEMCPY(&ptPckt->tDeviceInfoReq.tData.abProductName[1], “Scanner Example”,

 ptPckt->tDeviceInfoReq.tData.abProductName[0]);

 TLR_QUE_SENDPACKET_FIFO((TLR_HANDLE)ptRsc->tRem.hQueEipObject, ptPck,

 TLR_INFINITE);

 }

}

The Application Interface 153/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Structure Reference

typedef struct EIP_OBJECT_ID_SETDEVICEINFO_CNF_Ttag {

 TLR_PACKET_HEADER_T tHead;

} EIP_OBJECT_PACKET_ID_SETDEVICEINFO_CNF_T;

Packet Description

Structure EIP_OBJECT_PACKET_ID_SETDEVICEINFO_CNF_T Type: Confirmation

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 See rules in
section 3.2.1

Destination Queue Handle

ulSrc UINT32 See rules in
section 3.2.1

Source Queue Handle

ulDestId UINT32 See rules in
section 3.2.1

Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.

ulSrcId UINT32 See rules in
section 3.2.1

Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 0 Packet data length in bytes

ulId UINT32 0 ... 232-1 Packet Identification, unchanged

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x1A17 EIP_OBJECT_ID_SETDEVICEINFO_CNF – Command

ulExt UINT32 0 Extension, reserved

ulRout UINT32 × Routing, do not change

Table 103: EIP_OBJECT_ID_SETDEVICEINFO_CNF – Confirmation Command of setting device information

Source Code Example

void APS_SetDeviceInfo_cnf(EIP_APS_RSC_T FAR* ptRsc, EIP_APS_PACKET_T* ptPck)

{

 if(ptPck->tDeviceInfoCnf.tHead.ulSta != TLR_S_OK){

 APS_ErrorHandling(ptRsc);

 }

 TLR_POOL_PACKET_RELEASE(ptRsc->tLoc.hPool, ptPck);

The Application Interface 154/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

6.2.7 EIP_OBJECT_GET_INPUT_REQ/CNF – Getting the latest Input

Data

Note: Host applications should not use this packet anymore.

To read the input data always use the Triple-Buffers (LOM) or read the corresponding

DPM area the input data is mapped to.

This service can be used by the host application to get the latest input data.

As long as no input data has ever been received, 0 data as Input Data Block will be returned.

The flag fClearFlag indicates that the Input Data Block is valid or cleared. In the event the flag is

set to TLR_FALSE(0), data exchange is successful. If the flag is TLR_TRUE(1), the device is not in

data exchange.

The flag fNewFlag indicates whether the input data has been updated by the stack. If not, the flag

is set to TLR_FALSE(0) and the returned Input Data Block will be the same as the previous one.

The maximum number of input data that may be passed cannot exceed 504 bytes.

Packet Structure Reference

typedef struct EIP_OBJECT_GET_INPUT_REQ_Ttag {

 TLR_UINT32 ulInstance;

} EIP_OBJECT_GET_INPUT_REQ_T;

#define EIP_OBJECT_GET_INPUT_REQ_SIZE \

 sizeof(EIP_OBJECT_GET_INPUT_REQ_T)

typedef struct EIP_OBJECT_PACKET_GET_INPUT_REQ_Ttag {

 TLR_PACKET_HEADER_T tHead;

 EIP_OBJECT_GET_INPUT_REQ_T tData;

} EIP_OBJECT_PACKET_GET_INPUT_REQ_T;

The Application Interface 155/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Description

Structure EIP_OBJECT_PACKET_GET_INPUT_REQ_T Type: Request

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 0x20/

OBJECT_QUE
Destination Queue-Handle. Set to

0: Destination is operating system rcX

32 (0x20): Destination is the protocol stack

ulSrc UINT32 0 ... 232-1 Source Queue-Handle. Set to:

0: when working with loadable firmware.

Queue handle returned by TLR_QUE_IDENTIFY()}:
when working with loadable firmware.

ulDestId UINT32 0 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.

Set to 0, will not be changed

ulSrcId UINT32 0 ... 232-1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process. This variable may be
used for low-level addressing purposes.

ulLen UINT32 4 EIP_OBJECT_GET_INPUT_REQ_SIZE

- Packet data length in bytes

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by
the Source Process of the Packet

ulSta UINT32 See chapter Status/Error Codes Overview.

ulCmd UINT32 0x1A20 EIP_OBJECT_GET_INPUT_REQ - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility
reasons

ulRout UINT32 × Routing, do not change

tData - structure EIP_OBJECT_GET_INPUT_REQ_T

ulInstance UINT32 Reference to the Instance of the Assembly Object

Table 104: EIP_OBJECT_GET_INPUT_REQ – Request Command for getting Input Data

The Application Interface 156/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Structure Reference

#define EIP_OBJECT_MAX_INPUT_DATA_SIZE 2048

typedef struct EIP_OBJECT_GET_INPUT_CNF_Ttag {

 TLR_UINT32 ulInstance;

 TLR_BOOLEAN32 fClearFlag;

 TLR_BOOLEAN32 fNewFlag;

 TLR_UINT8 abInputData[EIP_OBJECT_MAX_INPUT_DATA_SIZE];

} EIP_OBJECT_GET_INPUT_CNF_T;

#define EIP_OBJECT_GET_INPUT_CNF_SIZE \

 (sizeof(EIP_OBJECT_GET_INPUT_CNF_T)- \

 EIP_OBJECT_MAX_INPUT_DATA_SIZE)

typedef struct EIP_OBJECT_PACKET_GET_INPUT_CNF_Ttag {

 TLR_PACKET_HEADER_T tHead;

 EIP_OBJECT_GET_INPUT_CNF_T tData;

} EIP_OBJECT_PACKET_GET_INPUT_CNF_T;

Packet Description

Structure EIP_OBJECT_PACKET_GET_INPUT_CNF_T Type: Confirmation

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 See rules in
section 3.2.1

Destination queue handle, untouched

ulSrc UINT32 See rules in
section 3.2.1

Source queue handle, untouched

ulDestId UINT32 See rules in
section 3.2.1

Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.
Set to 0 for the Initialization Packet

ulSrcId UINT32 See rules in
section 3.2.1

Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 12 + n EIP_OBJECT_GET_INPUT_REQ_SIZE + n

- Packet data length in bytes

n is the Application data count of abInputData[] in

bytes

ulId UINT32 0 ... 232-1 Packet Identification, untouched

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x1A21 EIP_OBJECT_GET_INPUT_CNF - Command

ulExt UINT32 0 Extension, untouched

ulRout UINT32 × Routing, do not change

tData - structure EIP_OBJECT_GET_INPUT_CNF_T

ulInstance UINT32 Reference to the Assembly Instance

fClearFlag BOOL32 0,1 Flag that indicates if set to TLR_FALSE(0) that the

Output data block is valid. If set to TLR_TRUE(1), the

Output data block is cleared and zeroed.

fNewFlag BOOL32 0,1 Flag that indicates if set to TLR_TRUE(1) that new

Output data has been received since the last received
EIP_OBJECT_GET_OUTPUT command.

abInputData[…] UINT8[] Field for input data

Table 105: EIP_OBJECT_GET_INPUT_CNF – Confirmation Command of getting the Input Data

The Application Interface 157/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

6.2.8 EIP_OBJECT_RESET_IND/RES – Indication of a Reset Request

from the network

This indication notifies the host application about a reset service request from the network. This

means an EtherNet/IP device (could also be a Tool) just sent a reset service (CIP service code

0x05) to the device and waits for a response.

It is important to send the reset response packet right away, since this triggers the response to the

reset service on the network. So, in case the response to the indication is not sent at all, the

requesting node on the network will not get any answer to its reset request.

There are two reset types defined (0 and 1) that tell the host application how the reset shall be

performed. Basically, the difference between these is the way the configuration data is handled.

Reset type 0 (the default reset type that every EtherNet/IP device needs to support) only emulates

a power cycle, where all configuration data (such as the IP settings) will be kept. Reset type 1 on

the other side shall bring the device back to the factory defaults.

Value Meaning as defined in the CIP Specification, Volume 1

0 Reset shall be done emulating power cycling of the device.

1 Return as closely as possible to the factory default configuration. Reset is then done emulating power

cycling of the device.

Note: This reset type is not supported by default. It needs to be enabled separately using the command

EIP_OBJECT_SET_PARAMETER_REQ (see section 6.2.14).

2 This type of reset is not supported, since it is not yet specified for EtherNet/IP devices.

3 - 99 Reserved by CIP

100 - 199 Vendor-specific

200 - 255 Reserved by CIP

Table 106: Allowed Values of ulResetTyp

Figure 32, Figure 33 and Figure 34 below display a sequence diagram for the

EIP_OBJECT_RESET_IND/RES packet with reset type 0 and 1. For all available Packet Sets

(Basic, Extended or Stack Packet Set - see 4.3 “Configuration Using the Packet API”) it is

illustrated what the host application needs to do when receiving the reset indication.

The Application Interface 158/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Figure 32: Sequence Diagram for the EIP_OBJECT_RESET_IND/RES Packet for the Basic Packet Set

Figure 33: Sequence Diagram for the EIP_OBJECT_RESET_IND/RES Packet for the Extended Packet Set

The Application Interface 159/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Figure 34: Sequence Diagram for the EIP_OBJECT_RESET_IND/RES Packet for the Stack Packet Set

Packet Structure Reference

 struct EIP_OBJECT_RESET_IND_Ttag

{

 TLR_UINT32 ulDataIdx; /*!< Index of the service */

 TLR_UINT32 ulResetTyp; /*!< Type of the reset */

};

struct EIP_OBJECT_PACKET_RESET_IND_Ttag

{

 TLR_PACKET_HEADER_T tHead;

 EIP_OBJECT_RESET_IND_T Data;

};

The Application Interface 160/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Description

Structure EIP_OBJECT_PACKET_RESET_IND_T Type: Indication

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination Queue-Handle. Set to

0: Destination is operating system rcX

32 (0x20): Destination is the protocol stack

ulSrc UINT32 Source Queue-Handle. Set to:

0: when working with loadable firmware.

Queue handle returned by TLR_QUE_IDENTIFY()}:
when working with loadable firmware.

ulDestId UINT32 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.

Set to 0, will not be changed

ulSrcId UINT32 Source End Point Identifier, specifying the origin of the
packet inside the Source Process. This variable may be
used for low-level addressing purposes.

ulLen UINT32 8 Packet Data Length (In Bytes)

ulId UINT32 0 ... 232-1 Packet Identification As Unique Number

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x00001A24 EIP_OBJECT_RESET_IND - Command / Response

ulExt UINT32 Reserved

ulRout UINT32 Routing Information

tData - structure EIP_OBJECT_RESET_IND_T

ulDataIdx UINT32 Index of the service (host application does not need to
evaluate this parameter)

ulResetTyp UINT32 0..1, 100-199 Type of the reset

0: Reset is done emulating power cycling of the
device(default)

1: Return as closely as possible to the factory default
configuration. Reset is then done emulating power
cycling of the device.

Note:

Reset type 1 is not supported by default. It needs to be
enabled separately using the command
EIP_OBJECT_SET_PARAMETER_REQ (see section
6.2.14).

Table 107: EIP_OBJECT_RESET_IND – Reset Request from Bus Indication

The Application Interface 161/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Structure Reference

typedef struct EIP_OBJECT_PACKET_RESET_RES_Ttag

{

 TLR_PACKET_HEADER_T tHead;

} EIP_OBJECT_PACKET_ RESET _RES_T;

Packet Description

Structure EIP_OBJECT_PACKET_RESET_RES_T Type: Response

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 See rules in
section 3.2.1

Destination Queue Handle

ulSrc UINT32 See rules in
section 3.2.1

Source Queue Handle

ulDestId UINT32 See rules in
section 3.2.1

Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.

ulSrcId UINT32 See rules in
section 3.2.1

Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 0 Packet Data Length (In Bytes)

ulId UINT32 0 ... 232-1 Packet Identification As Unique Number

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x00001A25 EIP_OBJECT_RESET_RES – Response

ulExt UINT32 Reserved

ulRout UINT32 Routing Information

Table 108: EIP_OBJECT_RESET_RES – Response to Indication to Reset Request

The Application Interface 162/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

6.2.9 EIP_OBJECT_RESET_REQ/CNF - Reset Request

This packet can be sent by the host application in order to initiate a reset of the EtherNet/IP

protocol stack. All running connections will be closed and the IP address will be released, so that

the device will no longer be accessible via the network until it is re-configured again. Additionally, it

can be used to clear a watchdog error.

There are three reset modes that can be used:

 Mode 0 resets the stack. The configuration remains unchanged.

 Mode 1 resets the stack and additionally sets the configuration to the factory default settings,

which means the device is not accessible from the network anymore.

 Mode 2 can be set in order to clear a watchdog error (applies only when the Extended

Packet Set is used). This mode does not reset the stack. Using this mode is the same as

sending the packet EIP_APS_CLEAR_WATCHDOG_REQ/CNF – Clear Watchdog error (see

section 6.1.2).

Figure 35 and Figure 36 below display a sequence diagram for the

EIP_OBJECT_RESET_REQ/CNF packet in case the host application uses the Extended or Stack

Packet Set (see 4.3 “Configuration Using the Packet API”).

Figure 35: Sequence Diagram for the EIP_OBJECT_RESET_REQ/CNF Packet for the Extended Packet Set

Figure 36: Sequence Diagram for the EIP_OBJECT_RESET_REQ/CNF Packet for the Stack Packet Set

The Application Interface 163/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Structure Reference

struct EIP_OBJECT_RESET_REQ_Ttag

{

 TLR_UINT32 ulDataIdx; /*!< Index of the service */

 TLR_UINT32 ulResetMode; /*!< Mode of the reset */

};

struct EIP_OBJECT_PACKET_RESET_REQ_Ttag

{

 TLR_PACKET_HEADER_T tHead;

 EIP_OBJECT_RESET_REQ_T tData;

};

Packet Description

Structure EIP_OBJECT_PACKET_RESET_REQ_T Type: Request

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 0x20/

OBJECT_QUE
Destination Queue-Handle. Set to

0: Destination is operating system rcX

32 (0x20): Destination is the protocol stack

ulSrc UINT32 0 ... 232-1 Source Queue-Handle. Set to:

0: when working with loadable firmware.

Queue handle returned by TLR_QUE_IDENTIFY()}:
when working with loadable firmware.

ulDestId UINT32 0 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.

Set to 0, will not be changed

ulSrcId UINT32 0 ... 232-1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process. This variable may be
used for low-level addressing purposes.

ulLen UINT32 8 Packet Data Length (In Bytes)

ulId UINT32 0 ... 232-1 Packet Identification As Unique Number

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x00001A26 EIP_OBJECT_RESET_REQ – Response

ulExt UINT32 0 Reserved

ulRout UINT32 x Routing Information

tData - structure EIP_OBJECT_RESET_REQ_T

ulDataIdx UINT32 Reserved (set to 0)

ulResetMode UINT32 0, 2 Mode of the reset

0: Reset is done emulating power cycling of the device
(default). Configuration is not touched.

1: Reset is done emulating power cycling of the device
and additionally sets configuration back to factory
defaults

2: Clears a watch dog error. In case a watchdog error
occurred the stack stops at a specific point and does
not go into normal operation anymore. Using this type of
reset clears this state and the stack starts over again.

Table 109: EIP_OBJECT_RESET_REQ – Bus Reset Request and Confirmation

The Application Interface 164/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Structure Reference

struct EIP_OBJECT_PACKET_RESET_CNF_Ttag

{

 TLR_PACKET_HEADER_T tHead;

/* EIP_OBJECT_RESET_CNF_T tData;*/

};

Packet Description

Structure EIP_OBJECT_PACKET_RESET_CNF_T Type: Confirmation

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 See rules in
section 3.2.1

Destination Queue Handle

ulSrc UINT32 See rules in
section 3.2.1

Source Queue Handle

ulDestId UINT32 See rules in
section 3.2.1

Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.
Set to 0 for the Initialization Packet

ulSrcId UINT32 See rules in
section 3.2.1

Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 0 Packet Data Length (In Bytes)

ulId UINT32 0 ... 232-1 Packet Identification As Unique Number

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x00001A27 EIP_OBJECT_RESET_CNF - Command / Response

ulExt UINT32 Reserved

ulRout UINT32 Routing Information

Table 110: EIP_OBJECT_RESET_CNF – Response to Indication to Reset Request

The Application Interface 165/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

6.2.10 EIP_OBJECT_READY_REQ/CNF – Set Ready and Run/Idle State

This packet can be used for changing the state of the host application between “Ready” and “Not

ready” and between “Run” and “Idle” and vice versa.

Note: Send this packet only when using the Stack Packet Set (see 4.3 “Configuration Using

the Packet API”).

Parameter Value Description

ulReady 0 Sets the host application state to NOT_READY, which means the device will not go into cyclic

communication. All incoming Forward_Open frames will be rejected with General Status Code

0x0C (Object State Conflict). Already running connections will be closed.

1 Sets the host application state to READY, which means the device will now go into cyclic

communication if it receives an appropriate Forward_Open frame from a Scanner (Master).

ulRunIdle 0 Sets the run/idle state of the application to “idle”.

This parameter is only relevant if the device uses TO assembly instances that are configured

to have the 32-Bit run/idle header format as real time format. In that case the run/idle bit in the

header will be cleared set to “Idle”

1 Sets the run/idle state of the application to “run”.

This parameter is only relevant if the device uses TO assembly instances that are configured

to have the 32-Bit run/idle header format as real time format. In that case the run/idle bit in the

header will be set set to “run”

Table 111: Ready Request Parameter Values

Figure 37 below displays a sequence diagram for the EIP_OBJECT_READY_REQ/CNF packet.

Figure 37: Sequence Diagram for the EIP_OBJECT_READY_REQ/CNF Packet

Packet Structure Reference

 struct EIP_OBJECT_READY_REQ_Ttag

{

 TLR_UINT32 ulReady; /* Ready state of the application */

 TLR_UINT32 ulRunIdle;

};

struct EIP_OBJECT_PACKET_READY_REQ_Ttag

{

 TLR_PACKET_HEADER_T tHead;

 EIP_OBJECT_READY_REQ_T tData;

};

The Application Interface 166/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Description

Structure EIP_OBJECT_PACKET_READY_REQ_T Type: Request

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 OBJECT_QUE Destination Queue-Handle. Set to

0: Destination is operating system rcX

32 (0x20): Destination is the protocol stack

ulSrc UINT32 0 ... 232-1 Source Queue-Handle. Set to:

0: when working with loadable firmware.

Queue handle returned by TLR_QUE_IDENTIFY()}:
when working with loadable firmware.

ulDestId UINT32 0 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.

Set to 0, will not be changed

ulSrcId UINT32 0 ... 232-1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process. This variable may be
used for low-level addressing purposes.

ulLen UINT32 8 Packet Data Length (In Bytes)

ulId UINT32 0 ... 232-1 Packet Identification As Unique Number

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x00001A32 EIP_OBJECT_READY_REQ - Command / Response

ulExt UINT32 Reserved

ulRout UINT32 Routing Information

tData - structure EIP_OBJECT_READY_REQ_T

ulReady UINT32 0,1 Ready state of the application
(starts/stops cyclic communication)

0: Sets application state to "not ready". Cyclic
communication is disabled.
1: Sets application state to "ready". Cyclic
communication is enabled

(see also Table 111)

ulRunIdle UINT32 0,1 Run/Idle state of the application
(sets the run/idle bit in the run/idle header for cyclic I/O
connections, if used)

0: Sets run/idle state to "idle".
1: Sets run/idle state to "run"

(see also Table 111)

Table 112: EIP_OBJECT_READY_REQ - Request Ready State of the Application

The Application Interface 167/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Structure Reference

 struct EIP_OBJECT_PACKET_READY_CNF_Ttag

{

 TLR_PACKET_HEADER_T tHead;

};

Packet Description

Structure EIP_OBJECT_PACKET_READY_CNF_T Type: Confirmation

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 See rules in
section 3.2.1

Destination Queue Handle

ulSrc UINT32 See rules in
section 3.2.1

Source Queue Handle

ulDestId UINT32 See rules in
section 3.2.1

Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.

ulSrcId UINT32 See rules in
section 3.2.1

Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 0 Packet Data Length (In Bytes)

ulId UINT32 0 ... 232-1 Packet Identification As Unique Number

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x00001A33 EIP_OBJECT_READY_CNF - Command / Response

ulExt UINT32 Reserved

ulRout UINT32 Routing Information

Table 113: EIP_OBJECT_READY_CNF – Confirmation Command for Request Ready State of the Application

The Application Interface 168/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

6.2.11 EIP_OBJECT_REGISTER_SERVICE_REQ/CNF – Register Service

This packet can be used if the device shall support services that are not directly bound to a CIP

object. Usually, services use the CIP addressing format ClassInstanceAtttribute. But if for

example TAGs (access data within the device by using strings instead of the normal CIP

addressing) shall be supported, no specific object can be addressed.

Therefore, the host application can register a vendor specific service code (see Table 93). If the

device then receives this service (sent from a Scanner of Tool) it will be forwarded to the host

application via the indication EIP_OBJECT_CL3_SERVICE_IND (section 6.2.4). Again, the

indication is only sent if the service does not address an object directly.

Figure 38 and Figure 39 below display a sequence diagram for the

EIP_OBJECT_REGISTER_SERVICE_REQ/CNF packet in case the host application uses the

Extended or Stack Packet Set (see 4.3 “Configuration Using the Packet API”).

Figure 38: Sequence Diagram for the EIP_OBJECT_REGISTER_SERVICE_REQ/CNF Packet for the Extended Packet

Set

Figure 39: Sequence Diagram for the EIP_OBJECT_REGISTER_SERVICE_REQ/CNF Packet for the Stack Packet Set

Packet Structure Reference

/* EIP_OBJECT_REGISTER_SERVICE_REQ */

 struct EIP_OBJECT_REGISTER_SERVICE_REQ_Ttag

 {

 TLR_UINT32 ulService; /* Service Code */

 };

 /* command for register a new object to the message router */

 struct EIP_OBJECT_PACKET_REGISTER_SERVICE_REQ_Ttag

 {

 TLR_PACKET_HEADER_T tHead;

 EIP_OBJECT_REGISTER_SERVICE_REQ_T tData;

 };

The Application Interface 169/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Description

Structure EIP_OBJECT_PACKET_REGISTER_SERVICE_REQ_T Type: Request

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 OBJECT_QUE Destination Queue-Handle. Set to

0: Destination is operating system rcX

32 (0x20): Destination is the protocol stack

ulSrc UINT32 0 ... 232-1 Source Queue-Handle. Set to:

0: when working with loadable firmware.

Queue handle returned by TLR_QUE_IDENTIFY()}:
when working with loadable firmware.

ulDestId UINT32 0 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.

Set to 0, will not be changed

ulSrcId UINT32 0 ... 232-1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process. This variable may be
used for low-level addressing purposes.

ulLen UINT32 4 Packet Data Length (In Bytes)

ulId UINT32 0 ... 232-1 Packet Identification As Unique Number

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x00001A44 EIP_OBJECT_REGISTER_SERVICE_REQ - Command /

Response

ulExt UINT32 Reserved

ulRout UINT32 Routing Information

tData - structure EIP_OBJECT_REGISTER_SERVICE_REQ_T

ulService UINT32 Vendor specific service code (see Table 93)

Table 114: EIP_OBJECT_READY_REQ - Register Service

The Application Interface 170/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Structure Reference

 struct EIP_OBJECT_PACKET_REGISTER_SERVICE_CNF_Ttag

 {

 TLR_PACKET_HEADER_T tHead;

 };

Packet Description

Structure EIP_OBJECT_PACKET_REGISTER_SERVICE_CNF_T Type: Confirmation

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 See rules in
section 3.2.1

Destination Queue Handle

ulSrc UINT32 See rules in
section 3.2.1

Source Queue Handle

ulDestId UINT32 See rules in
section 3.2.1

Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.

ulSrcId UINT32 See rules in
section 3.2.1

Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 0 Packet Data Length (In Bytes)

ulId UINT32 0 ... 232-1 Packet Identification As Unique Number

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x00001A45 EIP_OBJECT_REGISTER_SERVICE_CNF - Command /

Response

ulExt UINT32 Reserved

ulRout UINT32 Routing Information

Table 115: EIP_OBJECT_READY_CNF – Confirmation Command for Register Service Request

The Application Interface 171/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

6.2.12 EIP_OBJECT_CONNECTION_CONFIG_IND/RES – Indication of

Configuration Data received during Connection Establishment

This indication will be received by the host application when the device receives a Forward_Open

frame that addresses a previously registered configuration assembly instance (for more information

see section Implicit Messaging on page 32).

Note: This indication will not be received by the host application in case the parameter

EIP_OBJECT_PRM_FWRD_OPEN_CLOSE_FORWARDING is set (see 6.2.14

EIP_OBJECT_SET_PARAMETER_REQ/CNF – Set Parameter for more information).

The configuration assembly instance can be registered using the packet

EIP_OBJECT_AS_REGISTER_REQ/CNF – Register a new Assembly Instance (see section 6.2.5

on page 141).

A common use case could is that the host application needs additional configuration that must be

set by the Scanner (PLC). So the PLC can send configuration data within the so called

Forward_Open Message. The host application then has the possibility to make arrangements

according to that configuration data. If the data holds invalid values or there is not enough or less

data received, it is also possible to reject the connection by sending an appropriate error within the

response packet.

The content and size of the configuration data is not specified within the CIP specification and can

completely be defined by the user (maximum size is 400 bytes).

The parameters of the indication packet have the following meaning:

 ulConnectionId

This variable contains the connection handle that is used by the protocol stack and must not

be changed, when sending the response packet to the stack.

 tConnectionTriad

This variable contains the Connection Triad that was received with the ForwardOpen

request. The “Connection Triad” used in the Connection Manager specification relates to the

combination of Connection Serial Number, Originator Vendor ID and Originator Serial

Number parameters. In addition, this field holds the variable fConnectionTriadMatch, which

indicates whether the Connection Triad matches an existing connection. This is only relevant

to devices that support the NULL-ForwardOpen service (see section Using the Null Forward

Open Feature on page 258).

 ulOTParameter

This variable contains the connection parameter for the originator-to-target direction of the

connection. It follows the rules for network connection parameters as specified in section

3-5.5.1.1 „Network Connection Parameters“ of the document “The CIP Networks Library,

Volume 1” (reference #3).

Bits 31-16 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bits 8-0

Reserved Redundant

Owner

Connection Type Reserved Priority Fixed

/Variable

Connection Size

(in bytes)

 ulOTRpi

This variable contains the requested packet interval (RPI) for the originator-to-target direction

of the connection. The time is specified in microseconds.

The Application Interface 172/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

 ulOTConnPoint

This variable contains the connection point for originator-to-target direction. It should match

one of the input assembly instances (flag EIP_AS_FLAG_READONLY set) that were

registered during the configuration process.

 ulTOParameter

Similarly to ulOTParameter, this variable contains the connection parameter for the target-

to-originator direction of the connection. It also follows the rules for network connection

parameters as specified in section 3-5.5.1.1 „Network Connection Parameters“ of the “The

CIP Networks Library, Volume 1” document (reference #3) which are explained above at

variable ulOTParameter.

 ulTORpi

This variable contains the requested packet interval for the target-to-originator direction.

The time is specified in microseconds.

 ulTOConnPoint

This variable contains the connection point for the target-to-originator direction. It should

match one of the input assembly instances (flag EIP_AS_FLAG_READONLY not set) that

were registered during the configuration process.

 ulCfgConnPoint

This variable contains the connection point for the configuration data. It should match one of

the configuration assembly instances (flag EIP_AS_FLAG_CONFIG set) that were registered

during the configuration process.

 abData

This byte array includes the configuration data. The size of the data is included in the field

ulLen in the packet header.

And below display a sequence diagram for the EIP_OBJECT_CONNECTION_CONFIG_IND/RES

packet in case the host application uses the Extended or Stack Packet Set (see 4.3 “Configuration

Using the Packet API”).

The Application Interface 173/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Figure 40: Sequence Diagram for the EIP_OBJECT_CONNECTION_CONFIG_IND/RES Packet for the Extended Packet

Set

Figure 41: Sequence Diagram for the EIP_OBJECT_CONNECTION_CONFIG_IND/RES Packet for the Stack Packet Set

The Application Interface 174/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Structure Reference

typedef struct EIP_OBJECT_CONNECTION_TRIAD_Ttag

{

 /* Connection Triad */

 TLR_UINT16 usConnectionSerialNumber; /*!< Connection serial number from

 ForwardOpen frame */

 TLR_UINT16 usOriginatorVendorId; /*!< Originator device vendor ID

 from ForwardOpen frame */

 TLR_UINT32 ulOriginatorSerialNumber; /*!< Originator device serial number

 from ForwardOpen frame */

 TLR_BOOLEAN32 fConnectionTriadMatch; /*!< Indicates, whether the above connection triad

 matches an existing connection.

 For non NULL-ForwardOpen requests:

 - always false

 For NULL-ForwardOpen requests:

 - false, if (Connection Triad DOES NOT match)

 i.e. NULL-ForwardOpen is used to

 configure the application

 - true, if (Connection Triad DOES match)

 i.e. NULL-ForwardOpen is used to

 re-configure the application */

} EIP_OBJECT_CONNECTION_TRIAD_T;

typedef struct EIP_OBJECT_CONNECTION_CONFIG_IND_Ttag

{

 TLR_UINT32 ulConnectionId; /* Connection Handle */

 EIP_OBJECT_CONNECTION_TRIAD_T tConnectionTriad; /* "Connection triad" received with

 ForwardOpen request. */

 TLR_UINT32 ulOTParameter; /* OT Connection Parameter */

 TLR_UINT32 ulOTRpi; /* OT RPI */

 TLR_UINT32 ulOTConnPoint; /* Produced Connection Point */

 TLR_UINT32 ulTOParameter; /* TO Connection Parameter */

 TLR_UINT32 ulTORpi; /* TO RPI */

 TLR_UINT32 ulTOConnPoint; /* Consumed Connection Point */

 TLR_UINT32 ulCfgConnPoint; /* Configuration Connection Point */

 TLR_UINT8 abData[1]; /* First byte of configuration data */

} EIP_OBJECT_CONNECTION_CONFIG_IND_T;

#define EIP_OBJECT_CONNECTION_CONFIG_IND_SIZE

(sizeof(EIP_OBJECT_CONNECTION_CONFIG_IND_T)-1)

typedef struct EIP_OBJECT_PACKET_CONNECTION_CONFIG_IND_Ttag

{

 TLR_PACKET_HEADER_T tHead;

 EIP_OBJECT_CONNECTION_CONFIG_IND_T tData;

} EIP_OBJECT_PACKET_CONNECTION_CONFIG_IND_T;

The Application Interface 175/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Description

Structure EIP_OBJECT_PACKET_CONNECTION_CONFIG_IND_T Type: Indication

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 0, 0x20 Destination Queue-Handle. Set to

0: Destination is operating system rcX

32 (0x20): Destination is the protocol stack

ulSrc UINT32 0 ... 232-1 Source Queue-Handle. Set to:

0: when working with loadable firmware.

Queue handle returned by TLR_QUE_IDENTIFY()}:
when working with loadable firmware.

ulDestId UINT32 0 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.
Set to 0, will not be changed

ulSrcId UINT32 0 ... 232-1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process. This variable may be
used for low-level addressing purposes.

ulLen UINT32 44 + n Packet Data Length (In Bytes);

EIP_OBJECT_CONNECTION_CONFIG_IND_SIZE + n

n = Length of configuration Data

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by
the Source Process of the Packet

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x1A40 EIP_OBJECT_CONNECTION_CONFIG_IND -

Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility
reasons

ulRout UINT32 × Routing, do not change

tData - Structure EIP_OBJECT_CONNECTION_CONFIG_IND_T

ulConnectionId UINT32 Connection Handle

tConnectionTriad EIP_OBJECT_
CONNECTION
_TRIAD_T

 Connection triad and matching info

ulOTParameter UINT32 Bit mask Originator to Target Parameter

ulOTRpi UINT32 Originator to Target RPI

ulOTConnPoint UINT32 Originator to Target Connection Point

ulTOParameter UINT32 Target to Originator Parameter

ulTORpi UINT32 Target to Originator RPI

ulTOConnPoint UINT32 Target to Originator Connection Point

ulCfgConnPoint UINT32 Configuration Connection Point

abData[] UINT8 Configuration Data

Table 116: EIP_OBJECT_CONNECTION_CONFIG_IND – Indicate Configuration Data during Connection Establishment

The Application Interface 176/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Structure Reference

typedef struct EIP_OBJECT_CONNECTION_CONFIG_RES_Ttag

{

 TLR_UINT32 ulConnectionId; /* Connection Handle */

 TLR_UINT32 ulGRC; /* Generic Error Code */

 TLR_UINT32 ulERC; /* Extended Error Code */

 TLR_UINT8 abData[1]; /* Can be used to send Application_Reply data */

} EIP_OBJECT_CONNECTION_CONFIG_RES_T;

#define EIP_OBJECT_CONNECTION_CONFIG_RES_SIZE

(sizeof(EIP_OBJECT_CONNECTION_CONFIG_RES_T)-1)

typedef struct EIP_OBJECT_PACKET_CONNECTION_CONFIG_RES_Ttag

{

 TLR_PACKET_HEADER_T tHead;

 EIP_OBJECT_CONNECTION_CONFIG_RES_T tData;

} EIP_OBJECT_PACKET_CONNECTION_CONFIG_RES_T;

Packet Description

Structure EIP_OBJECT_PACKET_CONNECTION_CONFIG_RES_T Type: Response

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 See rules in
section 3.2.1

Destination Queue-Handle, unchanged

ulSrc UINT32 See rules in
section 3.2.1

Source Queue-Handle, unchanged

ulDestId UINT32 See rules in
section 3.2.1

Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.
Set to 0 for the Initialization Packet

ulSrcId UINT32 See rules in
section 3.2.1

Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 12 + n Packet Data Length (In Bytes);

EIP_OBJECT_CONNECTION_CONFIG_RES_SIZE + n

n = Length of application reply Data

ulId UINT32 0 ... 232-1 Packet Identification, unchanged

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x1A41 EIP_OBJECT_CONNECTION_CONFIG_RES - Command

ulExt UINT32 0 Extension, reserved

ulRout UINT32 × Routing, do not change

The Application Interface 177/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Structure EIP_OBJECT_PACKET_CONNECTION_CONFIG_RES_T Type: Response

tData - Structure EIP_OBJECT_CONNECTION_CONFIG_RES_T

ulConnectionId UINT32 x Unchanged connection handle from indication packet

ulGRC UINT32 General Error Code (specified in the CIP specification
Vol. 1 chapter 3-5.6)

0: success

!= 0: Forward open will be rejected with this status code

Note: if the forward open shall be reject with this error

code, also ulSta in the packet header must be unequal
to 0.

ulERC UINT32 Extended Error Code (specified in the CIP specification
Vol. 1 chapter 3-5.6)

0: Success

!= 0: Forward open will be rejected with this status code

Note: if ulERC is unequal to 0, also ulGRC must be

unequal to 0.

If ulERC is set to something unequal to 0, the below
abData field can additionally be used as extended
status.

abData[] UINT8 If ulSta == 0:

Can be used as “Application Reply Data” that will be
sent with the Forward_Open_Response.
Maximum number of bytes for application reply data
is 254. If more bytes are sent with this packet, the
data will be truncated.

Else:

Can be used as “Extended Status” data that will be
sent with the Forward_Open_Response. The
number of Extended status data bytes must not
exceed 32 bytes. If more bytes are sent with this
packet, the data will be truncated.

Table 117: EIP_OBJECT_CONNECTION_CONFIG_RES – Response command of connection configuration indication

The Application Interface 178/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

6.2.13 EIP_OBJECT_TI_SET_SNN_REQ/CNF – Set the Safety Network

Number for the TCP/IP Interface Object

This service can be used by the host application in order to set the “Safety Network Number”

(Attribute 7) within the TCP/IP Interface Object (0xF5). The Safety Network Number is needed

when using the EtherNet/IP Adapter protocol stack in CIP Safety applications.

Note: The SNN can also be set by addressing attribute 7 of the TCP/IP Interface Object with

the packet EIP_OBJECT_CIP_SERVICE_REQ/CNF – CIP Service Request described

in section 6.2.17 on page 196.

Figure 42 and Figure 43 below display a sequence diagram for the

EIP_OBJECT_TI_SET_SNN_REQ/CNF packet in case the host application uses the Extended or

Stack Packet Set (see 4.3 “Configuration Using the Packet API”).

Figure 42: Sequence Diagram for the EIP_OBJECT_TI_SET_SNN_REQ/CNF Packet for the Extended Packet

Figure 43: Sequence Diagram for the EIP_OBJECT_TI_SET_SNN_REQ/CNF Packet for the Stack Packet

Packet Structure Reference

typedef struct EIP_OBJECT_TI_SET_SNN_REQ_Ttag

{

 TLR_UINT8 abSNN[6];

} EIP_OBJECT_TI_SET_SNN_REQ_T;

typedef struct EIP_OBJECT_TI_PACKET_SET_SNN_REQ_Ttag

{

 TLR_PACKET_HEADER_T tHead;

 EIP_OBJECT_TI_SET_SNN_REQ_T tData;

} EIP_OBJECT_TI_PACKET_SET_SNN_REQ_T;

#define EIP_OBJECT_TI_SET_SNN_REQ_SIZE sizeof(EIP_OBJECT_TI_SET_SNN_REQ_T)

The Application Interface 179/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Description

Structure EIP_OBJECT_TI_PACKET_SET_SNN_REQ_T Type: Request

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 0, 0x20 Destination Queue-Handle. Set to

0: Destination is operating system rcX

32 (0x20): Destination is the protocol stack

ulSrc UINT32 0 ... 232-1 Source Queue-Handle. Set to:

0: when working with loadable firmware.

Queue handle returned by TLR_QUE_IDENTIFY()}:
when working with loadable firmware.

ulDestId UINT32 0 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.

Set to 0, will not be changed

ulSrcId UINT32 0 ... 232-1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process. This variable may be
used for low-level addressing purposes.

ulLen UINT32 6 Packet Data Length (In Bytes);

EIP_OBJECT_TI_SET_SNN_REQ_SIZE

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by
the Source Process of the Packet

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x1AF0 EIP_OBJECT_TI_SET_SNN_REQ - Command

ulExt UINT32 0, 0x20 Destination Queue-Handle. Set to

0: Destination is operating system rcX

32 (0x20): Destination is the protocol stack

ulRout UINT32 0 ... 232-1 Source Queue-Handle. Set to:

0: when working with loadable firmware.

Queue handle returned by TLR_QUE_IDENTIFY()}:
when working with loadable firmware.

tData - structure EIP_OBJECT_TI_SET_SNN_REQ_T

abSNN[6] 6*UINT8 Safety Network Number

Table 118: EIP_OBJECT_TI_SET_SNN_REQ – Set the Safety Network Number of the TCP/IP Interface Object

The Application Interface 180/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Structure Reference

typedef struct EIP_OBJECT_TI_PACKET_SET_SNN_CNF_Ttag

{

 TLR_PACKET_HEADER_T tHead;

} EIP_OBJECT_TI_PACKET_SET_SNN_CNF_T;

#define EIP_OBJECT_TI_SET_SNN_CNF_SIZE 0

Packet Description

Structure EIP_OBJECT_TI_PACKET_SET_SNN_CNF_T Type: Confirmation

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 See rules in
section 3.2.1

Destination Queue Handle

ulSrc UINT32 See rules in
section 3.2.1

Source Queue Handle

ulDestId UINT32 See rules in
section 3.2.1

Destination Queue Reference

ulSrcId UINT32 See rules in
section 3.2.1

Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

EIP_OBJECT_TI_SET_SNN_CNF_SIZE

ulId UINT32 0 ... 232-1 Packet Identification, unchanged

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x1AF1 EIP_OBJECT_TI_SET_SNN_CNF - Command

ulExt UINT32 0 Extension, reserved

ulRout UINT32 × Routing, do not change

Table 119: EIP_OBJECT_TI_SET_SNN_CNF – Confirmation command of set safety network number request

The Application Interface 181/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

6.2.14 EIP_OBJECT_SET_PARAMETER_REQ/CNF – Set Parameter

This packet can be used to activate special options and behavior of the protocol stack.

Table 120 gives an overview of all possible parameters:

Parameter Flags – ulParameterFlags

Bit Description

0 EIP_OBJECT_PRM_FWRD_OPEN_CLOSE_FORWARDING

Enables forwarding of Forward_Open and Forward_Close frames to the user application task.

Forward_Open frames:

If set (1), all Forward_Open frames that address the assembly object will be forwarded to the host application via

the packet EIP_OBJECT_FWD_OPEN_FWD_IND (6.2.21).

Note: If set (1), the host application will no longer received the indication packet

EIP_OBJECT_CONNECTION_CONFIG_IND (6.2.12). If a configuration assembly instance is used, the
configuration data for that assembly instance is part of the Forward_Open frame (included in the connection
path). In that case, the host application is responsible to extract the configuration data out of the Forward_Open
frame.

If not set (0), the Forward_Open will not be forwarded.

Forward_Close frames:

If set (1), all Forward_Close frames that address the assembly object will be forwarded via the packet

EIP_OBJECT_FWD_CLOSE_FWD_IND (6.2.23).

If not set (0), the Forward_Close will not be forwarded.

1 EIP_OBJECT_PRM_APPL_TRIG_NO_RPI

Disables the RPI timer for “Application Object Triggered” and “Change of State” data production.

Using the trigger mechanism "Application Object Triggered" the user application is able to define at what time
the I/O data is being produced on the network. If the host application does not trigger data production within the
RPI time, the data will be produced automatically by the RPI timeout in order to avoid connection timeouts. This
is the behavior the CIP specification describes.

However, some applications need to turn off the mentioned RPI timer to avoid double data production.

If set, the RPI timer will be turned off for all connections using the “Application Object Triggered” or “Change of
State” mechanism.

If not set, the RPI timer is used as described in the CIP specification.

Note: Also have a look at bit 5 (EIP_OBJECT_PRM_SUPPORT_AOT_COS_DATA_PRODUCTION). Using this

enables the host application (LFW only) to trigger IO frames for different connections independent of each other.

2 EIP_OBJECT_PRM_SUPPORT_SNN

This flag enables attribute 7 (Safety Network Number) of the TCP/IP-Interface object as defined in the
EtherNet/IP CIP Specification (Volume 2 Edition 1.9 chapter 5-3.2.2). Additionally, the value of this attribute can

be set using the command EIP_OBJECT_TI_SET_SNN_REQ or EIP_OBJECT_CIP_SERVICE_REQ.

Attribute 7 can also be activated using the packet EIP_OBJECT_CIP_OBJECT_ATTRIBUTE_ACTIVATE_REQ.

Note: Activation of the SSN implicitly deactivates the support of the identity object’s reset service. All reset

services that address the Identity Object will then be rejected with general status code 0x08 (Service not
supported).

3 EIP_OBJECT_PRM_ACTIVATE_IDENTITY_RESET_TYPE_1

This flag enables the additional reset type 1 of the identity object reset service (for more information see section

6.2.8 “EIP_OBJECT_RESET_IND/RES – Indication of a Reset Request from the network” on page 157).

The default reset type is 0.

Default type 0: This type is supported as default. It emulate as closely as possible cycling power.

Additional type 1: Return as closely as possible to the factory default configuration. Then, emulate cycling

power as closely as possible.

Note: Reset type 1 is only possible when configuration is not done via data base and there is a registered

application available. The host application needs to handle this type of reset by itself (setting configuration back
to factory default). The application can determine the requested reset type within the

EIP_OBJECT_RESET_IND packet in the field ulResetTyp.

The Application Interface 182/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Bit Description

4 EIP_OBJECT_PRM_HARDWARE_CONFIGURABLE

This flag affects attribute #2 of the TCP/IP Interface object (class ID 0xF5)

If set (1), the hardware configurable flag within this attribute is set. If not set, the hardware configurable flag
within this attribute is not set.

5 EIP_OBJECT_PRM_SUPPORT_AOT_COS_DATA_PRODUCTION

This flag enables the "Change of State" (COS) and "Application Object Trigger" (AOT) feature.

It allows the host application to trigger the sending of output assemnbly data for different COS/AOT connections
independently of each other (see 6.2.14.1 “Handling of connections of type “Application Object Trigger” or
“Change of State””).

Note: if this feature is used, make sure to first send this SET_PARAMETER_REQ and afterwards register all

assembly instances at the stack.

6 Reserved

7 EIP_OBJECT_PRM_FORWARD_CIP_SERVICE_FOR_UNKNOWN_ASSEMBLY_TO_HOST

Setting this flag the host application will receive all CIP service request to assembly instances that are not
registered (indication is done using command EIP_OBJECT_CL3_SERVICE_IND).

8 EIP_OBJECT_PRM_NULL_FORWARD_OPEN_SUPPORT

Activates/Deactivates the support of the NULL-ForwardOpen feature (see also 9.5.3 “Using the Null Forward
Open Feature”).
If set (1), the NULL-ForwardOpen feature is activated.
If not set (0), the NULL-ForwardOpen feature is deactivated.

9 EIP_OBJECT_PRM_APPLICATION_CONTROLS_IDENTITY_STATE_ATTRIBUTE

If set (1), the state attribute 8 of the Identity object must be controlled by the host application.

If not set (0), the state attribute 8 of the Identity object is controlled by the EtherNet/IP stack itself (default).

Note: Care must be taken when using this functionality. Usually, this is not necessary to activate this, but there

are types of applications that might require write access to this attribute (e.g. CIP Safety applications). When
enabling write access, the EtherNet/IP stack does not handle this attribute anymore. The application is
responsible of providing the correct attribute values depending on the current device state.

Note: The designer of the application must decide whether or not it needs this feature. Enabling and after some

time disabling the write access must be avoided as this might lead to invalid state attribute values.

Note: When using this functionality, the host application has additionally to care about the current module status

of the device (module status LED). The host application must send the packet

EIP_APS_SET_MODULE_STATUS_REQ in order to control the module status LED. The firmware will not control

the moduel status LED as soon as this functionality is activated.

10 -
31

Reserved

Must be set to 0

Table 120: EIP_OBJECT_SET_PARAMETER_REQ – Flags

Figure 44 and Figure 45 below display a sequence diagram for the

EIP_OBJECT_SET_PARAMETER_REQ/CNF packet in case the host application uses the Extended

or Stack Packet Set (see 4.3 “Configuration Using the Packet API”).

Figure 44: Sequence Diagram for the EIP_OBJECT_SET_PARAMETER_REQ/CNF Packet for the Extended Packet

The Application Interface 183/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Figure 45: Sequence Diagram for the EIP_OBJECT_SET_PARAMETER_REQ/CNF Packet for the Stack Packet

Packet Structure Reference

#define EIP_OBJECT_PRM_FWRD_OPEN_CLOSE_FORWARDING 0x00000001

#define EIP_OBJECT_PRM_APPL_TRIG_NO_RPI 0x00000002

#define EIP_OBJECT_PRM_SUPPORT_SNN 0x00000004

#define EIP_OBJECT_PRM_ACTIVATE_IDENTITY_RESET_TYPE_1 0x00000008

#define EIP_OBJECT_PRM_HARDWARE_CONFIGURABLE 0x00000010

#define EIP_OBJECT_PRM_SUPPORT_AOT_COS_DATA_PRODUCTION 0x00000020

#define EIP_OBJECT_PRM_FORWARD_CIP_SERVICE_FOR_UNKNOWN_ASSEMBLY_TO_HOST 0x00000080

 typedef struct EIP_OBJECT_SET_PARAMETER_REQ_Ttag

 {

 TLR_UINT32 ulParameterFlags;

 } EIP_OBJECT_SET_PARAMETER_REQ_T;

 #define EIP_OBJECT_SET_PARAMETER_REQ_SIZE

sizeof(EIP_OBJECT_SET_PARAMETER_REQ_T)

 typedef struct EIP_OBJECT_PACKET_SET_PARAMETER_REQ_Ttag

 {

 TLR_PACKET_HEADER_T tHead;

 EIP_OBJECT_SET_PARAMETER_REQ_T tData;

 }EIP_OBJECT_PACKET_SET_PARAMETER_REQ_T;

The Application Interface 184/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Description

Structure EIP_OBJECT_PACKET_SET_PARAMETER_REQ_T Type: Request

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 0x20/

DPMINTF_QUE
Destination Queue Handle

ulSrc UINT32 0 ... 232-1 Source Queue Handle

ulDestId UINT32 See rules in
section 3.2.1

Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.
Set to 0 for the Initialization Packet

ulSrcId UINT32 See rules in
section 3.2.1

Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 4 EIP_OBJECT_SET_PARAMETER_REQ_SIZE

Packet Data Length (In Bytes)

ulId UINT32
0 ... 232-1 Packet Identification As Unique Number

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x00001AF2 EIP_OBJECT_SET_PARAMETER_REQ – Command

ulExt UINT32 Reserved

ulRout UINT32 Routing Information

tData - structure EIP_OBJECT_SET_PARAMETER_REQ_T

ulParameterFlags UINT32 See Table 120:
EIP_OBJECT_SET_PARAMETER_REQ –

Table 121: EIP_OBJECT_SET_PARAMETER_REQ – Set Parameter Request Packet

The Application Interface 185/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Structure Reference

 typedef struct EIP_OBJECT_PACKET_SET_PARAMETER_CNF_Ttag

 {

 TLR_PACKET_HEADER_T tHead;

 } EIP_OBJECT_PACKET_SET_PARAMETER_CNF_T;

#define EIP_OBJECT_SET_PARAMETER_CNF_SIZE 0

Packet Description

Structure EIP OBJECT_PACKET_SET_PARAMETER_CNF_T Type: Confirmation

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 See rules in
section 3.2.1

Destination Queue Handle

ulSrc UINT32 See rules in
section 3.2.1

Source Queue Handle

ulDestId UINT32 See rules in
section 3.2.1

Destination Queue Reference

ulSrcId UINT32 See rules in
section 3.2.1

Source Queue Reference

ulLen UINT32 0 EIP_OBJECT_SET_PARAMETER_CNF_SIZE

Packet Data Length (In Bytes)

ulId UINT32 Packet Identification As Unique Number

ulSta UINT32 See Table 5: EIP_OBJECT_SET_PARAMETER_CNF
– Packet Status/Error

ulCmd UINT32 0x00001AF3 EIP_OBJECT_SET_PARAMETER_CNF– Command

ulExt UINT32 Reserved

ulRout UINT32 Routing Information

Table 122: EIP_OBJECT_SET_PARAMETER_CNF – Set Parameter Confirmation Packet

Packet Status/Error

Definition / (Value) Description

TLR_S_OK
(0x00000000)

Status ok

TLR_E_INVALID_PARAMETER
(0xC0000009)

Invalid Parameter Flag

Table 123: EIP_OBJECT_SET_PARAMETER_CNF – Packet Status/Error

The Application Interface 186/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

6.2.14.1 Handling of connections of type “Application Object Trigger” or
“Change of State”

Usually, the sending of process data messages is completely managed by the protocol stack. The

protocol stack sends process data messages according to the configured RPI (Request Packet

Rate) that is negotiated during connection establishment. This interval is handled by the internal

“Transmission Trigger Timer” of the protocol stack. This applies to all connection trigger types

(cyclic, change of state (COS) and application object triggered (AOT)).

In case, the connection trigger type is AOT or COS, the host application can additionally influence

the sending of process data messages. Every time the host application updates the output process

data, the protocol stack sends a process data message right away independent of the transmission

trigger timer’s state.

This requires that the host application can update the process data of different connections

independently of each other. In the LOM use case (Linkable Object Module, see 4.3 “Configuration

Using the Packet API”), this is easily possible as the connection’s process data is updated for each

assembly instance separately anyway. In the LFW use case this is not easily possible as the host

application provides all output process data (assembly instance data) at once to the protocol stack

via the DPM’s output data area (see [1]). Therefore, the following only applies to the LFW use

case.

In order to be able to update the output process data for different assembly instances separately

via the DPM, the parameter EIP_OBJECT_PRM_SUPPORT_AOT_COS_DATA_PRODUCTION must

be configured (see 6.2.14).

Figure 46 illustrates the DPM area for registered assemblies in case the flag

EIP_OBJECT_PRM_SUPPORT_AOT_COS_DATA_PRODUCTION is not set. All assembly instances

are registered by the host application. So, the information about size and offset of each assembly

instance within the DPM is known (also see 6.2.5 “EIP_OBJECT_AS_REGISTER_REQ/CNF –

Register a new Assembly Instance”).

Figure 46: DPM output area for EtherNet/IP, AOT and COS data production not enabled.

When setting flag EIP_OBJECT_PRM_SUPPORT_AOT_COS_DATA_PRODUCTION the DPM output

area is extended by an additional “Assembly Update Bit List”. This bit list is always 16 bytes long

and starts right behind the last assembly instance data at a 32-bit aligned offset (Figure 47).

The Application Interface 187/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Figure 47: DPM output area for EtherNet/IP, AOT and COS data production enabled.

Each bit of this bit field corresponds to exactly one assembly instance data. The mapping of

assembly instance data to the bits wthin the bist list is done by taking the order of the assembly

instances in the area into acaount.

Assem100 Bitfield[0][0]

Assem101 Bitfield[0][1]

Assem102 Bitfield[0][2]

Assem103 Bitfield[0][3]

In order to trigger an output process data message for a specific assembly instance that is

participating in a connection of type AOT or COS, the host application now has to set (‘1’) the

corresponding bit in the bit field when writing the output image. In order not to trigger the IO

message, the host application has to clear (‘0’) the corresponding bit. This applies only to

assembly instances that are used in a AOT or COS connection. The message triggering of all other

assemblies (that are not of type “AOT” or “COS”) is done by the protocol stack corresponding to

the connection’s RPI interval as described above. So the bit field does not influence assembly

instances that are used in a connection of type “cyclic”.

The originator (e.g. PLC) of a specific connection defines the the trigger type (Cyclic, AOT, COS),

that shall be used. Therefore, the trigger type can change during runtime. The information about

the currently used trigger type is indicated to the host application during connection establishment

via the packet EIP_OBJECT_CONNECTION_IND (0x00001A2E). This way the host application

knows for which assembly instances it must handle the corresponding bits within the update bit list.

The Application Interface 188/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

6.2.15 EIP_OBJECT_AS_TRIGGER_TYPE_IND/RES – Indication of the

currently used trigger type

This indication notifies the host application of the trigger type of the connection that a particular

assembly instance is currently participating in. This indication is sent by the protocol stack only if

the parameter EIP_OBJECT_PRM_SUPPORT_AOT_COS_DATA_PRODUCTION was set in advance

(see section EIP_OBJECT_SET_PARAMETER_REQ/CNF – Set Parameter on page 181). Trigger

type indications are only sent for assembly instances used for data production (output / T2O).

Figure 48 below displays a sequence diagram for the EIP_OBJECT_AS_TRIGGER_TYPE_IND

packet.

Figure 48: Sequence Diagram for the EIP_OBJECT_AS_TRIGGER_TYPE_IND/RES Packet

The Application Interface 189/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Structure Reference

#define EIP_AS_TRIGGER_TYPE_CYCLIC 0x00000001

#define EIP_AS_TRIGGER_TYPE_CHANGE_OF_STATE 0x00000002

#define EIP_AS_TRIGGER_TYPE_APPL_OBJ_TRIGGERED 0x00000003

typedef struct EIP_OBJECT_AS_TRIGGER_TYPE_IND_Ttag

{

 TLR_UINT32 ulInstance;

 TLR_UINT32 ulDPMOffset;

 TLR_UINT32 ulSize;

 TLR_UINT32 ulFlags;

 TLR_UINT32 ulTriggerType;

} EIP_OBJECT_AS_TRIGGER_TYPE_IND_T;

typedef struct EIP_OBJECT_PACKET_AS_TRIGGER_TYPE_IND_Ttag

{

 TLR_PACKET_HEADER_T tHead;

 EIP_OBJECT_AS_TRIGGER_TYPE_IND_T tData;

}EIP_OBJECT_PACKET_AS_TRIGGER_TYPE_IND_T;

#define EIP_OBJECT_AS_TRIGGER_TYPE_IND_SIZE sizeof(EIP_OBJECT_AS_TRIGGER_TYPE_IND_T)

The Application Interface 190/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Description

Structure EIP_OBJECT_PACKET_AS_TRIGGER_TYPE_IND_T Type: Indication

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination Queue-Handle. Set to

0: Destination is operating system rcX

32 (0x20): Destination is the protocol stack

ulSrc UINT32 Source Queue-Handle. Set to:

0: when working with loadable firmware.

Queue handle returned by TLR_QUE_IDENTIFY():
when working with loadable firmware.

ulDestId UINT32 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.

Set to 0, will not be changed

ulSrcId UINT32 Source End Point Identifier, specifying the origin of the
packet inside the Source Process. This variable may be
used for low-level addressing purposes.

ulLen UINT32 20 Packet Data Length (In Bytes)

ulId UINT32 0 ... 232-1 Packet Identification As Unique Number

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x00001AFE EIP_OBJECT_AS_TRIGGER_TYPE_IND - Command /

Response

ulExt UINT32 Reserved

ulRout UINT32 Routing Information

tData - structure EIP_OBJECT_AS_TRIGGER_TYPE_IND_T

ulInstance UINT32 CIP assembly instance number

ulDPMOffset UINT32 DPM Offset of the assembly instance

ulSize UINT32 Size of assembly instance in number of bytes

ulFlags UINT32 Assembly flags as provided when instance was
registered

ulTriggerType UINT32 Tigger type currently used for this assembly instance

Table 124: EIP_OBJECT_AS_TRIGGER_TYPE_IND – Assembly Trigger Type Indication

The Application Interface 191/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Structure Reference

typedef struct EIP_OBJECT_PACKET_AS_TRIGGER_TYPE_RES_Ttag

{

 TLR_PACKET_HEADER_T tHead;

} EIP_OBJECT_PACKET_AS_TRIGGER_TYPE_RES_T;

Packet Description

Structure EIP_OBJECT_PACKET_AS_TRIGGER_TYPE_RES_T Type: Response

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 See rules in
section 3.2.1

Destination Queue Handle

ulSrc UINT32 See rules in
section 3.2.1

Source Queue Handle

ulDestId UINT32 See rules in
section 3.2.1

Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.

ulSrcId UINT32 See rules in
section 3.2.1

Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 0 Packet Data Length (In Bytes)

ulId UINT32 0 ... 232-1 Packet Identification As Unique Number

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x00001AFF EIP_OBJECT_AS_TRIGGER_TYPE_RES – Response

ulExt UINT32 Reserved

ulRout UINT32 Routing Information

Table 125: EIP_OBJECT_AS_TRIGGER_TYPE_RES – Assembly Trigger Type Response

The Application Interface 192/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

6.2.16 EIP_OBJECT_CFG_QOS_REQ/CNF – Configure the QoS Object

This packet can be sent by the host application in order to activate and configure the Quality of

Service (QoS) object (Class ID 0x48) within the EtherNet/IP Adapter protocol stack.

Important: Sending this packet is mandatory if you want to use DLR in your EtherNet/IP

application.

Important: This packet must always be send before sending the packet

TCPIP_IP_CMD_SET_CONFIG_REQ.

Figure 49 and Figure 50 below display a sequence diagram for the

EIP_OBJECT_CFG_QOS_REQ/CNF packet in case the host application uses the Extended or Stack

Packet Set (see 4.3 “Configuration Using the Packet API”).

Figure 49: Sequence Diagram for the EIP_OBJECT_CFG_QOS_REQ/CNF Packet for the Extended Packet Set

Figure 50: Sequence Diagram for the EIP_OBJECT_CFG_QOS_REQ/CNF Packet for the Stack Packet Set

The Application Interface 193/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Structure Reference

#define EIP_OBJECT_QOS_FLAGS_ENABLE 0x00000001

#define EIP_OBJECT_QOS_FLAGS_DEFAULT 0x00000002

#define EIP_OBJECT_QOS_FLAGS_DISABLE_802_1Q 0x00000004

typedef struct EIP_OBJECT_CFG_QOS_REQ_Ttag

{

 TLR_UINT32 ulQoSFlags;

 TLR_UINT8 bTag802Enable;

 TLR_UINT8 bDSCP_PTP_Event;

 TLR_UINT8 bDSCP_PTP_General;

 TLR_UINT8 bDSCP_Urgent;

 TLR_UINT8 bDSCP_Scheduled;

 TLR_UINT8 bDSCP_High;

 TLR_UINT8 bDSCP_Low;

 TLR_UINT8 bDSCP_Explicit;

} EIP_OBJECT_CFG_QOS_REQ_T;

/* command for register a new object to the message router */

typedef struct EIP_OBJECT_PACKET_CFG_QOS_REQ_Ttag

{

 TLR_PACKET_HEADER_T tHead;

 EIP_OBJECT_CFG_QOS_REQ_T tData;

} EIP_OBJECT_PACKET_CFG_QOS_REQ_T;

#define EIP_OBJECT_CFG_QOS_REQ_SIZE sizeof(EIP_OBJECT_CFG_QOS_REQ_T)

The Application Interface 194/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Description

Structure EIP_OBJECT_PACKET_CFG_QOS_REQ_T Type: Request

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 0x20 Destination Queue Handle

ulSrc UINT32 0 ... 232-1 Source Queue Handle

ulDestId UINT32 See rules in
section 3.2.1

Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.
Set to 0 for the Initialization Packet

ulSrcId UINT32 See rules in
section 3.2.1

Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 12 EIP_OBJECT_CFG_QOS_REQ_SIZE

Packet Data Length (In Bytes)

ulId UINT32
0 ... 232-1 Packet Identification As Unique Number

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x00001A42 EIP_OBJECT_CFG_QOS_REQ – Command

ulExt UINT32 Reserved

ulRout UINT32 Routing Information

tData - Structure EIP_OBJECT_CFG_QOS_REQ_T

ulQoSFlags UINT32 0…7 Enables or disables sending 802.1Q frames on CIP
messages

Bit 0: (EIP_OBJECT_QOS_FLAGS_ENABLE)

Activates the QoS object

Bit 1: (EIP_OBJECT_QOS_FLAGS_DEFAULT)

DO NOT USE, DEPRECATED!!!

Bit 2:

(EIP_OBJECT_QOS_FLAGS_DISABLE_802_1Q)

If set (1), the stack deactivates attribute 1 of the QoS
object. So, the 802.1q functionality (VLAN tagging) will
not be supported.

bTag802Enable UINT8 0,1 Enables or disables sending 802.1Q frames on CIP
messages

0: 802.1Q is disabled (default)
1: 802.1Q is enabled

bDSCP_PTP_Event UINT8 0 Not used

bDSCP_PTP_General UINT8 0 Not used

bDSCP_Urgent UINT8 0…63 DSCP value for CIP transport class 0/1 Urgent priority
messages

Default: 55

bDSCP_Scheduled UINT8 0…63 DSCP value for CIP transport class 0/1 Scheduled
priority messages

Default: 47

bDSCP_High UINT8 0…63 DSCP value for CIP transport class 0/1 High priority
messages

Default: 43

The Application Interface 195/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Structure EIP_OBJECT_PACKET_CFG_QOS_REQ_T Type: Request

bDSCP_Low UINT8 0…63 DSCP value for CIP transport class 0/1 low priority
messages

Default: 31

bDSCP_Explicit UINT8 0…63 DSCP value for CIP explicit messages (messages with
transport class 2/3 and UCMM messages)

Default: 27

Table 126: EIP_OBJECT_CFG_QOS_REQ – Enable Quality of Service Object

Packet Structure Reference

typedef struct EIP_OBJECT_PACKET_CFG_QOS_CNF_Ttag

{

 TLR_PACKET_HEADER_T tHead;

} EIP_OBJECT_PACKET_CFG_QOS_CNF_T;

#define EIP_OBJECT_CFG_QOS_CNF_SIZE 0

Packet Description

Structure EIP OBJECT_PACKET_CFG_QOS_CNF_T Type: Confirmation

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 See rules in
section 3.2.1

Destination Queue Handle

ulSrc UINT32 See rules in
section 3.2.1

Source Queue Handle

ulDestId UINT32 See rules in
section 3.2.1

Destination Queue Reference

ulSrcId UINT32 See rules in
section 3.2.1

Source Queue Reference

ulLen UINT32 0 EIP_OBJECT_CFG_QOS_CNF_SIZE

Packet Data Length (In Bytes)

ulId UINT32 Packet Identification As Unique Number

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x00001A43 EIP_OBJECT_CFG_QOS_CNF – Response

ulExt UINT32 Reserved

ulRout UINT32 Routing Information

Table 127: EIP_OBJECT_CFG_QOS_CNF – Confirmation Command for Unregister Application

The Application Interface 196/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

6.2.17 EIP_OBJECT_CIP_SERVICE_REQ/CNF – CIP Service Request

This packet can be used to access a CIP object within the EtherNet/IP Stack.The service to be

performed is selected by setting the parameter ulService of the request packet. What attributes

of an object can be accessed and what services are available for the objects please see section 3

"Available CIP Classes in the Hilscher EtherNet/IP Stack”.

For a list of applicable service codes, see Table 10: Service Codes according to the CIP

specification on page 24.

The class and the instance of the object to be accessed are selected by the variables ulClass

and ulInstance of the request packet. In case the requested service will affect an attribute (e.g.

services Get_Attribute_Single and Set_Attribute_Single), this attribute is selected by

variable ulAttribute of the request packet. Set ulAttribute to 0 when selection of an

attribute is not necessary.

If data need to be sent along with the service, this can be achieved by using the array abData[].

The length of data in abData[] must then be added to the ulLen field of the packet header.

The result of the service is delivered in the fields ulGRC (Generic Error Code) and ulERC

(Additional Error Code) of the confirmation packet (see Table 128).

If there is data received along with the confirmation this can be found in the array abData[].The

ulLen field of the packet header then shows how many bytes are valid within the array.

In case of successful execution, the variables ulGRC and ulERC of the confirmation packet will

have the value 0. Usually, in case of an error only the Generic Error Code of the confirmation

packet is unequal to 0. Table 128 shows possible GRC values and their meaning.

ulGRC

ulGRC Signification

0 No error

2 Resources unavailable

8 Service not available

9 Invalid attribute value

11 Already in request mode

12 Object state conflict

14 Attribute not settable

15 A permission check failed

16 State conflict, device state prohibits the command execution

19 Not enough data received

20 Attribute not supported

21 Too much data received

22 Object does not exist

23 Reply data too large, internal buffer to small

Table 128: Generic Error (Variable ulGRC)

Figure 51 and Figure 52 below display a sequence diagram for the

EIP_OBJECT_CIP_SERVICE_REQ/CNF packet: in case the host application uses the Basic,

Extended or Stack Packet Set (see 4.3 “Configuration Using the Packet API”).

The Application Interface 197/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Figure 51: Sequence Diagram for the EIP_OBJECT_CIP_SERVICE_REQ/CNF Packet for the Basic and Extended

Packet Set

Figure 52: Sequence Diagram for the EIP_OBJECT_CIP_SERVICE_REQ/CNF Packet for the Stack Packet Set

Packet Structure Reference

#define EIP_OBJECT_CIP_SERVICE_MAX_PACKET_LEN 1520 /*!< Maximum packet length */

typedef struct EIP_OBJECT_CIP_SERVICE_REQ_Ttag

{

 TLR_UINT32 ulService; /*!< CIP service code */

 TLR_UINT32 ulClass; /*!< CIP class ID */

 TLR_UINT32 ulInstance; /*!< CIP instance number */

 TLR_UINT32 ulAttribute; /*!< CIP attribute number */

 TLR_UINT8 abData[EIP_OBJECT_CIP_SERVICE_MAX_PACKET_LEN]; /*!< CIP Service Data.

} EIP_OBJECT_CIP_SERVICE_REQ_T;

typedef struct EIP_OBJECT_PACKET_CIP_SERVICE_REQ_Ttag

{

 TLR_PACKET_HEADER_T tHead;

 EIP_OBJECT_CIP_SERVICE_REQ_T tData;

} EIP_OBJECT_PACKET_CIP_SERVICE_REQ_T;

#define EIP_OBJECT_CIP_SERVICE_REQ_SIZE (sizeof(EIP_OBJECT_CIP_SERVICE_REQ_T) -

EIP_OBJECT_CIP_SERVICE_MAX_PACKET_LEN)

The Application Interface 198/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Description

Structure EIP_OBJECT_PACKET_CIP_SERVICE_REQ_T Type: Request

Variable Type Value / Range Description

tHead - Structure TLR_PACKET_HEADER_T

ulDest UINT32 0x20/

OBJECT_QUE

Destination Queue-Handle. Set to

0: Destination is operating system rcX

32 (0x20): Destination is the protocol stack

ulSrc UINT32 0 ... 232-1 Source Queue-Handle. Set to:

0: when working with loadable firmware.

Queue handle returned by TLR_QUE_IDENTIFY()}: when working
with loadable firmware.

ulDestId UINT32 0 Destination End Point Identifier, specifying the final receiver of the
packet within the Destination Process. Set to 0 for the Initialization
Packet

ulSrcId UINT32 0 ... 232-1 Source End Point Identifier, specifying the origin of the packet inside
the Source Process

ulLen UINT32 16+n Packet Data Length in bytes

n = Length of service data in bytes (see field abData[])

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by the Source
Process of the Packet

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x1AF8 EIP_OBJECT_CIP_SERVICE_REQ - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 x Routing, do not touch

tData - Structure EIP_OBJECT_CIP_SERVICE_REQ_T

ulService UINT32 1-31 CIP Service Code (see Table 10: Service Codes according to the
CIP specification)

ulClass UINT32 Valid Class ID CIP Class ID (according to “The CIP Networks Library, Volume 1
Common Industrial Protocol Specification Chapter 5, Table 5-1.1”)

For available object classes see section 3 “Available CIP Classes in
the Hilscher EtherNet/IP Stack” on page 42.

ulInstance UINT32 Valid Instance
number

CIP Object Instance number.

For available object classes and instances see section 3 “Available
CIP Classes in the Hilscher EtherNet/IP Stack” on page 42.

ulAttribute UINT32 Valid Attribute
number

CIP Attribute number (required for get/set attribute only, otherwise
set it to 0)).

For available object classes and attributes see section 3 “Available
CIP Classes in the Hilscher EtherNet/IP Stack” on page 42.

abData[1520] UINT8[] CIP Service data

Number of bytes n provided in this field must be added to the packet

header length field ulLen.

Do the following to set the proper packet length:
ptReq->tHead.ulLen =

EIP_OBJECT_CIP_SERVICE_REQ_SIZE + n

Table 129: EIP_OBJECT_CIP_SERVICE_REQ – CIP Service Request

The Application Interface 199/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Structure Reference

#define EIP_OBJECT_CIP_SERVICE_MAX_PACKET_LEN 1520 /*!< Maximum packet length */

typedef struct EIP_OBJECT_CIP_SERVICE_CNF_Ttag

{

 TLR_UINT32 ulService; /*!< CIP service code */

 TLR_UINT32 ulClass; /*!< CIP class ID */

 TLR_UINT32 ulInstance; /*!< CIP instance number */

 TLR_UINT32 ulAttribute; /*!< CIP attribute number */

 TLR_UINT32 ulGRC; /*!< Generic Error Code */

 TLR_UINT32 ulERC; /*!< Extended Error Code */

 TLR_UINT8 abData[EIP_OBJECT_CIP_SERVICE_MAX_PACKET_LEN]; /*!< CIP service data.

} EIP_OBJECT_CIP_SERVICE_CNF_T;

typedef struct EIP_OBJECT_PACKET_CIP_SERVICE_CNF_Ttag

{

 TLR_PACKET_HEADER_T tHead;

 EIP_OBJECT_CIP_SERVICE_CNF_T tData;

} EIP_OBJECT_PACKET_CIP_SERVICE_CNF_T;

#define EIP_OBJECT_CIP_SERVICE_CNF_SIZE (sizeof(EIP_OBJECT_CIP_SERVICE_CNF_T)) -

EIP_OBJECT_CIP_SERVICE_MAX_PACKET_LEN

The Application Interface 200/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Description

Structure EIP_OBJECT_PACKET_CIP_SERVICE_CNF_T Type: Confirmation

Variable Type Value / Range Description

tHead - Structure TLR_PACKET_HEADER_T

ulDest UINT32 See rules in
section 3.2.1

Destination Queue Handle

ulSrc UINT32 See rules in
section 3.2.1

Source Queue Handle

ulDestId UINT32 0 Destination End Point Identifier

ulSrcId UINT32 x Source End Point Identifier

ulLen UINT32 24+n Packet Data Length in bytes
n = Length of service data in bytes

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by the Source
Process of the Packet

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x1AF9 EIP_OBJECT_CIP_SERVICE_CNF - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 x Routing, do not touch

tData - Structure EIP_OBJECT_CIP_SERVICE_CNF_T

ulService UINT32 1-31 CIP Service Code (see Table 10: Service Codes according to the CIP
specification)

ulClass UINT32 Valid Class ID CIP Class ID (according to “The CIP Networks Library, Volume 1
Common Industrial Protocol Specification Chapter 5, Table 5-1.1”

ulInstance UINT32 Valid Instance
number

CIP Instance number

ulAttribute UINT32 Valid Attribute
number

CIP Attribute number (for get/set attribute only)

ulGRC UINT32 Generic error code. (according to “The CIP Networks Library, Volume
1 Common Industrial Protocol Specification Chapter 5, Appendix B-1.
Volume 1) (see also Table 128)

ulERC UINT32 Additional error code.

abData[1520] UINT8[] CIP Service data

Number of bytes provided in this field must be calculated using the

packet header length field ulLen.

Do the following to get the data size:

number of bytes provided in abData =

tHead.ulLen - EIP_OBJECT_CIP_SERVICE_REQ_SIZE

Table 130: EIP_OBJECT_CIP_SERVICE_CNF – Confirmation to CIP Service Request

The Application Interface 201/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

6.2.18 EIP_OBJECT_CIP_OBJECT_CHANGE_IND/RES – CIP Object

Change Indication

This indication will be received by the host application when a CIP object attribute is changed/set

by service from the network or internally. Basically, changes to object attributes that are non-

volatile are indicated. Where meaningful, the response to the change/set service will not be sent by

the Protocol Stack until the host application has responded to the change indication.

The new attribute value will be indicated in the service data field of the indication. Whether this

value has already been set as the new attribute value or still is about to be set after the host replies

to the indication depends on the semantics of the attribute.

Object change indications are subject to a timeout value: If the host does not reply within an

interval of 10 seconds after the indication was generated by the Protocol Stack, the causal service

request will be replied to with an error status “embedded service error”.

Figure 53 and Figure 54 below display a sequence diagram for the

EIP_OBJECT_CIP_OBJECT_CHANGE_IND/RES packet in case the host application uses the

Basic, Extended or Stack Packet Set (see 4.3 “Configuration Using the Packet API”).

Figure 53: Sequence Diagram for the EIP_OBJECT_CIP_OBJECT_CHANGE_IND/RES Packet for the Basic and

Extended Packet Set

The Application Interface 202/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Figure 54: Sequence Diagram for the EIP_OBJECT_CIP_OBJECT_CHANGE_IND/RES Packet for the Stack Packet Set

Packet Structure Reference

#define EIP_OBJECT_MAX_PACKET_LEN 1400

typedef struct EIP_OBJECT_CIP_OBJECT_CHANGE_IND_Ttag

{

 TLR_UINT32 ulInfoFlags; /*!< Information flags */

 TLR_UINT32 ulService; /*!< CIP service code */

 TLR_UINT32 ulClass; /*!< CIP class ID */

 TLR_UINT32 ulInstance; /*!< CIP instance number */

 TLR_UINT32 ulAttribute; /*!< CIP attribute number */

 TLR_UINT8 abData[EIP_OBJECT_MAX_PACKET_LEN]; /*!< Service Data */

} EIP_OBJECT_CIP_OBJECT_CHANGE_IND_T;

typedef struct EIP_OBJECT_PACKET_CIP_OBJECT_CHANGE_IND_Ttag

{

 TLR_PACKET_HEADER_T tHead;

 EIP_OBJECT_CIP_OBJECT_CHANGE_IND_T tData;

} EIP_OBJECT_PACKET_CIP_OBJECT_CHANGE_IND_T;

#define EIP_OBJECT_CIP_OBJECT_CHANGE_IND_SIZE (sizeof(EIP_OBJECT_CIP_OBJECT_CHANGE_IND_T) -

EIP_OBJECT_MAX_PACKET_LEN)

The Application Interface 203/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Description

structure EIP_OBJECT_PACKET_CIP_OBJECT_CHANGE_IND_T

Type: Indication

Area Variable Type Value / Range Description

tHead structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination Queue-Handle

ulSrc UINT32 Source Queue-Handle

ulDestId UINT32 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process. Set
to 0 for the Initialization Packet

ulSrcId UINT32 Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 20+n Packet Data Length in bytes
n = Number of bytes in abData[]

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by the
Source Process of the Packet

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x1AFA EIP_OBJECT_CIP_OBJECT_CHANGE_IND -
Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 x Routing, do not touch

tData structure EIP_OBJECT_CIP_OBJECT_CHANGE_IND_T

ulInfoFlags UINT32 0 … 3
(Bit mask)

Information flags

See Table 132

ulService UINT32 0x10 CIP service code (see Table 10: Service Codes
according to the CIP specification)

Currently only the SetAttributeSingle service is used in

this indication.

ulClass UINT32 CIP class ID

ulInstance UINT32 CIP instance number

ulAttribute UINT32 CIP attribute number

abData[] UINT8 Attribute Data

Number of bytes n provided in abData =

tHead.ulLen -

EIP_OBJECT_CIP_OBJECT_CHANGE_IND_SIZE

Table 131: EIP_OBJECT_CIP_OBJECT_CHANGE_IND – CIP Object Change Indication

Information Flags – ulInfoFlags

Bit Description

0 EIP_CIP_OBJECT_CHANGE_FLAG_STORE_REMANENT

Signals that the attached attribute data must be stored in non-volatile memory.

1 EIP_CIP_OBJECT_CHANGE_FLAG_INTERNAL

Signals that the object change was done internally. So no service from the network has triggered the change
indication. E.g.: This flag is used when the IP configuration has been applied the first time on startup.

Table 132: Information Flags – ulInfoFlags

The Application Interface 204/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Structure Reference

typedef struct EIP_OBJECT_PACKET_CIP_OBJECT_CHANGE_RES_Ttag

{

 TLR_PACKET_HEADER_T tHead;

} EIP_OBJECT_PACKET_CIP_OBJECT_CHANGE_RES_T;

#define EIP_OBJECT_CIP_OBJECT_CHANGE_RES_SIZE 0

Packet Description

structure EIP_OBJECT_PACKET_CIP_OBJECT_CHANGE_RES_T

Type: Response

Area Variable Type Value / Range Description

tHead structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination Queue-Handle

ulSrc UINT32 Source Queue-Handle

ulDestId UINT32 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process. Set
to 0 for the Initialization Packet

ulSrcId UINT32 Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 0 Packet Data Length in bytes

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by the
Source Process of the Packet

ulSta UINT32 See chapter Status/Error Codes Overview

ulCmd UINT32 0x1AFB EIP_OBJECT_CIP_OBJECT_CHANGE_RES - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 x Routing, do not touch

Table 133: EIP_OBJECT_CIP_OBJECT_CHANGE_RES – Response to CIP Object Change Indication

The Application Interface 205/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

6.2.19 EIP_OBJECT_CIP_OBJECT_ATTRIBUTE_ACTIVATE_REQ/CNF –

CIP Object Attribute Activate Request

This packet can be sent by the host application in order to activate an optional CIP object attribute

within the EtherNet/IP stack.

The following Table 134 holds a list of all optional CIP Object attributes that can be activated within

the Hilscher EtherNet/IP Stack.

For more information regarding these attributes please have a look at the object description in

section Available CIP Classes in the Hilscher EtherNet/IP Stack on page 42.

Class Instance Attribute

ID Name ID ID Name

0xF5 TCP/IP Interface Object

(Description in section TCP/IP Interface

Object (Class Code: 0xF5) on page 49)

1 7 SNN (Safety Network Number)

Note: Activation of the SSN implicitly

deactivates the support of the identity

object’s reset service. All reset services

that address the Identity Object will

then be rejected with general status

code 0x08 (Service not supported).

8 TTL Value

9 Mcast Config

12 EtherNet/IP Quick Connect

Table 134: Overview of optional CIP objects attributes that can be activated

Figure 55 and Figure 56 below display a sequence diagram for the

EIP_OBJECT_CIP_OBJECT_ATTRIBUTE_ACTIVATE_REQ/CNF packet in case the host

application uses the Extended or Stack Packet Set (see section Configuration Using the Packet

API on page 77).

Figure 55: Sequence Diagram for the EIP_OBJECT_CIP_OBJECT_ATTRIBUTE_ACTIVATE_REQ/CNF Packet for the

Extended Packet Set

The Application Interface 206/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Figure 56: Sequence Diagram for the EIP_OBJECT_CIP_OBJECT_ATTRIBUTE_ACTIVATE_REQ/CNF Packet for the

Stack Packet Set

Packet Structure Reference

typedef struct EIP_OBJECT_CIP_OBJECT_ATTRIBUTE_ACTIVATE_REQ_Ttag

{

 TLR_UINT32 ulEnable; /*!< Specifies activation/deactivation

 0: deactivates attribute

 1: activates attribute */

 TLR_UINT32 ulClass; /*!< CIP class ID */

 TLR_UINT32 ulInstance; /*!< CIP instance number */

 TLR_UINT32 ulAttribute; /*!< CIP attribute number */

}EIP_OBJECT_CIP_OBJECT_ATTRIBUTE_ACTIVATE_REQ_T;

typedef struct EIP_OBJECT_PACKET_CIP_OBJECT_ATTRIBUTE_ACTIVATE_REQ_Ttag

{

 TLR_PACKET_HEADER_T tHead;

 EIP_OBJECT_CIP_OBJECT_ATTRIBUTE_ACTIVATE_REQ_T tData;

} EIP_OBJECT_PACKET_CIP_OBJECT_ATTRIBUTE_ACTIVATE_REQ_T;

#define EIP_OBJECT_CIP_OBJECT_ATTRIBUTE_ACTIVATE_REQ_SIZE

sizeof(EIP_OBJECT_CIP_OBJECT_ATTRIBUTE_ACTIVATE_REQ_T)

The Application Interface 207/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Description

Structure EIP_OBJECT_PACKET_CIP_OBJECT_ATTRIBUTE_ACTIVATE_REQ_T Type: Request

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of application task process
queue

ulSrc UINT32 Source Queue-Handle

ulDestId UINT32 0 Destination End Point Identifier

ulSrcId UINT32 0 ... 232 -1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process.

ulLen UINT32 16 Packet data length in bytes. Depends on number of
parameters

ulId UINT32 0 ... 232 -1 Packet identification as unique number generated by
the source process of the packet

ulSta UINT32 Status not used for request.

ulCmd UINT32 0x1AFC EIP_OBJECT_CIP_OBJECT_ATTRIBUTE_ACTIVATE_

REQ – Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility
reasons

ulRout UINT32 x Routing, do not touch

tData - Structure EIP_OBJECT_CIP_OBJECT_ATTRIBUTE_ACTIVATE_REQ_T

ulEnable UINT32 0,1 Specifies activation/deactivation

0: deactivates attribute

1: activates attribute

ulClass UINT32 Valid Class ID CIP Class ID (according to “The CIP Networks Library,
Volume 1 Common Industrial Protocol Specification
Chapter 5, Table 5-1.1”

For possible values see Table 134.

ulInstance UINT32 Valid Instance
number

CIP Instance number

For possible values see Table 134.

ulAttribute UINT32 Valid Attribute
number

CIP Attribute number (of attribute to be
activated/deactivated)

For possible values see Table 134.

Table 135: EIP_OBJECT_CIP_OBJECT_ATTRIBUT E_ACTIVATE_REQ – Activate/ Deactivate Slave Request

The Application Interface 208/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Structure Reference

typedef struct EIP_OBJECT_PACKET_CIP_OBJECT_ATTRIBUTE_ACTIVATE_CNF_Ttag

{

 TLR_PACKET_HEADER_T tHead;

} EIP_OBJECT_PACKET_CIP_OBJECT_ATTRIBUTE_ACTIVATE_CNF_T;

Packet Description

Structure EIP_OBJECT_PACKET_CIP_OBJECT_ATTRIBUTE_ACTIVATE_CNF_T Type: Confirmation

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of application task process
queue

ulSrc UINT32 Source Queue-Handle

ulDestId UINT32 0 Destination End Point Identifier

ulSrcId UINT32 0 ... 232 -1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process.

ulLen UINT32 0 Packet data length in bytes. Depends on number of
parameters

ulId UINT32 0 ... 232 -1 Packet identification as unique number generated by
the source process of the packet

ulSta UINT32 Status not used for request.

ulCmd UINT32 0x1AFD EIP_OBJECT_CIP_OBJECT_ATTRIBUTE_ACTIVATE_

CNF – Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility
reasons

ulRout UINT32 x Routing, do not touch

Table 136: EIP_OBJECT_CIP_OBJECT_ATTRIBUTE_ACTIVATE_CNF – Confirmation to Activate/ Deactivate Slave

Request

The Application Interface 209/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

6.2.20 RCX_LINK_STATUS_CHANGE_IND/RES – Link Status Change

This indication informs the application about the current Link status. This is informative for the

application. Information from any earlier received Link Status Changed Indication is invalid at this

point of time.

Note: This indication is also sent directly after the host application has registered at the

EtherNet/IP Stack (RCX_REGISTER_APP_REQ – 0x2F10).

Packet Structure Reference

typedef struct RCX_LINK_STATUS_Ttag

{

 TLR_UINT32 ulPort; /*!< Port number\n\n

 \valueRange \n

 0: Port 1 \n

 1: Port 2 */

 TLR_BOOLEAN fIsFullDuplex; /*!< Duplex mode\n\n

 \valueRange \n

 0: Half duplex \n

 1: Full Duplex */

 TLR_BOOLEAN fIsLinkUp; /*!< Link status\n\n

 \valueRange \n

 0: Link is down \n

 1: Link is up */

 TLR_UINT32 ulSpeed; /*!< Port speed\n\n

 \valueRange \n

 0: (No link) \n

 10: 10MBit \n

 100: 100MBit \n */

} RCX_LINK_STATUS_T;

typedef struct RCX_LINK_STATUS_CHANGE_IND_DATA_Ttag

{

 RCX_LINK_STATUS_T atLinkData[2]; /*!< Link status data */

} RCX_LINK_STATUS_CHANGE_IND_DATA_T;

typedef struct RCX_LINK_STATUS_CHANGE_IND_Ttag

{

 TLR_PACKET_HEADER_T tHead;

 RCX_LINK_STATUS_CHANGE_IND_DATA_T tData;

} RCX_LINK_STATUS_CHANGE_IND_T;

#define RCX_LINK_STATUS_CHANGE_IND_SIZE (sizeof(RCX_LINK_STATUS_CHANGE_IND_DATA_T))

Packet Description

Structure RCX_LINK_STATUS_CHANGE_IND_T Type: Indication

Area Variable Type Value /
Range

Description

Head structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of application task process queue

ulSrc UINT32 Source queue handle of AP-task process queue

ulDestId UINT32 0 Destination End Point Identifier not in use, set to zero for
compatibility reasons

ulSrcId UINT32 0 ... 232 -1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 32 Packet data length in bytes

The Application Interface 210/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Structure RCX_LINK_STATUS_CHANGE_IND_T Type: Indication

Area Variable Type Value /
Range

Description

ulId UINT32 0 ... 232 -1 Packet identification as unique number generated by the source
process of the packet

ulSta UINT32 0 Status not in use for indication.

ulCmd UINT32 0x2FA8 RCX_LINK_STATUS_CHANGE_IND-command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 x Routing, do not touch

Data structure RCX_LINK_STATUS_CHANGE_IND_DATA_T

atLinkData[2] RCX_LINK_

STATUS_T
 Link status information for two ports.

If only one port is available, ignore second entry.

Table 137: RCX_LINK_STATUS_CHANGE_IND_T - Link Status Change Indication

structure RCX_LINK_STATUS_T

Area Variable Type Value / Range Description

 ulPort UINT32 0, 1 The port-number this information belongs to.

fIsFullDuplex BOOL32 FALSE (0)

TRUE

Is the established link full Duplex? Only valid if fIsLinkUp is
TRUE.

 fIsLinkUp BOOL32 FALSE (0)

TRUE

Is the link up for this port?

 ulSpeed UINT32 0, 10 or 100 If the link is up, this field contains the speed of the established
link. Possible values are 10 (10 MBit/s), 100 (100MBit/s) and 0
(no link).

Table 138: Structure RCX_LINK_STATUS_CHANGE_IND_DATA_T

Packet Structure Reference

typedef struct RCX_LINK_STATUS_CHANGE_RES_Ttag

{

 TLR_PACKET_HEADER_T tHead;

} RCX_LINK_STATUS_CHANGE_RES_T;

#define RCX_LINK_STATUS_CHANGE_RES_SIZE (0)

The Application Interface 211/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Description

Structure RCX_LINK_STATUS_CHANGE_RES_T Type: Response

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of application task process
queue

ulSrc UINT32 Source Queue-Handle

ulDestId UINT32 0 Destination End Point Identifier

ulSrcId UINT32 0 ... 232 -1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process.

ulLen UINT32 0 Packet data length in bytes. Depends on number of
parameters

ulId UINT32 0 ... 232 -1 Packet identification as unique number generated by
the source process of the packet

ulSta UINT32 Status not used for request.

ulCmd UINT32 0x2FA9 RCX_LINK_STATUS_CHANGE_RES – Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility
reasons

ulRout UINT32 x Routing, do not touch

Table 139: RCX_LINK_STATUS_CHANGE_RES_T - Link Status Change Response

The Application Interface 212/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

6.2.21 EIP_OBJECT_FWD_OPEN_FWD_IND/RES – Indication of a

Forward_Open

Note: This functionality must be enabled by setting the Parameter flag

EIP_OBJECT_PRM_FWRD_OPEN_CLOSE_FORWARDING using command

EIP_OBJECT_SET_PARAMETER_REQ (0x00001AF2).

This indication will be sent to the host application when a Forward_Open request has been
received by the protocol stack from the network. The protocol stack forwards the Forward_Open
request without performing any processing on it. The host application now has the possibility to
check/modify parameters and/or attach “Application Reply“ data (“Application Reply” data will be
sent to the originator by attaching it to the Forward_Open response message).

Upon reception of EIP_OBJECT_FWD_OPEN_FWD_RES, the protocol stack processes the

Forward_Open request data that comes with this response packet. It will be handled as if it came
directly from the network. After checking parameters and initializing corresponding resources the

protocol stack sends the indication EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND to give

feedback to the host application whether or not the connection could be established.

The host application also has the possibility to reject the Forward_Open request right away by

setting the corresponding status field in the EIP_OBJECT_FWD_OPEN_FWD_RES packet.

Please have a look at Figure 57 on page 213 to get an overview about the possible packet
sequences.

To attach “Application Reply” data, just add it at the end of the connection path (abConnPath)

within the Forward_Open data and set the size and offset (ulAppReplyOffset,

ulAppReplySize) correspondingly.

The Application Interface 213/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Figure 57: Packet sequence for Forward_Open forwarding functionality

The Application Interface 214/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Structure Reference

#define EIP_OBJECT_MAX_PACKET_LEN 1400

typedef struct EIP_CM_APP_FWOPEN_IND_Ttag

{

 TLR_UINT8 bPriority;

 TLR_UINT8 bTimeOutTicks;

 TLR_UINT32 ulOTConnID;

 TLR_UINT16 usConnSerialNum;

 TLR_UINT16 usVendorId;

 TLR_UINT32 ulOSerialNum;

 TLR_UINT8 bTimeoutMultiple;

 TLR_UINT8 abReserved1[3];

 TLR_UINT32 ulOTRpi;

 TLR_UINT16 usOTConnParam;

 TLR_UINT32 ulTORpi;

 TLR_UINT16 usTOConnParam;

 TLR_UINT8 bTriggerType;

 TLR_UINT8 bConnPathSize;

 TLR_UINT8 abConnPath[EIP_OBJECT_MAX_PACKET_LEN];

} EIP_CM_APP_FWOPEN_IND_T;

typedef struct EIP_OBJECT_FWD_OPEN_FWD_IND_Ttag

{

 TLR_UINT32 ulRouteMsg;

 TLR_UINT32 aulReserved[4];

 EIP_CM_APP_FWOPEN_IND_T tFwdOpenData;

} EIP_OBJECT_FWD_OPEN_FWD_IND_T;

typedef struct EIP_OBJECT_PACKET_FWD_OPEN_FWD_IND_Ttag

{

 TLR_PACKET_HEADER_T tHead;

 EIP_OBJECT_FWD_OPEN_FWD_IND_T tData;

} EIP_OBJECT_PACKET_FWD_OPEN_FWD_IND_T;

#define EIP_OBJECT_FWD_OPEN_FWD_IND_SIZE sizeof(EIP_OBJECT_FWD_OPEN_FWD_IND_T)\

- EIP_OBJECT_MAX_PACKET_LEN

The Application Interface 215/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Description

Structure EIP_OBJECT_PACKET_FWD_OPEN_FWD_IND_T Type: Indication

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 0x20/

DPMINTF_QUE

Destination Queue-Handle

ulSrc UINT32 0 ... 232-1 Source Queue-Handle

ulDestId UINT32 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process. Set
to 0 for the Initialization Packet

ulSrcId UINT32 Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 52 + n EIP_OBJECT_FWD_OPEN_FWD_IND_SIZE + n - Packet

Data Length in bytes

n: Length of connection path (abConnPath) in bytes

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by the
Source Process of the Packet

ulSta UINT32 Status

ulCmd UINT32 0x1A4A EIP_OBJECT_FWD_OPEN_FWD_IND - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 x Routing, do not touch

tData - Structure EIP_OBJECT_FWD_OPEN_FWD_IND_T

ulRouteMsg TLR_UINT32 Link to remember underlying encapsulation request (must
not be modified by app)

aulReserved[4] TLR_UINT32 Place holder to be filled by response parameters, see
EIP_OBJECT_FWD_OPEN_FWD_RES_T

tFwdOpenData EIP_CM_APP_FW

OPEN_IND_T

 Forward Open data (See Table 141)

Table 140:EIP_OBJECT_FWD_OPEN_FWD_IND – Forward_Open indication

The Application Interface 216/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Structure EIP_CM_APP_ FWOPEN_IND_T

 Description

bPriority TLR_UINT8 Used to calculate request timeout information

bTimeOutTicks TLR_UINT8 Used to calculate request timeout information

ulOTConnID TLR_UINT32 Network connection ID originator to target

ulTOConnID TLR_UINT32 Network connection ID target to originator

usConnSerialNum TLR_UINT16 Connection serial number

usVendorId TLR_UINT16 Originator Vendor ID

ulOSerialNum TLR_UINT32 Originator serial number

bTimeoutMultiple TLR_UINT8 Connection timeout multiplier

abReserved1[3] TLR_UINT8 reserved

ulOTRpi TLR_UINT32 Originator to target requested packet rate in
microseconds

usOTConnParam TLR_UINT16 Originator to target connection parameter

ulTORpi TLR_UINT32 target to originator requested packet rate in
microseconds

usTOConnParam TLR_UINT16 target to originator connection parameter

bTriggerType TLR_UINT8 Transport type/trigger

bConnPathSize TLR_UINT8 Connection path size in 16 bit words

abConnPath[1400] TLR_UINT8 Connection path

Table 141: EIP_CM_APP_FWOPEN_IND_T - Forward_Open request data

The Application Interface 217/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Structure Reference

typedef struct EIP_OBJECT_FWD_OPEN_FWD_RES_Ttag

{

 TLR_UINT32 ulRouteMsg;

 TLR_UINT32 ulGRC;

 TLR_UINT32 ulERC;

 TLR_UINT32 ulAppReplyOffset;

 TLR_UINT32 ulAppReplySize;

 EIP_CM_APP_FWOPEN_IND_T tFwdOpenData;

} EIP_OBJECT_FWD_OPEN_FWD_RES_T;

typedef struct EIP_OBJECT_PACKET_FWD_OPEN_FWD_RES_Ttag

{

 TLR_PACKET_HEADER_T tHead;

 EIP_OBJECT_FWD_OPEN_FWD_RES_T tData;

} EIP_OBJECT_PACKET_FWD_OPEN_FWD_RES_T;

#define EIP_OBJECT_FWD_OPEN_FWD_RES_SIZE sizeof(EIP_OBJECT_FWD_OPEN_FWD_RES_T) – \

 EIP_OBJECT_MAX_PACKET_LEN

Packet Description

structure EIP_OBJECT_PACKET_FWD_OPEN_FWD_RES_T Type: Response

Variable Type Value / Range Description

tHead - Structure TLR_PACKET_HEADER_T

ulDest UINT32 0x20/

DPMINTF_QU

E

Destination Queue Handle

ulSrc UINT32 0 ... 232-1 Source Queue Handle

ulDestId UINT32 Destination Queue Reference

ulSrcId UINT32 Source Queue Reference

ulLen UINT32 EIP_OBJECT_FWD_OPEN_FWD_RES_SIZE + n - Packet Data

Length in bytes

n: Length of connection path (abConnPath) in bytes +

 Length of “Application Reply” data in abConnPath

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by the
Source Process of the Packet

ulSta UINT32

ulCmd UINT32 0x1A4B EIP_OBJECT_FWD_OPEN_FWD_RES - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 x Routing, do not touch

tData - Structure EIP_OBJECT_FWD_OPEN_FWD_RES_T

ulRouteMsg TLR_UINT32 Link to underlying Encapsulation request

ulGRC TLR_UINT32 General Error Code

ulERC TLR_UINT32 Extended Error Code

ulAppReplyOffset TLR_UINT32 Offset of “Application Reply” data

ulAppReplySize TLR_UINT32 Length of “Application Reply” data in bytes.

The “Application Reply” data can be attached by copying it
right behind the connection path in

tFwdOpenData.abConnPath[]

tFwdOpenData EIP_CM_APP

_FWOPEN_IN

D_T

 Forward Open data (See Table 141)

Table 142: EIP_OBJECT_FWD_OPEN_FWD_RES – Response of Forward_Open indication

The Application Interface 218/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

6.2.22 EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND/RES –

Indication of Forward_Open Completion Result

Note: This functionality must be enabled by setting the Parameter flag

EIP_OBJECT_PRM_FWRD_OPEN_CLOSE_FORWARDING using command

EIP_OBJECT_SET_PARAMETER_REQ (0x00001AF2).

This indication will be sent to the host application during processing of a Forward_Open request by
the protocol stack from the network.

As stated in the preceding section, after reception of EIP_OBJECT_FWD_OPEN_FWD_RES and

checking parameters and initializing corresponding resources, the protocol stack sends the

indication EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND to give feedback to the host

application whether or not the connection could be established.

Please have a look at Figure 57 on page 213 to get an overview about the possible packet
sequences.

Packet Structure Reference

typedef struct EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND_Ttag

{

 TLR_UINT16 usCmInstance;

 TLR_UINT16 usConnSerialNum;

 TLR_UINT16 usVendorId;

 TLR_UINT32 ulOSerialNum;

 TLR_UINT32 ulGRC;

 TLR_UINT32 ulERC;

} EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND_T;

typedef struct EIP_OBJECT_PACKET_FWD_OPEN_FWD_COMPLETION_IND_Ttag

{

 TLR_PACKET_HEADER_T tHead;

 EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND_T tData;

} EIP_OBJECT_PACKET_FWD_OPEN_FWD_COMPLETION_IND_T;

#define EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND_SIZE \

sizeof(EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND_T)

The Application Interface 219/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Description

Structure EIP_OBJECT_PACKET_FWD_OPEN_FWD_COMPLETION_IND_T Type: Indication

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 0x20/

DPMINTF_QUE

Destination Queue-Handle

ulSrc UINT32 0 ... 232-1 Source Queue-Handle

ulDestId UINT32 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.
Set to 0 for the Initialization Packet

ulSrcId UINT32 Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 16 EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND

_SIZE - Packet Data Length in bytes

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by
the Source Process of the Packet

ulSta UINT32 Status

ulCmd UINT32 0x1A4C EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND -

Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility
reasons

ulRout UINT32 x Routing, do not touch

tData - Structure EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND_T

usCmInstance TLR_UINT16 0 - 64 Connection Manager Instance.

Value 0 is not a valid instance number. It will be present
if the connection was not established (ulGRC != 0).

usConnSerialNum TLR_UINT16 Connection serial number

usVendorId TLR_UINT16 Originator Vendor ID

ulOSerialNum TLR_UINT32 Originator serial number

ulGRC TLR_UINT32 General Error Code

ulERC TLR_UINT32 Extended Error Code

Table 143: EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND – Forward_Open completion indication

The Application Interface 220/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Structure Reference

typedef struct EIP_OBJECT_PACKET_FWD_OPEN_FWD_COMPLETION_RES_Ttag

{

 TLR_PACKET_HEADER_T tHead;

} EIP_OBJECT_PACKET_FWD_OPEN_FWD_COMPLETION_RES_T;

#define EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_RES_SIZE 0

Packet Description

Structure EIP_OBJECT_PACKET_FWD_OPEN_FWD_COMPLETION_RES_T Type: Response

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 0x20/

DPMINTF_QUE

Destination Queue-Handle

ulSrc UINT32 0 ... 232-1 Source Queue-Handle

ulDestId UINT32 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.
Set to 0 for the Initialization Packet

ulSrcId UINT32 Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 0 EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_RES

_SIZE - Packet Data Length in bytes

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by
the Source Process of the Packet

ulSta UINT32 Status

ulCmd UINT32 0x1A4D EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_RES -

Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility
reasons

ulRout UINT32 x Routing, do not touch

Table 144: EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_RES – Response of Forward_Open completion indication

The Application Interface 221/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

6.2.23 EIP_OBJECT_FWD_CLOSE_FWD_IND - Indication of a

Forward_Close

Note: This functionality must be enabled by setting the Parameter flag

EIP_OBJECT_PRM_FWRD_OPEN_CLOSE_FORWARDING using command

EIP_OBJECT_SET_PARAMETER_REQ (0x00001AF2).

This indication will be sent to the host application when a Forward_Close request was received by
the protocol stack from the network. The protocol stack forwards the Forward_Close request
without doing any processing on it. Only the parameters “Connection Serial Number”, “Originator
Vendor ID” and “Originator Serial number” will be checked in advance. The host application now
has the possibility to check/modify parameters within the Forward_Close request data.

Upon reception of EIP_OBJECT_FWD_CLOSE_FWD_RES, the protocol stack processes the

Forward_Close request data that comes with this response packet. It will be handled as if it came
directly from the network.

The host application also has the possibility to reject the Forward_Close request right away by

setting the corresponding status field in the EIP_OBJECT_FWD_CLOSE_FWD_RES packet.

Please have a look at Figure 58 to get a better understanding of how these packets are used.

The Application Interface 222/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Figure 58: Packet sequence for Forward_Close forwarding functionality

The Application Interface 223/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Structure Reference

#define EIP_OBJECT_MAX_PACKET_LEN 1400

typedef struct EIP_CM_APP_FWCLOSE_IND_Ttag

{

 TLR_UINT8 bPriority;

 TLR_UINT8 bTimeOutTicks;

 TLR_UINT16 usConnSerialNum;

 TLR_UINT16 usVendorId;

 TLR_UINT32 ulOSerialNum;

 TLR_UINT8 bConnPathSize;

 TLR_UINT8 bReserved1;

 TLR_UINT8 bConnPath[EIP_OBJECT_MAX_PACKET_LEN];

} EIP_CM_APP_FWCLOSE_IND_T;

typedef struct EIP_OBJECT_FWD_CLOSE_FWD_IND_Ttag

{

 TLR_UINT32 ulRouteMsg;

 TLR_UINT32 aulReserved[2];

 EIP_CM_APP_FWCLOSE_IND_T tFwdCloseData;

} EIP_OBJECT_FWD_CLOSE_FWD_IND_T;

typedef struct EIP_OBJECT_PACKET_FWD_CLOSE_FWD_IND_Ttag

{

 TLR_PACKET_HEADER_T tHead;

 EIP_OBJECT_FWD_CLOSE_FWD_IND_T tData;

} EIP_OBJECT_PACKET_FWD_CLOSE_FWD_IND_T;

#define EIP_OBJECT_FWD_CLOSE_FWD_IND_SIZE sizeof(EIP_OBJECT_FWD_CLOSE_FWD_IND_T) – \

Packet Description

Structure EIP_OBJECT_PACKET_FWD_CLOSE_FWD_IND_T Type: Indication

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 0x20/ DPMINTF_QUE Destination Queue-Handle

ulSrc UINT32 0 ... 232-1 Source Queue-Handle

ulDestId UINT32 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.
Set to 0 for the Initialization Packet

ulSrcId UINT32 Source End Point Identifier, specifying the origin of the
packet inside the Source Process

ulLen UINT32 24 + n EIP_OBJECT_FWD_CLOSE_FWD_IND_SIZE + n -

Packet Data Length in bytes

n: Length of connection path (abConnPath) in bytes

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by
the Source Process of the Packet

ulSta UINT32 Status

ulCmd UINT32 0x1A4E EIP_OBJECT_FWD_CLOSE_FWD_IND - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility
reasons

ulRout UINT32 x Routing, do not touch

tData - Structure EIP_OBJECT_FWD_CLOSE_FWD_IND_T

ulRouteMsg TLR_UNIT32 Link to remember underlying Encapsulation request
(must not be modified by app)

aulReserved[2] TLR_UINT32 Place holder to be filled by response parameters, see
EIP_OBJECT_FWD_CLOSE_FWD_RES_T

tFwdCloseData EIP_CM_APP

_FWCLOSE_I

ND_T

 Forward Close data (See Table 146)

Table 145:EIP_OBJECT_FWD_CLOSE_FWD_IND – Forward_Close request indication

The Application Interface 224/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Structure EIP_CM_APP_FWCLOSE_IND_T

Variable Type Description

bPriority TLR_UINT8 Used to calculate request timeout
information

bTimeOutTicks TLR_UINT8 Used to calculate request timeout
information

usConnSerialNum TLR_UINT16 Connection serial number

usVendorId TLR_UINT16 Originator Vendor ID

ulOSerialNum TLR_UINT32 Originator serial number

bConnPathSize TLR_UINT8 Connection path size in 16 bit words

bReserved1 TLR_UINT8 Reserved

abConnPath[1400] TLR_UINT8 Connection path

Table 146: EIP_CM_APP_FWCLOSE_IND_T - Forward_Close request data

The Application Interface 225/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Structure Reference

typedef struct EIP_OBJECT_FWD_CLOSE_FWD_RES_Ttag

{

 TLR_UINT32 ulRouteMsg;

 TLR_UINT32 ulGRC;

 TLR_UINT32 ulERC;

 EIP_CM_APP_FWCLOSE_IND_T tFwdCloseData;

} EIP_OBJECT_FWD_CLOSE_FWD_RES_T;

typedef struct EIP_OBJECT_PACKET_FWD_CLOSE_FWD_RES_Ttag

{

 TLR_PACKET_HEADER_T tHead;

 EIP_OBJECT_FWD_CLOSE_FWD_RES_T tData;

} EIP_OBJECT_PACKET_FWD_CLOSE_FWD_RES_T;

#define EIP_OBJECT_FWD_CLOSE_FWD_RES_SIZE sizeof(EIP_OBJECT_FWD_CLOSE_FWD_RES_T) – \

 EIP_OBJECT_MAX_PACKET_LEN

Packet Description

structure EIP_OBJECT_PACKET_FWD_CLOSE_FWD_RES_T Type: Response

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 0x20/ DPMINTF_QUE Destination Queue Handle

ulSrc UINT32 0 ... 232-1 Source Queue Handle

ulDestId UINT32 Destination Queue Reference

ulSrcId UINT32 Source Queue Reference

ulLen UINT32 24 + n EIP_OBJECT_FWD_CLOSE_FWD_RES_SIZE + n -

Packet Data Length in bytes

n: Length of connection path (abConnPath) in bytes

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by
the Source Process of the Packet

ulSta UINT32

ulCmd UINT32 0x1A4F EIP_OBJECT_FWD_CLOSE_FWD_RES - Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility
reasons

ulRout UINT32 x Routing, do not touch

tData - Structure EIP_OBJECT_FWD_CLOSE_FWD_RES_T

ulRouteMsg TLR_UINT32 Link to underlying Encapsulation request

ulGRC TLR_UINT32 General Error Code

ulERC TLR_UINT32 Extended Error Code

tFwdCloseData EIP_CM_APP

_FWCLOSE_I

ND_T

 Forward Close data (See Table 146:
EIP_CM_APP_FWCLOSE_IND_T - Forward_Close
request data

)

Table 147: EIP_OBJECT_FWD_CLOSE_FWD_RES – Response of Forward_Close indication

The Application Interface 226/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

6.2.24 EIP_OBJECT_CREATE_OBJECT_TIMESYNC_REQ - Create Time

Sync Object/Configuration of the Synchronization Mode

In order to activate the Time Sync object within the EtherNet/IP stack, the command

EIP_OBJECT_CREATE_OBJECT_TIMESYNC_REQ needs to be sent to the stack.

Some synchronization-related parameters are required to adjust the interval and offset times for

the hardware synchronization signals Sync 0 and Sync 1.

The Sync 0 signal also triggers an interrupt that the host application will receive in order to retrieve

the current CIP Sync system time.

In case of a loadable firmware, on each occurrence of the event the EtherNet/IP stack writes the

current CIP Sync system time into the extended data area of the Dual Port Memory interface.

In case of linkable object module, the host task needs to handle the interrupt by itself.

If the confirmation packet is received with ulSta=0 then the Create Time Sync Object Request

has been processed correctly.

Note: Currently, only Sync 0 can be used.

Packet Structure Reference

/*###*/

/* Request packet definition */

/*###*/

typedef struct EIP_OBJECT_CREATE_OBJECT_TIMESYNC_REQ_Ttag

{

 TLR_UINT32 ulSync0Interval;

 TLR_UINT32 ulSync0Offset;

 TLR_UINT32 ulSync1Interval;

 TLR_UINT32 ulSync1Offset;

 TLR_UINT32 ulPulseLength;

} EIP_OBJECT_CREATE_OBJECT_TIMESYNC_REQ_T;

#define EIP_OBJECT_CREATE_OBJECT_TIMESYNC_REQ_SIZE sizeof(EIP_OBJECT_CREATE_OBJECT_TIMESYNC_REQ_T)

typedef struct EIP_OBJECT_PACKET_CREATE_OBJECT_TIMESYNC_REQ_Ttag

{

 TLR_PACKET_HEADER_T tHead;

 EIP_OBJECT_CREATE_OBJECT_TIMESYNC_REQ_T tData;

}EIP_OBJECT_PACKET_CREATE_OBJECT_TIMESYNC_REQ_T;

The Application Interface 227/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Description

Structure EIP_OBJECT_PACKET_CREATE_OBJECT_TIMESYNC_REQ_T Type: Request

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 0, 0x20 Destination Queue-Handle. Set to 0: Destination is
operating system rcX 32 (0x20): Destination is the
protocol stack

ulSrc UINT32 0 ... 232-1 Source Queue-Handle. Set to:

0: when working with loadable firmware.

Queue handle returned by TLR_QUE_IDENTIFY()}:

when working with loadable firmware.

ulDestId UINT32 0 Destination End Point Identifier, specifying the final
receiver of the packet within the Destination Process.
Set to 0, will not be changed

ulSrcId UINT32 0 ... 232-1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process. This variable may be
used for low-level addressing purposes.

ulLen UINT32 20 Packet Data Length (In Bytes);

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by
the Source Process of the Packet

ulSta UINT32 0 Status/Error

ulCmd UINT32 0x1A58 EIP_OBJECT_CREATE_OBJECT_TIMESYNC_REQ -

Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility
reasons

ulRout UINT32 × Routing, do not change

tData - Structure EIP_OBJECT_CREATE_OBJECT_TIMESYNC_REQ_T

ulSync0Interval UINT32 0, 5000 …
500000000

Sync0 Interval

This parameter specifies the interval of the Sync 0
signal in nanoseconds.
The value 0 means the signal is deactivated.

The starting point of the Sync0 signal is dependent on
the Sync0 Offset (see parameter ulSync0Offset).

ulSync0Offset UINT32 smaller than
ulSync0Inter

val

Sync 0 Offset

This parameter specifies a nanosecond offset for the
Sync 0 signal relative to the second overrun of the
system time (Time of the Sync Master).

ulSync1Interval UINT32 0, 5000 …
500000000

Sync1 Interval

This parameter specifies the interval of the Sync 1
signal in nanoseconds.
The value 0 means the signal is deactivated.

The starting point of the Sync1 signal is dependent on
the Sync1 Offset (see parameter ulSync1Offset).

ulSync1Offset UINT32 smaller than
ulSync1Inter

val

Sync 1 Offset

This parameter specifies a nanosecond offset for the
Sync 1 signal to the second overrun of the system time
(Time of the Sync Master).

ulPulseLength UINT32 4 … 500 This parameter specifies the pulse length of sync pins 0
and 1 in microseconds. The default value is 4.

Table 148: EIP_OBJECT_CREATE_OBJECT_TIMESYNC_REQ – Create Time Sync Object Request

The Application Interface 228/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Packet Structure Reference

/*###*/

/* Confirmation packet definition */

/*###*/

typedef struct EIP_OBJECT_PACKET_CREATE_OBJECT_TIMESYNC_CNF_Ttag

{

 TLR_PACKET_HEADER_T tHead;

}EIP_OBJECT_PACKET_CREATE_OBJECT_TIMESYNC_CNF_T;

#define EIP_OBJECT_CREATE_OBJECT_TIMESYNC_CNF_SIZE 0

Packet Description

Structure EIP_OBJECT_PACKET_CREATE_OBJECT_TIMESYNC_CNF_T Type: Confirmation

Variable Type Value / Range Description

tHead – Structure TLR_PACKET_HEADER_T

ulDest UINT32 0, 0x20 Destination Queue Handle

ulSrc UINT32 0 ... 232-1 Source Queue Handle

ulDestId UINT32 0 Destination End Point Identifier

ulSrcId UINT32 0 ... 232-1 Source End Point Identifier

ulLen UINT32 16 Packet Data Length (In Bytes);

ulId UINT32 0 ... 232-1 Packet Identification as unique number generated by
the Source Process of the Packet

ulSta UINT32 =0

<>0

correct execution

an error has occurred

ulCmd UINT32 0x1A59 EIP_OBJECT_CREATE_OBJECT_TIMESYNC_CNF -

Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility
reasons

ulRout UINT32 × Routing, do not change

Table 149: EIP_OBJECT_CREATE_OBJECT_TIMESYNC_CNF – Confirmation of Create Time Sync Object Request

The Application Interface 229/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

6.3 The Encapsulation Task

The encapsulation task (EIS_ENCAP task) acts as an encapsulation layer between the high-level

CIP protocol and the protocols of the TCP/IP family which are on levels 3 and 4 of the OSI model.

It is used for packing CIP messages into TCP, UDP or IP frames according to the EtherNet/IP

specification.

The encapsulation task is only used for internal purposes of the EtherNet/IP Adapter protocol

stack, you do not require accessing its functionality directly.

6.4 The EIS_CL1-Task

The EIS_CL1-Task does not provide any packet interface.

6.5 The EIS_DLR-Task

The EIS_DLR-Task is only used for internal purposes of the EtherNet/IP Adapter protocol stack,

you do not require accessing its functionality directly.

6.6 The TCP_IP-Task

As EtherNet/IP uses protocols of the TCP/IP family as lower level protocols (which are located on

levels 3 and 4 of the OSI model for network connections), these protocols need to be handled by a

separate task, namely the TCP/IP task. For instance, the

TCPIP_IP_CMD_SET_CONFIG_REQ/CNF packet of this task might be of interest in conjunction

with EtherNet/IP.

Special topics 230/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

7 Special topics

This chapter provides information for users of linkable object modules (LOM).

7.1 Getting the Receiver Task Handle of the Process Queue

To get the handle of the process queue of a specific task the Macro TLR_QUE_IDENTIFY()

needs to be used. It is described in detail within section 10.1.9.3 of the Hilscher Task Layer

Reference Model Manual. This macro delivers a pointer to the handle of the intended queue to be

accessed (which is returned within the third parameter, phQue), if you provide it with the name of

the queue (and an instance of your own task). The correct ASCII-queue names for accessing the

desired task which you have to use as current value for the first parameter (pszIdn) is

ASCII Queue name Description

"OBJECT_QUE” Name of the EipObject-Task process queue

"ENCAP_QUE” Name of the EipEncap-Task process queue

"QUE_EIP_CL1" Name of the CL1-Task process queue

"QUE_EIP_DLR" Name of the DLR-Task process queue

“EN_TCPUDP_QUE” Name of the TCP/IP-Task process queue

“DPMINTF_QUE” Name of the EIP_APS-Task process queue

Table 150: Names of Queues in EtherNet/IP Firmware

The returned handle has to be used as value ulDest in all initiator packets the AP-Task intends to

send to the EipObject-Task. This handle is the same handle that has to be used in conjunction

with the macros like TLR_QUE_SENDPACKET_FIFO/LIFO() for sending a packet to the

respective task.

Status/Error Codes Overview 231/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

8 Status/Error Codes Overview

8.1 Status/Error Codes EipObject-Task

Hexadecimal

Value

Definition

Description

0x00000000 TLR_S_OK

Status ok

0xC01F0002 TLR_E_EIP_OBJECT_OUT_OF_MEMORY

System is out of memory

0xC01F0003 TLR_E_EIP_OBJECT_OUT_OF_PACKETS

Task runs out of empty packets at the local packet pool

0xC01F0004 TLR_E_EIP_OBJECT_SEND_PACKET

Sending a packet failed

0xC01F0010 TLR_E_EIP_OBJECT_AS_ALLREADY_EXIST

Assembly instance already exists

0xC01F0011 TLR_E_EIP_OBJECT_AS_INVALID_INST

Invalid Assembly Instance

0xC01F0012 TLR_E_EIP_OBJECT_AS_INVALID_LEN

Invalid Assembly length

0xC01F0020 TLR_E_EIP_OBJECT_CONN_OVERRUN

No free connection buffer available

0xC01F0021 TLR_E_EIP_OBJECT_INVALID_CLASS

Object class is invalid

0xC01F0022 TLR_E_EIP_OBJECT_SEGMENT_FAULT

Segment of the path is invalid

0xC01F0023 TLR_E_EIP_OBJECT_CLASS_ALLREADY_EXIST

Object Class is already used

0xC01F0024 TLR_E_EIP_OBJECT_CONNECTION_FAIL

Connection failed.

0xC01F0025 TLR_E_EIP_OBJECT_CONNECTION_PARAM

Unknown format of connection parameter

0xC01F0026 TLR_E_EIP_OBJECT_UNKNOWN_CONNECTION

Invalid connection ID

0xC01F0027 TLR_E_EIP_OBJECT_NO_OBJ_RESSOURCE

No resource for creating a new class object available

0xC01F0028 TLR_E_EIP_OBJECT_ID_INVALID_PARAMETER

Invalid request parameter

0xC01F0029 TLR_E_EIP_OBJECT_CONNECTION_FAILED

General connection failure. See also General Error Code and Extended Error Code for more
details.

0xC01F0031 TLR_E_EIP_OBJECT_READONLY_INST

Access denied. Instance is read only

0xC01F0032 TLR_E_EIP_OBJECT_DPM_USED

DPM address is already used by another instance.

0xC01F0033 TLR_E_EIP_OBJECT_SET_OUTPUT_RUNNING

Set Output command is already running

Status/Error Codes Overview 232/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Hexadecimal

Value

Definition

Description

0xC01F0034 TLR_E_EIP_OBJECT_TASK_RESETING

EtherNet/IP Object Task is running a reset.

0xC01F0035 TLR_E_EIP_OBJECT_SERVICE_ALREADY_EXIST

Object Service already exists

0xC01F0036 TLR_E_EIP_OBJECT_DUPLICATE_SERVICE

The service is rejected by the application due to a duplicate sequence count.

Table 151: Status/Error Codes EipObject-Task

8.1.1 Diagnostic Codes

Hexadecimal

Value

Definition

Description

0x00000000 TLR_S_OK

Status ok

0xC01F0001 TLR_DIAG_E_EIP_OBJECT_NO_SERVICE_RES_PACKET

No free packet available to create a response of the request.

0xC01F0002 TLR_DIAG_E_EIP_OBJECT_NO_GET_INP_PACKET

No free packet available to send the input data.

0xC01F0003 TLR_DIAG_E_EIP_OBJECT_ROUTING_SEND_PACKET_FAIL

Routing a request to an object failed. An error occurred at the destination packet queue.

0xC01F0004 TLR_DIAG_E_EIP_OBJECT_ROUTING_SEND_PACKET_CNF_FAIL

Sending the confirmation of a request failed. An error occurred at the packet queue.

0xC01F0005 TLR_DIAG_E_EIP_OBJECT_GETTING_UNKNOWN_CLASS_ID

Getting a confirmation of a request from an unknown object.

0xC01F0006 TLR_DIAG_E_EIP_OBJECT_NO_CC_INSTANCE_MEMORY

Instance of the CC object could not be created. No free memory available.

0xC01F0007 TLR_DIAG_E_EIP_OBJECT_CLOSE_SEND_PACKET_FAIL

Completing a connection close command failed. Sending the command to the packet queue failed.

0xC01F0008 TLR_DIAG_E_EIP_OBJECT_OPEN_SEND_PACKET_FAIL

Completing a connection open command failed. Sending the command to the packet queue failed.

0xC01F0009 TLR_DIAG_E_EIP_OBJECT_DEL_TRANSP_SEND_PACKET_FAIL

Sending the delete transport command failed. Encap Queue signal an error.

0xC01F000A TLR_DIAG_E_EIP_OBJECT_FW_OPEN_SEND_PACKET_FAIL

Sending the forward open command failed. Encap Queue signal an error.

0xC01F000B TLR_DIAG_E_EIP_OBJECT_START_TRANSP_SEND_PACKET_FAIL

Sending the start transport command failed. Encap Queue signal an error.

0xC01F000C TLR_DIAG_E_EIP_OBJECT_CM_UNKNOWN_CNF

Connection manager received a confirmation of unknown service.

0xC01F000D TLR_DIAG_E_EIP_OBJECT_FW_CLOSE_SEND_PACKET_FAIL

Sending the forward close command failed. Encap Queue signal an error.

0xC01F000E TLR_DIAG_E_EIP_OBJECT_NO_RESET_PACKET

Fail to complete reset command. We did not get an empty packet.

Table 152: Diagnostic Codes EipObject-Task

Status/Error Codes Overview 233/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

8.2 Status/Error Codes EipEncap-Task

Hexadecimal

Value

Definition

Description

0x00000000 TLR_S_OK

Status ok

0xC01E0002 TLR_E_EIP_ENCAP_NOT_INITIALIZED

Encapsulation layer is not initialized

0xC01E0003 TLR_E_EIP_ENCAP_OUT_OF_MEMORY

System is out of memory

0xC01E0010 TLR_E_EIP_ENCAP_OUT_OF_PACKETS

Task runs out of empty packets at the local packet pool

0xC01E0011 TLR_E_EIP_ENCAP_SEND_PACKET

Sending a packet failed

0xC01E0012 TLR_E_EIP_ENCAP_SOCKET_OVERRUN

No free socket is available

0xC01E0013 TLR_E_EIP_ENCAP_INVALID_SOCKET

Socket ID is invalid

0xC01E0014 TLR_E_EIP_ENCAP_CEP_OVERRUN

Connection could not be opened. No resource for a new Connection Endpoint available

0xC01E0015 TLR_E_EIP_ENCAP_UCMM_OVERRUN Message could not send. All Unconnected Message
Buffers are in use

0xC01E0016 TLR_E_EIP_ENCAP_TRANSP_OVERRUN

Connection could not be opened. All transports are in use

0xC01E0017 TLR_E_EIP_ENCAP_UNKNOWN_CONN_TYP

Received message includes an unknown connection type

0xC01E0018 TLR_E_EIP_ENCAP_CONN_CLOSED

Connection was closed

0xC01E0019 TLR_E_EIP_ENCAP_CONN_RESETED

Connection is reset from remote device

0x001E001A TLR_S_EIP_ENCAP_CONN_UNREGISTER

We closed the connection successful. With an unregister command

0xC01E001B TLR_E_EIP_ENCAP_CONN_STATE

Wrong connection state for this service

0xC01E001C TLR_E_EIP_ENCAP_CONN_INACTIV

Encapsulation session was deactivated

0xC01E001D TLR_E_EIP_ENCAP_INVALID_IPADDR

received an invalid IP address

0xC01E001E TLR_E_EIP_ENCAP_INVALID_TRANSP

Invalid transport type

0xC01E001F TLR_E_EIP_ENCAP_TRANSP_INUSE

Transport is in use

0xC01E0020 TLR_E_EIP_ENCAP_TRANSP_CLOSED

Transport is closed

0xC01E0021 TLR_E_EIP_ENCAP_INVALID_MSGID

The received message has an invalid message ID

0xC01E0022 TLR_E_EIP_ENCAP_INVALID_MSG

invalid encapsulation message received

Status/Error Codes Overview 234/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Hexadecimal

Value

Definition

Description

0xC01E0023 TLR_E_EIP_ENCAP_INVALID_MSGLEN

Received message with invalid length

0xC01E0030 TLR_E_EIP_ENCAP_CL3_TIMEOUT

Class 3 connection runs into timeout

0xC01E0031 TLR_E_EIP_ENCAP_UCMM_TIMEOUT

Unconnected message gets a timeout

0xC01E0032 TLR_E_EIP_ENCAP_CL1_TIMEOUT

Timeout of a class 3 connection

0xC01E0033 TLR_W_EIP_ENCAP_TIMEOUT

Encapsulation service is finished by timeout

0xC01E0034 TLR_E_EIP_ENCAP_CMDRUNNING

Encapsulation service is still running

0xC01E0035 TLR_E_EIP_ENCAP_NO_TIMER

No empty timer available

0xC01E0036 TLR_E_EIP_ENCAP_INVALID_DATA_IDX

The data index is unknown by the task. Please ensure that it is the same as at the

indication.

0xC01E0037 TLR_E_EIP_ENCAP_INVALID_DATA_AREA

The parameter of the data area are invalid. Please check length and offset.

0xC01E0039 TLR_E_EIP_ENCAP_TASK_RESETING

Ethernet/IP Encapsulation Layer runs a reset.

0xC01E003A TLR_E_EIP_ENCAP_DUPLICATE_SERVICE

The service is rejected by the application due to a duplicate sequence count.

Table 153: Status/Error Codes EipEncap-Task

8.2.1 Diagnostic Codes

Hexadecimal

Value

Definition

Description

0x00000000 TLR_S_OK

Status ok

0xC01E0001 TLR_DIAG_E_EIP_ENCAP_NO_LIDENTITY_PACKET

No free packet available to indicate the received List Identity information.

0xC01E0002 TLR_DIAG_E_EIP_ENCAP_NO_ENCAP_CMD_PACKET

No free packet available to send a request to the Ethernet interface.

0xC01E0003 TLR_DIAG_E_EIP_ENCAP_NO_REGISTER_PACKET

No free packet available to send a register session request to the Ethernet interface.

0xC01E0004 TLR_DIAG_E_EIP_ENCAP_CMD_TCP_SEND_PACKET_FAIL

Send packet to the Ethernet interface failed.

0xC01E0005 TLR_DIAG_E_EIP_ENCAP_NO_LSERVICE_PACKET

No free packet available to indicate the received List Service information.

0xC01E0006 TLR_DIAG_E_EIP_ENCAP_NO_LINTERFACE_PACKET

No free packet available to indicate the received List Interface information.

0xC01E0007 TLR_DIAG_E_EIP_ENCAP_NO_MULTICAST_JOIN_PACKET

No free packet available to join the multicast group.

Status/Error Codes Overview 235/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Hexadecimal

Value

Definition

Description

0xC01E0008 TLR_DIAG_E_EIP_ENCAP_NO_MULTICAST_DROP_PACKET

No free packet available to drop the multicast group.

0xC01E0009 TLR_DIAG_E_EIP_ENCAP_CONNECTING_INVALID_PACKET_ID

By establishing a new connection an invalid packet ID was received.

0xC01E000A TLR_DIAG_E_EIP_ENCAP_WAIT_CONN_INVALID_PACKET_ID

By waiting for a connection an invalid packet ID was received.

0xC01E000B TLR_DIAG_E_EIP_ENCAP_CEP_OVERRUN

No free connection endpoints are available.

0xC01E000C TLR_DIAG_E_EIP_ENCAP_CONNECTION_INACTIVE

Receive data from an inactive or unknown connection.

0xC01E000D TLR_DIAG_W_EIP_ENCAP_CONNECTION_CLOSED

Connection is closed.

0xC01E000E TLR_DIAG_W_EIP_ENCAP_CONNECTION_RESET

Connection is reset

0xC01E000F TLR_DIAG_E_EIP_ENCAP_RECEIVED_INVALID_DATA

Receive invalid data, Connection is closed.

0xC01E0010 TLR_DIAG_E_EIP_ENCAP_UNKNOWN_CONNECTION_TYP

Receive data from an unknown connection type

0xC01E0011 TLR_DIAG_E_EIP_ENCAP_CEP_STATE_ERROR

Command is not allowed at the actual connection endpoint state.

0xC01E0012 TLR_DIAG_E_EIP_ENCAP_NO_INDICATION_PACKET

No free packet available to send an indication of the received data.

0xC01E0013 TLR_DIAG_E_EIP_ENCAP_REVEIVER_OUT_OF_MEMORY

No memory for a receive buffer is available, data could not received.

0xC01E0014 TLR_DIAG_E_EIP_ENCAP_NO_ABORT_IND_PACKET

No free packet available to send an abort transport indication.

0xC01E0015 TLR_DIAG_E_EIP_ENCAP_START_CONNECTION_FAIL

Starting the connection failed. Connection endpoint is invalid.

0xC01E0016 TLR_DIAG_E_EIP_ENCAP_NO_GET_TCP_CONFIG_PACKET

No free packet for requesting the actual configuration from the TCP task

Table 154: Diagnostic Codes EipEncap-Task

Status/Error Codes Overview 236/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

8.3 Status/Error Codes EIS_APS-Task

Hexadecimal

Value

Definition

Description

0x00000000 TLR_S_OK

Status ok

0xC0590001 TLR_E_EIP_APS_COMMAND_INVALID

Invalid command.

0xC0590002 TLR_E_EIP_APS_PACKET_LENGTH_INVALID

Invalid packet length.

0xC0590003 TLR_E_EIP_APS_PACKET_PARAMETER_INVALID

Invalid packet parameter.

0xC0590004 TLR_E_EIP_APS_TCP_CONFIG_FAIL

TCP/IP configuration failed. The TCP/IP task reports an error: IP address, gateway address,
network mask or configuration flags are invalid.

0xC0590007 TLR_E_EIP_APS_ACCESS_FAIL

Unregister application command rejected, because another task then the registered task has send
an unregister application command. Only the registered task can send the unregister application
command.

0xC0590008 TLR_E_EIP_APS_STATE_FAIL

In normal state: clear watchdog command received. This command can’t be processed in this state
and is rejected.

In watchdog error state: the received command can’t be processed in this state and is rejected.

0xC0590009 TLR_E_EIP_APS_IO_OFFSET_INVALID

Invalid I/O offset.

0xC059000A TLR_E_EIP_APS_FOLDER_NOT_FOUND

Expected folder contains the configuration file(s) not found.

0xC059000B TLR_E_EIP_APS_CONFIG_DBM_INVALID

The configuration file ‘config.nxd’ does not contain the expected configuration parameters.

0xC059000C TLR_E_EIP_APS_NO_CONFIG_DBM

Configuration file named ‘config.nxd’ not found. As a result, EtherNet/IP configuration parameters
are missing.

0xC059000D TLR_E_EIP_APS_NWID_DBM_INVALID

The configuration file named ‘nwid.nxd’ does not contain the expected configuration parameters.

0xC059000E TLR_E_EIP_APS_NO_NWID_DBM

Configuration file ‘nwid.nxd’ not found. As a result, TCP/IP configuration parameters are missing.

0xC059000F TLR_E_EIP_APS_NO_DBM

Configuration file missing.

0xC0590010 TLR_E_EIP_APS_NO_MAC_ADDRESS_AVAILABLE

No MAC address available.

Table 155: Error Codes EIS_APS-Task

Status/Error Codes Overview 237/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

8.3.1 Diagnostic Codes EIS_APS-Task

Hexadecimal

Value

Definition

Description

0x00000000 TLR_S_OK

Status ok

0xC0590001 TLR_DIAG_E_EIP_APS_TCP_CONFIG_FAIL

TCP stack configuration failed.

0xC0590002 TLR_DIAG_E_EIP_APS_CONNECTION_CLOSED

Existing connection is closed.

Status/Error Codes Overview 238/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

8.4 Status/Error Codes Eip_DLR-Task

Hexadecimal

Value

Definition

Description

0x00000000 TLR_S_OK

Status ok

0xC0950001 TLR_E_EIP_DLR_COMMAND_INVALID

Invalid command received.

0xC0950002 TLR_E_EIP_DLR_NOT_INITIALIZED

DLR task is not initialized.

0xC0950003 TLR_E_EIP_DLR_FNC_API_INVALID_HANDLE

Invalid DLR handle at API function call.

0xC0950004 TLR_E_EIP_DLR_INVALID_ATTRIBUTE

Invalid DLR object attribute.

0xC0950005 TLR_E_EIP_DLR_INVALID_PORT

Invalid port.

0xC0950006 TLR_E_EIP_DLR_LINK_DOWN

Port link is down.

0xC0950007 TLR_E_EIP_DLR_MAX_NUM_OF_TASK_INST_EXCEEDED

Maximum number of EthernetIP task instances exceeded.

0xC0950008 TLR_E_EIP_DLR_INVALID_TASK_INST

Invalid task instance.

0xC0950009 TLR_E_EIP_DLR_CALLBACK_NOT_REGISTERED

Callback function is not registered.

0xC095000A TLR_E_EIP_DLR_WRONG_DLR_STATE

Wrong DLR state.

0xC095000B TLR_E_EIP_DLR_NOT_CONFIGURED_AS_SUPERVISOR

Not configured as supervisor.

0xC095000C TLR_E_EIP_DLR_INVALID_CONFIG_PARAM

Configuration parameter is invalid.

0xC095000D TLR_E_EIP_DLR_NO_STARTUP_PARAM_AVAIL

No startup parameters available.

Table 156: Status/Error Codes Eip_DLR-Task

Status/Error Codes Overview 239/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

8.5 General EtherNet/IP Error Codes

The following table contains the possible General Error Codes defined within the EtherNet/IP

standard.

General Status Code

(specified hexadecimally)

Status Name Description

00 Success The service has successfully been performed by the specified
object.

01 Connection failure A connection-elated service failed. This happened at any
location along the connection path.

02 Resource
unavailable

Some resources which where required for the object to perform
the requested service were not available.

03 Invalid parameter
value

See status code 0x20, which is usually applied in this situation.

04 Path segment error A path segment error has been encountered. Evaluation of the
supplied path information failed.

05 Path destination
unknown

The path references an unknown object class, instance or
structure element causing the abort of path processing.

06 Partial transfer Only a part of the expected data could be transferred.

07 Connection lost The connection for messaging has been lost.

08 Service not
supported

The requested service has not been implemented or has not
been defined for this object class or instance.

09 Invalid attribute value Detection of invalid attribute data

0A Attribute list error An attribute in the Get_Attribute_List or Set_Attribute_List
response has a status not equal to 0.

0B Already in requested
mode/state

The object is already in the mode or state which has been
requested by the service

0C Object state conflict The object is not able to perform the requested service in the
current mode or state

0D Object already exists It has been tried to create an instance of an object which
already exists.

0E Attribute not settable It has been tried to change a non-modifiable attribute.

0F Privilege violation A check of permissions or privileges failed.

10 Device state conflict The current mode or state of the device prevents the execution
of the requested service.

11 Reply data too large The data to be transmitted in the response buffer requires more
space than the size of the allocated response buffer

12 Fragmentation of a
primitive value

The service specified an operation that is going to fragment a
primitive data value, i.e. half a REAL data type.

13 Not enough data The service did not supply all required data to perform the
specified operation.

14 Attribute not
supported

An unsupported attribute has been specified in the request

15 Too much data More data than was expected were supplied by the service.

16 Object does not exist The specified object does not exist in the device.

17 Service
fragmentation
sequence not in
progress

Fragmentation sequence for this service is not currently active
for this data.

18 No stored attribute
data

The attribute data of this object has not been saved prior to the
requested service.

19 Store operation
failure

The attribute data of this object could not be saved due to a
failure during the storage attempt.

Status/Error Codes Overview 240/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

General Status Code

(specified hexadecimally)

Status Name Description

1A Routing failure,
request packet too
large

The service request packet was too large for transmission on a
network in the path to the destination. The routing device was
forced to abort the service.

1B Routing failure,
response packet too
large

The service response packet was too large for transmission on
a network in the path from the destination. The routing device
was forced to abort the service.

1C Missing attribute list
entry data

The service did not supply an attribute in a list of attributes that
was needed by the service to perform the requested behavior.

1D Invalid attribute value
list

The service returns the list of attributes containing status
information for invalid attributes.

1E Embedded service
error

An embedded service caused an error.

1F Vendor specific error A vendor specific error has occurred. This error should only
occur when none of the other general error codes can correctly
be applied.

20 Invalid parameter A parameter which was associated with the request was invalid.
The parameter does not meet the requirements of the CIP
specification and/or the requirements defined in the specification
of an application object.

21 Write-once value or
medium already
written

An attempt was made to write to a write-once medium for the
second time, or to modify a value that cannot be changed after
being established once.

22 Invalid reply received An invalid reply is received. Possible causes can for instance be
among others a reply service code not matching the request
service code or a reply message shorter than the expectable
minimum size.

23-24 Reserved Reserved for future extension of CIP standard

25 Key failure in path The key segment (i.e. the first segment in the path) does not
match the destination module. More information about which
part of the key check failed can be derived from the object
specific status.

26 Path size Invalid Path cannot be routed to an object due to lacking information or

too much routing data have been included.

27 Unexpected attribute
in list

It has been attempted to set an attribute which may not be set in
the current situation.

28 Invalid member ID The Member ID specified in the request is not available within
the specified class/ instance or attribute

29 Member cannot be
set

A request to modify a member which cannot be modified has
occurred

2A Group 2 only server
general failure

This DeviceNet-specific error cannot occur in EtherNet/IP

2B-CF Reserved Reserved for future extension of CIP standard

D0-FF Reserved for object
class and service
errors

An object class specific error has occurred.

Table 157: General Error Codes according to CIP Standard

Appendix 241/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

9 Appendix

9.1 Module and Network Status

This section describes the LED signaling of EtherNet/IP Adapter devices. 2 LEDs display status

information namely the Module Status LED denominated as MS and the network Status LED

denominated as NS.

9.1.1 Module Status

Table 158 lists the possible values of the Module Status and their meanings (Parameter

ulModuleStatus):

Symbolic name Numeric

value

Meaning

EIP_MS_NO_POWER 0 No Power

If no power is supplied to the device, the module status

indicator is steady off.

EIP_MS_SELFTEST 1 Self-Test

While the device is performing its power up testing, the

module status indicator flashes green/red.

EIP_MS_STANDBY 2 Standby

If the device has not been configured, the module status

indicator flashes green.

EIP_MS_OPERATE 3 Device operational

If the device is operating correctly, the module status

indicator is steady green.

EIP_MS_MAJOR_RECOVERABLE_FAULT 4 Major recoverable fault

If the device has detected a major recoverable fault, the

module status indicator flashes red.

Note: An incorrect or inconsistent configuration would be

considered a minor fault.

EIP_MS_MAJOR_UNRECOVERABLE_FAULT 5 Major unrecoverable fault

If the device has detected a major unrecoverable fault, the

module status indicator is steady red.

Table 158: Possible values of the Module Status

Appendix 242/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

9.1.2 Network Status

Table 159 lists the possible values of the Network Status and their meanings (Parameter

ulNetworkStatus):

Symbolic name Numeric

value

Meaning

EIP_NS_NO_POWER 0 Not powered, no IP address

Either the device is not powered, or it is powered but no IP address has

been configured yet.

EIP_NS_NO_CONNECTION 1 No connections

An IP address has been configured, but no CIP connections are

established, and an Exclusive Owner connection has not timed out.

EIP_NS_CONNECTED 2 Connected

At least one CIP connection of any transport class is established, and an

Exclusive Owner connection has not timed out.

EIP_NS_TIMEOUT 3 Connection timeout

An Exclusive Owner connection for which this device is the target has

timed out. The network status indicator returns to steady green only when

all timed out Exclusive Owner connections are reestablished.

The Network LED turns from flashing red to steady green only when all

connections to the previously timed-out O->T connection points are

reestablished. Timeout of connections other than Exclusive Owner

connections do not cause the indicator to flash red. The Flashing Red

state applies to target connections only.

EIP_NS_DUPIP 4 Duplicate IP

The device has detected that its IP address is already in use.

EIP_NS_SELFTEST 5 Self-Test

The device is performing its power-on self-test (POST). During POST the

network status indicator alternates flashing green and red.

Table 159: Possible values of the Network Status

There are 3 packets provided by the EIS_AP task dealing with the Module Status and the Network

Status:

 EIP_APS_SET_PARAMETER_REQ/CNF described in section 6.1.3 on page 107

This packet allows enabling notifications on changes of Module Status and Network Status.

 EIP_APS_MS_NS_CHANGE_IND/RES described in section 6.1.4 on page110

This packet notifies the host application about changes of the Module Status and the

Network Status.

 EIP_APS_GET_MS_NS_REQ/CNF described in section 6.1.5 on page113

This packet allows the application to retrieve the current Module Status and Network Status.

Appendix 243/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

9.2 Quality of Service (QoS)

9.2.1 Introduction

Quality of Service, abbreviated as QoS, denotes a mechanism treating data streams according to

their delivery characteristics, of which the by far most important one is the priority of the data

stream. Therefore, in the context of EtherNet/IP QoS means priority-dependent control of Ethernet

data streams. QoS is of special importance for advanced time-critical applications such as CIP

Sync and CIP Motion and is also mandatory for DLR (see section 9.3”DLR”).

In TCP/IP-based protocols, there are two standard mechanisms available for implementing QoS.

These are:

 Differentiated Services (abbreviated as DiffServ)

 The 802.1D/Q Protocols

which are both described in more detail below.

Introducing QoS means providing network infrastructure devices such as switches and hubs with

means to differentiate between frames with different priority Therefore, these mechanisms tag the

frames by writing priority information into the frames. This is technique is called priority tagging.

9.2.2 DiffServ

In the definition of an IP v4 frame, the second byte is denominated as TOS. See figure below:

Figure 59: TOS Byte in IP v4 Frame Definition

DiffServ is a schematic model for the priority-based classification of IP frames based on an

alternative interpretation of the TOS byte. It has been specified in RFC2474.

The idea of DiffServ consists in redefining 6 bits (i.e. the bits 8 to 13 of the whole IP v4 frame) and

to use them as codepoint. Thus these 6 bits are denominated as DSCP (Differentiated Services

Codepoint) in the context of DiffServ. These 6 bits allow address 63 predefined routing behaviors

which can be applied for routing the frame at the next router and specifies exactly how to process

the frame there. These routing behaviors are called PHBs (Per-hop behavior). A lot of PHBs have

been predefined and the IANA has assigned DSCPs to these PHBs. For a list of these DSCPs

and the assigned PHBs, see http://www.iana.org/assignments/dscp-registry/dscp-registry.xhtml.

Appendix 244/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Mapping of DSCP to EtherNet/IP

The following table shows the default assignment of DSCPs to different kinds of data traffic in

EtherNet/IP which is defined in the CIP specification.

Traffic Type CIP Priority DSCP (numeric) DSCP (bin)

CIP Class 0 and 1 Urgent (3) 55 110111

Scheduled (2) 47 101111

High (1) 43 101011

Low (0) 31 011111

CIP Class 3

CIP UCMM

All other encapsulation messages

All 27 011011

Table 160: Default Assignment of DSCPs in EtherNet/IP

9.2.3 802.1D/Q Protocol

Another possibility is used by 802.1Q. IEEE 802.1Q is a standard for defining virtual LANs (VLANs)

on an Ethernet network. It introduces an additional header, the IEEE 802.1Q header, which is

located between Source MAC and Ethertype and Size in the standard Ethernet frame.

The IEEE 802.1Q header has the Ethertype 0x8100. It allows to specify

 The ID of the Virtual LAN (VLAN ID, 12 bits wide)

 And the priority (defined in 802.1D)

Figure 60: Ethernet Frame with IEEE 802.1Q Header

As the header definition reserves only 3 bits for the priority (see figure below), only 8 priorities

(levels from 0 to 7) can be used here.

Appendix 245/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Mapping of 802.1D/Q to EtherNet/IP

The following table shows the default assignment of 802.1D priorities to different kinds of data

traffic in EtherNet/IP which is defined in the CIP specification.

Traffic Type CIP Priority 802.1D priority

CIP Class 0 and 1 Urgent (3) 6

Scheduled (2) 5

High (1) 5

Low (0) 3

CIP Class 3

CIP UCMM

All other encapsulation messages

All 3

Table 161: Default Assignment of 802.1D/Q Priorities in EtherNet/IP

9.2.4 The QoS Object

Within the EtherNet/IP implementation of QoS, the DiffServ mechanism is usually always present

and does not need to be activated explicitly. In contrast to this, 802.1Q must explicitly be activated

on all participating devices. The main capabilities of the QoS object are therefore:

 To enable 802.1Q (VLAN tagging)

 To enable setting parameters related to DiffServ (DSCP parameters)

For more information on the QoS object in the Hilscher EtherNet/IP adapter protocol stack see

section 3.10 „Quality of Service Object (Class Code: 0x48) “ of this document.

9.2.4.1 Enable 802.1Q (VLAN tagging)

The 802.1Q VLAN tagging mechanism can be turned on and off by setting attribute 1 (802.1Q Tag

Enable) of the QoS object to value 1.

Appendix 246/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

9.3 DLR

This section intends to give a brief and compact overview about the basic facts and concepts of the

DLR (Device level Ring) networking technology supported by Hilscher’s EtherNet/IP Adapter

protocol stack.

DLR is a technology (based on a special protocol additionally to Ethernet/IP) for creating a single

ring topology with media redundancy.

It is based on Layer 2 (Data link) of the ISO/OSI model of networking and thus transparent for

higher layers (except the existence of the DLR object providing configuration and diagnosis

capabilities).

In general, there are two kinds of nodes in the network:

 Ring supervisors

 Ring nodes

DLR requires all modules (both supervisors and normal ring nodes) to be equipped with two

Ethernet ports and internal switching technology.

Each module within the DLR network checks the target address of the currently received DLR

frame whether it matches its own MAC address.

 If yes, it keeps the packet and processes it. It will not be propagated any further.

 If no, it propagates the packet via the other port which did not receive the packet.

There is a ring topology so that all devices in the DLR network are each connected to two different

neighbors with their two Ethernet ports. In order to avoid looping, one port of the (active) supervisor

is blocked.

9.3.1 Ring Supervisors

There are two kinds of supervisors defined:

 Active supervisors

 Back-up supervisors

Note: The Hilscher EtherNet/IP stack does not support the ring supervisor mode.

Active supervisors

An active has the following duties:

 It periodically sends beacon and announce frames.

 It permanently verifies the ring integrity.

 It reconfigures the ring in order to ensure operation in case of single faults.

 It collects diagnostic information from the ring.

At least one active ring supervisor is required within a DLR network.

Back-up supervisors

It is recommended but not necessary that each DLR network should have at least one back-up

supervisor. If the active supervisor of the network fails, the back-up supervisor will take over the

duties of the active supervisor.

Appendix 247/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

9.3.2 Precedence Rule for Multi-Supervisor Operation

Multi-Supervisor Operation is allowed for DLR networks. If more than one supervisor is configured

as active on the ring, the following rule applies in order to determine the supervisor which is

relevant:

Each supervisor contains an internal precedence number which can be configured. The supervisor

within the ring carrying the highest precedence number will be the active supervisor, the others will

behave passively and switch back to the state of back-up supervisors.

9.3.3 Beacon and Announce Frames

Beacon frames and announce frames are both used to inform the devices within the ring about the

transition (i.e. the topology change) from linear operation to ring operation of the network.

They differ in the following:

Direction

 Beacon frames are sent in both directions.

 Announce frames are sent only in one direction of the ring, however.

Frequency

 Beacon frames are always sent every beacon interval. Usually, a beacon interval is defined

to have an interval of 400 microseconds. However, beacon frames may be sent even faster

up to an interval of 100 microseconds.

 Announce frames are always sent in time intervals of one second.

Support for Precedence Number

 Only Beacon frames contain the internal precedence number of the supervisor which sent

them

Support for Network Fault Detection

 Loss of beacon frames allows the active supervisor to detect and discriminate various types

of network faults of the ring on its own.

Appendix 248/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

9.3.4 Ring Nodes

This subsection deals with modules in the ring, which does not have supervisor capabilities. These

are denominated as (normal) ring nodes.

There are two types of normal ring nodes within the network:

 Beacon-based

 Announce-based

A DLR network may contain an arbitrary number of normal nodes.

Nodes of type beacon-based have the following capabilities

 They implement the DLR protocol, but without the ring supervisor capability

 They must be able to process beacon frames with hardware assistance

Nodes of type announce-based have the following capabilities

 They implement the DLR protocol, but without the ring supervisor capability

 They do not process beacon frames, they just forward beacon frames

 They must be able to process announce frames

 This type is often only a software solution

Note: Hilscher devices running an EtherNet/IP firmware always run as a beacon-based ring

node.

A ring node (independently whether it works beacon-based or announce-based) may have three

internal states.

 IDLE_STATE

 FAULT_STATE

 NORMAL_STATE

For a beacon-based ring node, these states are defined as follows:

 IDLE_STATE

The IDLE_STATE is the state which is reached after power-on. In IDLE_STATE the network

operates as linear network, there is no ring support active. If on one port a beacon frame

from a supervisor is received, the state changes to FAULT_STATE.

 FAULT_STATE

The Ring node reaches the FAULT_STATE after the following conditions:

A. If a beacon frame from a supervisor is received on at least one port

B. If a beacon frame from a different supervisor than the currently active one is received

on at least one port and the precedence of this supervisor is higher than that of the

currently active one.

The FAULT_STATE provides partial ring support, but the ring is still not fully operative in

FAULT_STATE. If the beacon frames have a time-out on both ports, the state will change to

the IDLE_STATE. If on both ports a beacon frame is received and a beacon frame with

RING_NORMAL_STATE has been received, the state changes to NORMAL_STATE.

Appendix 249/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

 NORMAL_STATE

The Ring node reaches the NORMAL_STATE only after the following condition:

If a beacon frame from the active supervisor is received on both ports and a beacon

frame with RING_NORMAL_STATE has been received

The NORMAL_STATE provides full ring support. The following conditions will cause a

change to the FAULT_STATE:

A. A link failure has been detected.

B. A beacon frame with RING_FAULT_STATE has been received from the active

supervisor on at least one port.

C. A beacon frame from the active supervisor had a time-out on at least one port

D. A beacon frame from a different supervisor than the currently active one is received on

at least one port and the precedence of this supervisor is higher than that of the

currently active one.

For an announce-based ring node, these states are defined as follows:

 IDLE_STATE

The IDLE_STATE is the state which is reached after power-on. It can also be reached from

any other state if the announce frame from the active supervisor has a time-out. In

IDLE_STATE the network operates as linear network, there is no ring support active. If an

announce frame with FAULT_STATE is received from a supervisor, the state changes to

FAULT_STATE.

 FAULT_STATE

The Ring node reaches the FAULT_STATE after the following conditions:

 If the network is in IDLE_STATE and an announce frame with FAULT_STATE is

received from any supervisor.

 If the network is in NORMAL_STATE and an announce frame with FAULT_STATE is

received from the active or a different supervisor.

 If the network is in NORMAL_STATE and a link failure has been detected.

The FAULT_STATE provides partial ring support, but the ring is still not fully operative in

FAULT_STATE.

If the announce frame from the active supervisor has a time-out, the state will fall back to the

IDLE_STATE.

If an announce frame with NORMAL_STATE has been received from the active or a different

supervisor, the state changes to NORMAL_STATE.

 NORMAL_STATE

The Ring node reaches the NORMAL_STATE only after the following condition:

 If the network is in IDLE_STATE and an announce frame with NORMAL_STATE is

received from any supervisor.

 If the network is in FAULT_STATE and an announce frame with NORMAL_STATE is

received from the active or a different supervisor.

The NORMAL_STATE provides full ring support. The following conditions will cause a fall

back to the FAULT_STATE:

Appendix 250/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

 A link failure has been detected.

 A announce frame with FAULT_STATE has been received from the active or a different

supervisor.

The following conditions will cause a fall back to the IDLE _STATE:

 The announce frame from the active supervisor has a time-out.

9.3.5 Normal Network Operation

In normal operation, the supervisor sends beacon and, if configured, announce frames in order to

monitor the state of the network. Usual ring nodes and back-up supervisors receive these frames

and react. The supervisor may send announce frames once per second and additionally, if an error

is detected.

9.3.6 Rapid Fault/Restore Cycles

Sometimes a series of rapid fault and restore cycles may occur in the DLR network for instance if a

connector is faulty. If the supervisor detects 5 faults within a time period of 30 seconds, it sets a

flag (Rapid Fault/Restore Cycles) which must explicitly be reset by the user then. This can be

accomplished via the “Clear Rapid Faults” service.

9.3.7 States of Supervisor

A ring supervisor may have five internal states.

 IDLE_STATE

 FAULT_STATE (active)

 NORMAL_STATE (active)

 FAULT_STATE (backup)

 NORMAL_STATE (backup)

For a ring supervisor, these states are defined as follows:

 FAULT_STATE (active)

The FAULT_STATE (active) is the state which is reached after power-on if the supervisor

has been configured as supervisor.

The supervisor reaches the FAULT_STATE (active) after the following conditions:

A. As mentioned above, at power-on

B. From NORMAL_STATE (active):

If a link failure occurs or if a link status frame indicating a link failure is received from a

ring node or if the beacon time-out timer expires on one port

C. From FAULT_STATE (backup):

If on both ports there is a time-out of the beacon frame from the currently active

supervisor

The FAULT_STATE (active) provides partial ring support, but the ring is still not fully

operative in FAULT_STATE (active).

If a beacon frame from a different supervisor than the currently active one is received on at

least one port and the precedence of this supervisor is higher, the state will fall back to the

FAULT_STATE (backup).

Appendix 251/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

If on both ports an own beacon frame has been received, the state changes to

NORMAL_STATE (active).

 NORMAL_STATE (active)

The supervisor reaches the NORMAL_STATE (active) only after the following condition:

 If an own beacon frame is received on both ports during FAULT_STATE (active).

The NORMAL_STATE provides full ring support.

The following conditions will cause a change to the FAULT_STATE (active):

A. A link failure has been detected.

B. A link status frame indicating a link failure is received from a ring node

C. The beacon time-out timer expires on one port

The following conditions will cause a change to the FAULT_STATE (backup):

A. A beacon frame from the active supervisor had a time-out on at least one port

B. If a beacon frame from a different supervisor with higher precedence is received on at

least one port.

 FAULT_STATE (backup)

The supervisor reaches the FAULT_STATE (backup) after the following conditions:

A. From NORMAL_STATE (active):

A beacon frame from a supervisor with higher precedence is received on at least one

port.

B. From FAULT_STATE (active):

A beacon frame from a different supervisor with higher precedence and the

precedence of this supervisor is higher.

C. From NORMAL_STATE (backup):

i. A link failure has been detected.

ii. A beacon frame with RING_FAULT_STATE is received from the active

supervisor

iii. The beacon time-out timer (from the active supervisor) expires on one port

iv. A beacon frame from a different supervisor with higher precedence and the

precedence of this supervisor is higher.

D. From IDLE_STATE:

A beacon frame is received from any supervisor on one port

The FAULT_STATE (backup) provides partial ring support, but the ring is still not fully

operative in FAULT_STATE (backup).

The following condition will cause a transition to the FAULT_STATE (active):

i. The beacon time-out timer (from the active supervisor) expires on both ports

The following condition will cause a transition to the NORMAL_STATE (backup):

ii. Beacon frames from the active supervisor are received on both ports and a

beacon frame with RING_NORMAL_STATE has been received.

Appendix 252/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

The following condition will cause a transition to the IDLE_STATE:

iii. The beacon time-out timer (from the active supervisor) expires on both ports

 NORMAL_STATE (backup)

The supervisor reaches the NORMAL_STATE (backup) only after the following condition:

 Beacon frames from the active supervisor are received on both ports and a beacon

frame with RING_NORMAL_STATE has been received.

The NORMAL_STATE (backup) provides full ring support. The following conditions will

cause a change to the FAULT_STATE (backup):

A. A link failure has been detected.

B. A beacon frame with RING_FAULT_STATE has been received from the active

supervisor on at least one port.

C. The beacon time-out timer (from the active supervisor) expires on both ports.

D. A beacon frame from a different supervisor with higher precedence and the

precedence of this supervisor is higher.

 IDLE_STATE

The IDLE_STATE is the state which is reached after power-on if the supervisor has not been

configured as supervisor.

In IDLE_STATE the network operates as linear network, there is no ring support active. If on

one port a beacon frame from a supervisor is received, the state changes to FAULT_STATE

(backup).

For more details refer to the DLR specification in reference [5], section “9-5 Device Level Ring”.

Appendix 253/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

9.4 Quick Connect

9.4.1 Introduction

In many automotive applications, robots, tool changers and framers are required to quickly

exchange tooling fixtures which contain a section or segment of an industrial network. This

requires the network and nodes to be capable of quickly connecting and disconnecting, both

mechanically, and logically.

While the mechanical means for connecting and disconnecting tooling exists, achieving a quick re-

establishment of a logical network connection between a network controller and a fully powered-

down node on Ethernet can take as much as 10 or more seconds. This is too slow for applications

that require very short cycle times.

The time in which a robot arm first makes electrical contact with a new tool, until the mechanical

lock being made, is typically 1 second. In applications where the tools are constantly being

connected and disconnected, the nodes need to be able to achieve a logical connection to the

controller and test the position of the tool in less than 1 second from the time the tool and the robot

make an electrical connection. This means that the node needs to be able to power up and

establish a connection in approximately 500 ms.

It should be noted that controller and robotic application behavior is outside the scope of this

specification.

The Quick Connect feature is an option enabled on a node-by-node basis. When enabled, the

Quick Connect feature will direct the EtherNet/IP target device to quickly power up and join an

EtherNet/IP network.

In order for Quick Connect devices to power up as quickly as possible, manufacturers should

minimize the hardware delay at power-up and reset as much as possible.

The Quick Connect feature is enabled within the device through the non-volatile EtherNet/IP Quick

Connect attribute (12) in the TCP/IP object. A device shall have this feature disabled as the factory

default.

The goal for Quick Connect connection time is 500ms. Specifically, this is defined as the

guaranteed repeatable time between the electrical contact of power and Ethernet signals at the

tool changer, and when the newly connected devices are ready to send the first CIP I/O data

packet.

Quick Connect connection time is comprised of several key time durations. The majority of the

Quick Connect connection time is due to the Quick Connect target devices’ power-up time. Also

contributing to the connection time is the amount of time it takes a controller to detect the newly

attached device and send a Forward Open to start the connection process. The overall 500ms

Quick Connect connection time is additive, and consists of the Quick Connect devices’ power-up

time, the controller’s connection establishment time, and actual network communication time. Also,

the network communication time is dependent on the network topology. For instance, in a linear

topology, the network communication time will be dependent on all devices powering up, plus the

delay through all of the devices. The final application connection time assumes that connections to

ALL of the I/O devices on the tool have been established.

The following figure shows the events, states, and sequence in which a controller shall discontinue

communications with a device on a given tool and then establish a connection to a device on a

new tool. Note: There can be multiple I/O devices on the tool. This sequence is repeated for each

connection from the controller to the I/O devices on the tool.

Appendix 254/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Figure 61: Quick Connect System Sequence Diagram

There are two classes of Quick Connect devices.

 Class A Quick Connect target devices is able to power-up, send the first Gratuitous ARP

packet, and be ready to accept a TCP connection in less than 350ms.

 Class B Quick Connect target devices shall be able to power-up, send the first Gratuitous

ARP packet, and be ready to accept a TCP connection in less than 2 seconds.

Appendix 255/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

9.4.2 Requirements

EtherNet/IP target devices supporting QuickConnect must adhere to the following requirements:

 In order to be able to establish a physical link as fast as possible all Ethernet ports shall be

set to 100 MBit/s and full duplex

 When in Quick Connect mode Quick Connect devices shall not use Auto-MDIX (detection of

the required cable connection type)

 To enable the use of straight-thru cables when Auto-MIDX is disabled, the following rules

shall be applied:

A. On a device with only one port: the port shall be configured as MDI.

B. On devices with 2 external Ethernet ports:

The labels for the 2 external ports shall include an ordinal indication (e.g.: Port 1

and Port 2, or A and B)

The port with the lower ordinal indication shall be configured as MDI.

The port with the upper ordinal indication shall be configured as MDIX.

 The target device shall support EtherNet/IP Quick Connect attribute (12) in the TCP/IP

Object that enables the Quick Connect feature.

This optional attribute 12 can be activated using the command

EIP_OBJECT_CIP_OBJECT_ATTRIBUTE_ACTIVATE_REQ/CNF – CIP Object Attribute

Activate Request)

 The target device shall have the Quick Connect keywords and values included in the

device’s EDS file.

Appendix 256/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

9.5 Non-Null Forward Open and Null Forward Open

9.5.1 Introduction

The Forward_Open service (Service Code = 0x54) is used to establish a connection with a target

device. This service results in local connection establishment on each link along the path.

A Forward Open can be either

 a non-Null Forward Open or

 a Null Forward Open.

Non-Null Forward Open: A non-Null Forward Open is a Forward_Open service request for which

at least one of the Connection Types in the O2T or T2O network connection parameter field is not

00 (NULL).

Null Forward Open: A Null Forward Open is a Forward_Open service request for which the

Connection Type in both the O2T and T2O network connection parameter fields are both 00

(NULL) and results in no connection being established.

A Forward Open (both Null and non-Null) can be either not matching or matching. A matching

Forward_Open service request received by the target device is one where the Connection Triad

matches an existing connection. The Connection Triad relates to the combination of “Connection

Serial Number”, “Originator Vendor ID” and “Originator Serial Number” parameters, which are all

part of the forward open request.

Appendix 257/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

9.5.2 Use cases

The following table lists the use cases of each combination of non-Null/Null and not

matching/matching Forward Opens:

Use case Type and description

1 Non-Null / not matching Open a connection

This type is used to open implicit connections (Exclusive Owner, Input Only, Listen Only) and explicit
connections. This is what the Hilscher EtherNet/IP protocol stack support by default. There is no need to
activate this functionality through the protocol stack’s API.

2 Non-Null / matching Error

The Hilscher EtherNet/IP protocol stack will reject this type of forward open as it is typically happens when
in case the same forward open request ist received a seconds time while the connection has already been
established.

3a Null / not matching – Ping a device

A Null Forward Open for which the Connection Triad does not match an existing connection’s parameters
can be used to “ping” a device.

The following characteristics apply:

 Single application path "20 01 24 01" (Identity Object).

 An electronic key segment may be included.

 No data segment is included.

 No connection is established.

3b Null / not matching – Configure

A Null Forward Open for which the Connection Triad does not match an existing connection's parameters
can be used to configure an application of the device.

The following characteristics apply:

 A configuration application path and data segment is included in the request. The data is sent to the
application specified by the path and applied.

 If the entire configuration cannot be applied by the application then none of the configuration shall be
applied and the appropriate error code returned.

 An electronic key segment may be included.

 No connection is established.

4 Null / matching – Reconfigure

A Null Forward Open for which the Connection Triad matches an existing parameters of the connection
can be used to reconfigure a target application of the device.

The following characteristics apply:

 A configuration application path and data segment is included in the request and they are sent to the
application to change the application configuration.

 If the entire configuration cannot be applied by the application then none of the configuration shall be
applied and the appropriate error code returned.

 The connection is not interrupted due to this request.

Note: If the interpretation of the consume/produce data changes as a result of the reconfigure operation,

care must be taken in the producing and consuming applications. The CIP specification does not provide a
mechanism to coordinate between the producing and consuming applications, so a change in the meaning
of the real time data can result in unexpected operation. Devices have the option to reject a reconfiguration
request with an Object State Conflict error (General Status = 0x0C), to prevent this situation.

Table 162: Use cases of Forward Open

Appendix 258/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

9.5.3 Using the Null Forward Open Feature

Typically, EtheNet/IP devices support only use case 1. In this case, a configuration assembly

instance is available to transport device-specific configuration data to the host application. In this

case, the configuration data is attached to the Forward Open request and is provided to the host

application (also realized via packet EIP_OBJECT_CONNECTION_CONFIG_IND - 0x1A40). This

way of configuration does not require the support of the Null Forward Open feature.

In addition to use case 1, the Null Forward Open feature adds the following functionality to the

device:

1. Configure the host application of the device without opening a connection.

2. Re-configure the host application of the device while the IO connection is already running.

E.g. the originator of the connection (PLC) can change the configuration of the device during

run-time

9.5.3.1 Activatation

The Null Forward Open use cases 3a, 3b and 4 (see section Use cases on page 257) are not

supported by default. In order to support them, the host application must enable the Null Forward

Open feature by sending the packet EIP_OBJECT_SET_PARAMETER_REQ with bit 8 set (see

section EIP_OBJECT_SET_PARAMETER_REQ/CNF – Set Parameter on page 181).

9.5.3.2 Handling of use cases

Use case 3a: Ping

The protocol stack handles use case 3a (“Ping”). There is not need for the host application to do

anything.

Use case 1, 3b and 4: Configure and Re-Configure

Whenever the protocol stack receives a Null Forward Open that matches the above mentioned

characteristics (3a or 4), it will send the packet EIP_OBJECT_CONNECTION_CONFIG_IND

(0x1A40) to the host application (see also section EIP_OBJECT_CONNECTION_CONFIG_IND/RES

– Indication of Configuration Data received during Connection Establishment on page 171).

Note: The protocol stack sends this indication also for use case 1 when a configuration

assembly instances is addressed in the Forward Open request.

When processing the indication packet, the host application now must determine whether it can

apply the provided configuration data in its current state. The host application can determine the

actual Forward Open use case by taking the following parameters into account:

 tConnectionTriad

 ulOTParameter

 ulTOParameter

Appendix 259/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

If (“Connection Type” inside ulOTParameter or ulTOParameter is != 0)

{

Use case 1

}

else if (“Connection Type” inside ulOTParameter and ulTOParameter is 0)

{

If (tConnectionTriad.fConnectionTriadMatch == false)

{

Use case 3B

}

else

{

Use case 4

}

}

The CIP specification does not define any specific behavior for the host application with respect to

use cases 1, 3b and 4. It is entirely up to the device manufacturer what to do in each use case.

The easiest way will be to always accept the received configuration data. Of course, this also

depends on the configuration data itself.

9.5.3.3 Preparing the EDS file for the Null Forward Open Support

In order to make the Null Forward Open also available with the EDS file, the following adaptions

can be made using the EDS file editor “EZ-EDS” (Freeware tool can be downloaded on

https://www.odva.org)

For the Null Forward Open “Ping”

Add a new entry to the connection manager section and chose type “Ping a device”. EZ-EDS will

configure all connection properties for you.

Figure 62: EDS: connection entry for Null Forward Open - "Ping"

https://www.odva.org/

Appendix 260/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

For the Null Forward Open “Configure” / “Re-Configure”

Chose the connection entry that addresses a configuration assembly and set the check mark for

“allow Reconfiguration”.

Figure 63: EDS: connection entry for Null Forward Open - "Re-Configuration"

Appendix 261/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

9.5.3.4 Preparing the STC file for the Null Forward Open Support

In order to make the Null Forward Open also available SCT file of the Conformance Test tool, the

following adaptions need to be made:

For the Null Forward Open “Ping”

Add a new connection entry to the connection manager with the following properties:

Figure 64: STC: connection entry for Null Forward Open - "Ping"

Appendix 262/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

For the Null Forward Open “Configure” / “Re-Configure”

Chose the connection entry that shall be “reconfigurable” and set the following check marks in the

connection properties:

Figure 65: STC: connection entry for Null Forward Open - "Re-Configuration"

Appendix 263/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

9.6 Legal Notes

Copyright

© Hilscher Gesellschaft für Systemautomation mbH

All rights reserved.

The images, photographs and texts in the accompanying materials (in the form of a user's manual,

operator's manual, Statement of Work document and all other document types, support texts,

documentation, etc.) are protected by German and international copyright and by international

trade and protective provisions. Without the prior written consent, you do not have permission to

duplicate them either in full or in part using technical or mechanical methods (print, photocopy or

any other method), to edit them using electronic systems or to transfer them. You are not permitted

to make changes to copyright notices, markings, trademarks or ownership declarations.

Illustrations are provided without taking the patent situation into account. Any company names and

product designations provided in this document may be brands or trademarks by the

corresponding owner and may be protected under trademark, brand or patent law. Any form of

further use shall require the express consent from the relevant owner of the rights.

Important notes

Utmost care was/is given in the preparation of the documentation at hand consisting of a user's

manual, operating manual and any other document type and accompanying texts. However, errors

cannot be ruled out. Therefore, we cannot assume any guarantee or legal responsibility for

erroneous information or liability of any kind. You are hereby made aware that descriptions found

in the user's manual, the accompanying texts and the documentation neither represent a

guarantee nor any indication on proper use as stipulated in the agreement or a promised attribute.

It cannot be ruled out that the user's manual, the accompanying texts and the documentation do

not completely match the described attributes, standards or any other data for the delivered

product. A warranty or guarantee with respect to the correctness or accuracy of the information is

not assumed.

We reserve the right to modify our products and the specifications for such as well as the

corresponding documentation in the form of a user's manual, operating manual and/or any other

document types and accompanying texts at any time and without notice without being required to

notify of said modification. Changes shall be taken into account in future manuals and do not

represent an obligation of any kind, in particular there shall be no right to have delivered

documents revised. The manual delivered with the product shall apply.

Under no circumstances shall Hilscher Gesellschaft für Systemautomation mbH be liable for direct,

indirect, ancillary or subsequent damage, or for any loss of income, which may arise after use of

the information contained herein.

Appendix 264/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Liability disclaimer

The hardware and/or software was created and tested by Hilscher Gesellschaft für

Systemautomation mbH with utmost care and is made available as is. No warranty can be

assumed for the performance or flawlessness of the hardware and/or software under all application

conditions and scenarios and the work results achieved by the user when using the hardware

and/or software. Liability for any damage that may have occurred as a result of using the hardware

and/or software or the corresponding documents shall be limited to an event involving willful intent

or a grossly negligent violation of a fundamental contractual obligation. However, the right to assert

damages due to a violation of a fundamental contractual obligation shall be limited to contract-

typical foreseeable damage.

It is hereby expressly agreed upon in particular that any use or utilization of the hardware and/or

software in connection with

 Flight control systems in aviation and aerospace;

 Nuclear fission processes in nuclear power plants;

 Medical devices used for life support and

 Vehicle control systems used in passenger transport

shall be excluded. Use of the hardware and/or software in any of the following areas is strictly

prohibited:

 For military purposes or in weaponry;

 For designing, engineering, maintaining or operating nuclear systems;

 In flight safety systems, aviation and flight telecommunications systems;

 In life-support systems;

 In systems in which any malfunction in the hardware and/or software may result in physical

injuries or fatalities.

You are hereby made aware that the hardware and/or software was not created for use in

hazardous environments, which require fail-safe control mechanisms. Use of the hardware and/or

software in this kind of environment shall be at your own risk; any liability for damage or loss due to

impermissible use shall be excluded.

Appendix 265/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Warranty

Hilscher Gesellschaft für Systemautomation mbH hereby guarantees that the software shall run

without errors in accordance with the requirements listed in the specifications and that there were

no defects on the date of acceptance. The warranty period shall be 12 months commencing as of

the date of acceptance or purchase (with express declaration or implied, by customer's conclusive

behavior, e.g. putting into operation permanently).

The warranty obligation for equipment (hardware) we produce is 36 months, calculated as of the

date of delivery ex works. The aforementioned provisions shall not apply if longer warranty periods

are mandatory by law pursuant to Section 438 (1.2) BGB, Section 479 (1) BGB and Section 634a

(1) BGB [Bürgerliches Gesetzbuch; German Civil Code] If, despite of all due care taken, the

delivered product should have a defect, which already existed at the time of the transfer of risk, it

shall be at our discretion to either repair the product or to deliver a replacement product, subject to

timely notification of defect.

The warranty obligation shall not apply if the notification of defect is not asserted promptly, if the

purchaser or third party has tampered with the products, if the defect is the result of natural wear,

was caused by unfavorable operating conditions or is due to violations against our operating

regulations or against rules of good electrical engineering practice, or if our request to return the

defective object is not promptly complied with.

Costs of support, maintenance, customization and product care

Please be advised that any subsequent improvement shall only be free of charge if a defect is

found. Any form of technical support, maintenance and customization is not a warranty service, but

instead shall be charged extra.

Additional guarantees

Although the hardware and software was developed and tested in-depth with greatest care,

Hilscher Gesellschaft für Systemautomation mbH shall not assume any guarantee for the suitability

thereof for any purpose that was not confirmed in writing. No guarantee can be granted whereby

the hardware and software satisfies your requirements, or the use of the hardware and/or software

is uninterruptable or the hardware and/or software is fault-free.

It cannot be guaranteed that patents and/or ownership privileges have not been infringed upon or

violated or that the products are free from third-party influence. No additional guarantees or

promises shall be made as to whether the product is market current, free from deficiency in title, or

can be integrated or is usable for specific purposes, unless such guarantees or promises are

required under existing law and cannot be restricted.

Appendix 266/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Confidentiality

The customer hereby expressly acknowledges that this document contains trade secrets,

information protected by copyright and other patent and ownership privileges as well as any related

rights of Hilscher Gesellschaft für Systemautomation mbH. The customer agrees to treat as

confidential all of the information made available to customer by Hilscher Gesellschaft für

Systemautomation mbH and rights, which were disclosed by Hilscher Gesellschaft für

Systemautomation mbH and that were made accessible as well as the terms and conditions of this

agreement itself.

The parties hereby agree to one another that the information that each party receives from the

other party respectively is and shall remain the intellectual property of said other party, unless

provided for otherwise in a contractual agreement.

The customer must not allow any third party to become knowledgeable of this expertise and shall

only provide knowledge thereof to authorized users as appropriate and necessary. Companies

associated with the customer shall not be deemed third parties. The customer must obligate

authorized users to confidentiality. The customer should only use the confidential information in

connection with the performances specified in this agreement.

The customer must not use this confidential information to his own advantage or for his own

purposes or rather to the advantage or for the purpose of a third party, nor must it be used for

commercial purposes and this confidential information must only be used to the extent provided for

in this agreement or otherwise to the extent as expressly authorized by the disclosing party in

written form. The customer has the right, subject to the obligation to confidentiality, to disclose the

terms and conditions of this agreement directly to his legal and financial consultants as would be

required for the customer's normal business operation.

Export provisions

The delivered product (including technical data) is subject to the legal export and/or import laws as

well as any associated regulations of various countries, especially such laws applicable in

Germany and in the United States. The products / hardware / software must not be exported into

such countries for which export is prohibited under US American export control laws and its

supplementary provisions. You hereby agree to strictly follow the regulations and to yourself be

responsible for observing them. You are hereby made aware that you may be required to obtain

governmental approval to export, reexport or import the product.

Appendix 267/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

9.7 List of Tables
Table 1: List of Revisions .. 6
Table 2: Names of Tasks in EtherNet/IP Firmware ... 10
Table 3: Terms, Abbreviations and Definitions .. 11
Table 4: Network Protocols for Automation offered by the CIP Family of Protocols .. 14
Table 5: The CIP Family of Protocols .. 15
Table 6: Uniform Addressing Scheme ... 21
Table 7: Ranges for Object Class Identifiers ... 22
Table 8: Ranges for Attribute Identifiers .. 22
Table 9: Ranges for Service Codes .. 23
Table 10: Service Codes according to the CIP specification ... 24
Table 11: Forward_Open Frame – The Most Important Parameters ... 27
Table 12: 32-Bit Real Time Header ... 28
Table 13: Relationship of Connections with Different Application Connection Types .. 29
Table 14: Comparison of basic Types of Ethernet/IP Communication: Implicit vs. Explicit Messaging 31
Table 15: CIP Data Types ... 36
Table 16: Class Attributes ... 43
Table 17: Instance Attributes ... 44
Table 18: Identity Object - Class Attributes ... 44
Table 19: Identity Object - Instance Attributes .. 45
Table 20: Assembly Object - Class Attributes ... 47
Table 21: Assembly Object - Instance Attributes ... 47
Table 22: Assembly Object - Class Attributes .. 48
Table 23: TCP/IP Interface - Class Attributes .. 49
Table 24: TCP/IP Interface - Instance Attributes ... 52
Table 25: TCP/IP Interface - Instance Attribute 1 - Status... 53
Table 26: TCP/IP Interface - Instance Attribute 2 – Configuration Capability .. 54
Table 27: TCP/IP Interface - Instance Attribute 3 – Configuration Control .. 55
Table 28: TCP/IP Interface - Instance Attribute 4 – Physical Link ... 56
Table 29: TCP/IP Interface - Instance Attribute 5 – Interface Control ... 57
Table 30: TCP/IP Interface - Instance Attribute 9 – Mcast Config (Alloc Control Values) ... 58
Table 31: TCP/IP Interface - Instance Attribute 11 – Last Conflict Detected (Acd Activity) ... 59
Table 32: TCP/IP Interface - Instance Attribute 11 – Last Conflict Detected (Arp PDU) ... 60
Table 33: Ethernet Link - Class Attributes ... 61
Table 34: Ethernet Link - Instance Attributes .. 63
Table 35: Ethernet Link - Instance Attribute 2 – Interface Status Flags .. 64
Table 36: Ethernet Link - Instance Attribute 6 – Interface Control (Control Bits) ... 65
Table 37: Ethernet Link - Instance Attribute 7 – Interface Types ... 66
Table 38: Ethernet Link - Instance Attribute 8 – Interface State .. 66
Table 39: Ethernet Link - Instance Attribute 9 – Admin State .. 66
Table 40: Ethernet Link - Instance Attribute 11 – Capability Bits ... 67
Table 41: DLR - Class Attributes ... 69
Table 42: DLR - Instance Attributes .. 69
Table 43: DLR - Instance Attribute 2 – Network Status ... 70
Table 44: DLR - Instance Attribute 12 – Capability Flags .. 70
Table 45: QoS - Class Attributes ... 71
Table 46: QoS - Instance Attributes .. 72
Table 47: QoS - Instance Attribute 4-8 – DSCP Values .. 73
Table 48: Packet Sets ... 78
Table 49: Basic Packet Set - Configuration Packets ... 79
Table 50: Additional Request Packets Using the Basic Packet Set .. 80
Table 51: Indication Packets Using the Basic Packet Set ... 80
Table 52: Extended Packet Set - Configuration Packets ... 82
Table 53: Additional Request Packets Using the Extended Packet Set .. 84
Table 54: Indication Packets Using the Extended Packet Set ... 85
Table 55: Stack Packet Set - Configuration Packets ... 87
Table 56: Indication Packets Using the Stack Packet Set ... 89
Table 57: Overview over the Packets of the EIS_APS-Task of the EtherNet/IP-Adapter Protocol Stack 91
Table 58: EIP_APS_PACKET_SET_CONFIGURATION_PARAMETERS_REQ – Set Configuration Parameters Request ... 94
Table 59: EIP_APS_PACKET_SET_CONFIGURATION_PARAMETERS_REQ – Configuration Parameter Set V3 98
Table 60: Default device name for loadable firmwares ... 99
Table 61: Definition of area ulTcpFlag (Lower 16 bit) ... 100
Table 62: Definition of area ulTcpFlag (Upper 16 bit) ... 100
Table 63: Description of available flags for the area ulTcpFlag ... 101
Table 64: Input Assembly Flags/ Output Assembly Flags ... 102
Table 65: EIP_APS_PACKET_SET_CONFIGURATION_PARAMETERS_CNF – Set Configuration Parameters Confirmation

... 103

Appendix 268/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Table 66: EIP_APS_CLEAR_WATCHDOG_REQ – Request to clear watchdog error .. 105
Table 67: EIP_APS_CLEAR_WATCHDOG_CNF – Confirmation to clear watchdog request .. 106
Table 68: EIP_APS_SET_PARAMETER_REQ Flags .. 107
Table 69: EIP_APS_SET_PARAMETER_REQ – Set Parameter Flags Request .. 108
Table 70: EIP_APS_SET_PARAMETER_CNF – Confirmation to Set Parameter Flags Request 109
Table 71: EIP_APS_MS_NS_CHANGE_IND – Module Status/ Network Status Change Indication 111
Table 72: EIP_APS_MS_NS_CHANGE_RES – Response to Module Status/ Network Status Change Indication 112
Table 73: EIP_APS_GET_MS_NS_REQ – Get Module Status/ Network Status Request ... 113
Table 74: EIP_APS_GET_MS_NS_CNF – Confirmation of Get Module Status/ Network Status Request 114
Table 75: EIP_APS_SET_MODULE_STATUS_REQ – Set the Module Status ... 115
Table 76: EIP_APS_GET_MS_NS_CNF – Confirmation of Get Module Status/ Network Status Request 116
Table 77 RCX_SET_FW_PARAMETER_REQ ParameterID .. 117
Table 78: Overview over Packets of the EIS_OBJECT -Task of the EtherNet/IP-Adapter Protocol Stack 118
Table 79: EIP_OBJECT_FAULT_IND – Indication Packet of a Fault .. 120
Table 80: EIP_OBJECT_FAULT_RES – Response to Indication Packet of a fatal Fault ... 121
Table 81: Meaning of variable ulConnectionState .. 122
Table 82: Meaning of variable ulExtendedState .. 122
Table 83: ulConnectionType - Enum ... 123
Table 84: Structure tExtInfo.. 123
Table 85: Meaning of Variable ulProParams .. 124
Table 86: Priority ... 124
Table 87: Connection Type ... 125
Table 88: Coding of Timeout Multiplier Values .. 125
Table 89: EIP_OBJECT_CONNECTION_IND – Indication of Connection .. 129
Table 90: Address Ranges for the ulClass parameter ... 130
Table 91: EIP_OBJECT_MR_REGISTER_REQ – Request Command for register a new class object 132
Table 92: EIP_OBJECT_MR_REGISTER_CNF – Confirmation Command of register a new class object 133
Table 93: Specified Ranges of numeric Values of Service Codes (Variable ulService) ... 135
Table 94: Service Codes for the Common Services according to the CIP specification .. 136
Table 95: Most common General Status Codes .. 137
Table 96: EIP_OBJECT_CL3_SERVICE_IND - Indication of acyclic Data Transfer ... 139
Table 97: EIP_OBJECT_CL3_SERVICE_RES – Response to Indication of acyclic Data Transfer 140
Table 98: Assembly Instance Number Ranges ... 141
Table 99: EIP_OBJECT_AS_REGISTER_REQ – Request Command for create an Assembly Instance 143
Table 100: Assembly Instance Property Flags .. 146
Table 101: EIP_OBJECT_AS_REGISTER_CNF – Confirmation Command of register a new class object 147
Table 102: EIP_OBJECT_ID_SETDEVICEINFO_REQ – Request Command for open a new connection 151
Table 103: EIP_OBJECT_ID_SETDEVICEINFO_CNF – Confirmation Command of setting device information 153
Table 104: EIP_OBJECT_GET_INPUT_REQ – Request Command for getting Input Data... 155
Table 105: EIP_OBJECT_GET_INPUT_CNF – Confirmation Command of getting the Input Data 156
Table 106: Allowed Values of ulResetTyp ... 157
Table 107: EIP_OBJECT_RESET_IND – Reset Request from Bus Indication .. 160
Table 108: EIP_OBJECT_RESET_RES – Response to Indication to Reset Request .. 161
Table 109: EIP_OBJECT_RESET_REQ – Bus Reset Request and Confirmation .. 163
Table 110: EIP_OBJECT_RESET_CNF – Response to Indication to Reset Request .. 164
Table 111: Ready Request Parameter Values .. 165
Table 112: EIP_OBJECT_READY_REQ - Request Ready State of the Application .. 166
Table 113: EIP_OBJECT_READY_CNF – Confirmation Command for Request Ready State of the Application 167
Table 114: EIP_OBJECT_READY_REQ - Register Service .. 169
Table 115: EIP_OBJECT_READY_CNF – Confirmation Command for Register Service Request 170
Table 116: EIP_OBJECT_CONNECTION_CONFIG_IND – Indicate Configuration Data during Connection Establishment

... 175
Table 117: EIP_OBJECT_CONNECTION_CONFIG_RES – Response command of connection configuration indication . 177
Table 118: EIP_OBJECT_TI_SET_SNN_REQ – Set the Safety Network Number of the TCP/IP Interface Object 179
Table 119: EIP_OBJECT_TI_SET_SNN_CNF – Confirmation command of set safety network number request 180
Table 120: EIP_OBJECT_SET_PARAMETER_REQ – Flags ... 182
Table 121: EIP_OBJECT_SET_PARAMETER_REQ – Set Parameter Request Packet ... 184
Table 122: EIP_OBJECT_SET_PARAMETER_CNF – Set Parameter Confirmation Packet .. 185
Table 123: EIP_OBJECT_SET_PARAMETER_CNF – Packet Status/Error .. 185
Table 124: EIP_OBJECT_AS_TRIGGER_TYPE_IND – Assembly Trigger Type Indication ... 190
Table 125: EIP_OBJECT_AS_TRIGGER_TYPE_RES – Assembly Trigger Type Response .. 191
Table 126: EIP_OBJECT_CFG_QOS_REQ – Enable Quality of Service Object .. 195
Table 127: EIP_OBJECT_CFG_QOS_CNF – Confirmation Command for Unregister Application 195
Table 128: Generic Error (Variable ulGRC)... 196
Table 129: EIP_OBJECT_CIP_SERVICE_REQ – CIP Service Request .. 198

Appendix 269/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Table 130: EIP_OBJECT_CIP_SERVICE_CNF – Confirmation to CIP Service Request .. 200
Table 131: EIP_OBJECT_CIP_OBJECT_CHANGE_IND – CIP Object Change Indication ... 203
Table 132: Information Flags – ulInfoFlags ... 203
Table 133: EIP_OBJECT_CIP_OBJECT_CHANGE_RES – Response to CIP Object Change Indication 204
Table 134: Overview of optional CIP objects attributes that can be activated ... 205
Table 135: EIP_OBJECT_CIP_OBJECT_ATTRIBUT E_ACTIVATE_REQ – Activate/ Deactivate Slave Request 207
Table 136: EIP_OBJECT_CIP_OBJECT_ATTRIBUTE_ACTIVATE_CNF – Confirmation to Activate/ Deactivate Slave

Request ... 208
Table 137: RCX_LINK_STATUS_CHANGE_IND_T - Link Status Change Indication.. 210
Table 138: Structure RCX_LINK_STATUS_CHANGE_IND_DATA_T .. 210
Table 139: RCX_LINK_STATUS_CHANGE_RES_T - Link Status Change Response ... 211
Table 140:EIP_OBJECT_FWD_OPEN_FWD_IND – Forward_Open indication ... 215
Table 141: EIP_CM_APP_FWOPEN_IND_T - Forward_Open request data .. 216
Table 142: EIP_OBJECT_FWD_OPEN_FWD_RES – Response of Forward_Open indication ... 217
Table 143: EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND – Forward_Open completion indication 219
Table 144: EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_RES – Response of Forward_Open completion indication .. 220
Table 145:EIP_OBJECT_FWD_CLOSE_FWD_IND – Forward_Close request indication.. 223
Table 146: EIP_CM_APP_FWCLOSE_IND_T - Forward_Close request data.. 224
Table 147: EIP_OBJECT_FWD_CLOSE_FWD_RES – Response of Forward_Close indication ... 225
Table 148: EIP_OBJECT_CREATE_OBJECT_TIMESYNC_REQ – Create Time Sync Object Request 227
Table 149: EIP_OBJECT_CREATE_OBJECT_TIMESYNC_CNF – Confirmation of Create Time Sync Object Request.... 228
Table 150: Names of Queues in EtherNet/IP Firmware .. 230
Table 151: Status/Error Codes EipObject-Task .. 232
Table 152: Diagnostic Codes EipObject-Task ... 232
Table 153: Status/Error Codes EipEncap-Task ... 234
Table 154: Diagnostic Codes EipEncap-Task ... 235
Table 155: Error Codes EIS_APS-Task .. 236
Table 156: Status/Error Codes Eip_DLR-Task ... 238
Table 157: General Error Codes according to CIP Standard .. 240
Table 158: Possible values of the Module Status .. 241
Table 159: Possible values of the Network Status .. 242
Table 160: Default Assignment of DSCPs in EtherNet/IP ... 244
Table 161: Default Assignment of 802.1D/Q Priorities in EtherNet/IP ... 245
Table 162: Use cases of Forward Open .. 257

Appendix 270/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

9.8 List of Figures
Figure 1: Source/Destination vs. Producer/Consumer Model .. 18
Figure 2: A class of objects ... 20
Figure 3: Example for Addressing Schema with Class – Instance – Attribute ... 21
Figure 4: Object Addressing Example ... 22
Figure 5: Producer Consumer Model – Point-2-Point vs. Multicast Messaging ... 32
Figure 6: Example of possible Assembly Mapping .. 33
Figure 7: Typical Device Object Model .. 38
Figure 8: Default Hilscher Device Object Model .. 42
Figure 9: Task Structure of the EtherNet/IP Adapter Stack ... 74
Figure 10: Loadable Firmware Scenario ... 77
Figure 11: Linkable Object Modules Scenario ... 77
Figure 12: Configuration Sequence Using the Basic Packet Set... 79
Figure 13: Configuration Sequence Using the Extended Packet Set .. 83
Figure 14: Configuration Sequence Using the Stack Packet Set .. 88
Figure 15: Sequence Diagram for the EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ/CNF Packet 92
Figure 16: Sequence Diagram for the EIP_APS_CLEAR_WATCHDOG_REQ/CNF Packet .. 104
Figure 17: Sequence diagram for the EIP_APS_SET_PARAMETER_REQ/CNF packet ... 107
Figure 18: Sequence Diagram for the EIP_APS_MS_NS_CHANGE_IND/RES Packet .. 110
Figure 19: Sequence Diagram for the EIP_APS_GET_MS_NS_REQ/CNF Packet .. 113
Figure 20: Sequence Diagram for the EIP_OBJECT_FAULT_IND/RES Packet for the Basic and Extended Packet Set119
Figure 21: Sequence Diagram for the EIP_OBJECT_FAULT_IND/RES Packet for the Stack Packet Set 119
Figure 22: Sequence Diagram for the EIP_OBJECT_CONNECTION_IND/RES Packet for the Basic and Extended Packet

Set ... 126
Figure 23: Sequence Diagram for the EIP_OBJECT_CONNECTION_IND/RES Packet for the Stack Packet Set 126
Figure 24: Sequence Diagram for the EIP_OBJECT_MR_REGISTER_REQ/CNF Packet for the Extended Packet Set ... 130
Figure 25: Sequence Diagram for the EIP_OBJECT_MR_REGISTER_REQ/CNF Packet for the Stack Packet Set 131
Figure 26: Sequence Diagram for the EIP_OBJECT_CL3_SERVICE_IND/RES Packet for the Extended Packet Set ... 137
Figure 27: Sequence Diagram for the EIP_OBJECT_CL3_SERVICE_IND/RES Packet for the Stack Packet Set 138
Figure 28: Sequence Diagram for the EIP_OBJECT_AS_REGISTER_REQ/CNF Packet for the Extended Packet Set ... 142
Figure 29: Sequence Diagram for the EIP_OBJECT_AS_REGISTER_REQ/CNF Packet for the Stack Packet Set 142
Figure 30: Sequence Diagram for the EIP_OBJECT_ID_SETDEVICEINFO_REQ/CNF Packet for the Extended Packet

Set ... 148
Figure 31: Sequence Diagram for the EIP_OBJECT_ID_SETDEVICEINFO_REQ/CNF Packet for the Stack Packet Set

... 148
Figure 32: Sequence Diagram for the EIP_OBJECT_RESET_IND/RES Packet for the Basic Packet Set 158
Figure 33: Sequence Diagram for the EIP_OBJECT_RESET_IND/RES Packet for the Extended Packet Set 158
Figure 34: Sequence Diagram for the EIP_OBJECT_RESET_IND/RES Packet for the Stack Packet Set 159
Figure 35: Sequence Diagram for the EIP_OBJECT_RESET_REQ/CNF Packet for the Extended Packet Set 162
Figure 36: Sequence Diagram for the EIP_OBJECT_RESET_REQ/CNF Packet for the Stack Packet Set 162
Figure 37: Sequence Diagram for the EIP_OBJECT_READY_REQ/CNF Packet .. 165
Figure 38: Sequence Diagram for the EIP_OBJECT_REGISTER_SERVICE_REQ/CNF Packet for the Extended Packet

Set ... 168
Figure 39: Sequence Diagram for the EIP_OBJECT_REGISTER_SERVICE_REQ/CNF Packet for the Stack Packet Set

... 168
Figure 40: Sequence Diagram for the EIP_OBJECT_CONNECTION_CONFIG_IND/RES Packet for the Extended Packet

Set ... 173
Figure 41: Sequence Diagram for the EIP_OBJECT_CONNECTION_CONFIG_IND/RES Packet for the Stack Packet Set

... 173
Figure 42: Sequence Diagram for the EIP_OBJECT_TI_SET_SNN_REQ/CNF Packet for the Extended Packet 178
Figure 43: Sequence Diagram for the EIP_OBJECT_TI_SET_SNN_REQ/CNF Packet for the Stack Packet 178
Figure 44: Sequence Diagram for the EIP_OBJECT_SET_PARAMETER_REQ/CNF Packet for the Extended Packet 182
Figure 45: Sequence Diagram for the EIP_OBJECT_SET_PARAMETER_REQ/CNF Packet for the Stack Packet 183
Figure 46: DPM output area for EtherNet/IP, AOT and COS data production not enabled. .. 186
Figure 47: DPM output area for EtherNet/IP, AOT and COS data production enabled. .. 187
Figure 48: Sequence Diagram for the EIP_OBJECT_AS_TRIGGER_TYPE_IND/RES Packet.. 188
Figure 49: Sequence Diagram for the EIP_OBJECT_CFG_QOS_REQ/CNF Packet for the Extended Packet Set 192
Figure 50: Sequence Diagram for the EIP_OBJECT_CFG_QOS_REQ/CNF Packet for the Stack Packet Set 192
Figure 51: Sequence Diagram for the EIP_OBJECT_CIP_SERVICE_REQ/CNF Packet for the Basic and Extended

Packet Set ... 197
Figure 52: Sequence Diagram for the EIP_OBJECT_CIP_SERVICE_REQ/CNF Packet for the Stack Packet Set 197
Figure 53: Sequence Diagram for the EIP_OBJECT_CIP_OBJECT_CHANGE_IND/RES Packet for the Basic and

Extended Packet Set ... 201

Appendix 271/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

Figure 54: Sequence Diagram for the EIP_OBJECT_CIP_OBJECT_CHANGE_IND/RES Packet for the Stack Packet Set

... 202
Figure 55: Sequence Diagram for the EIP_OBJECT_CIP_OBJECT_ATTRIBUTE_ACTIVATE_REQ/CNF Packet for the

Extended Packet Set ... 205
Figure 56: Sequence Diagram for the EIP_OBJECT_CIP_OBJECT_ATTRIBUTE_ACTIVATE_REQ/CNF Packet for the

Stack Packet Set ... 206
Figure 57: Packet sequence for Forward_Open forwarding functionality .. 213
Figure 58: Packet sequence for Forward_Close forwarding functionality .. 222
Figure 59: TOS Byte in IP v4 Frame Definition ... 243
Figure 60: Ethernet Frame with IEEE 802.1Q Header .. 244
Figure 61: Quick Connect System Sequence Diagram ... 254
Figure 62: EDS: connection entry for Null Forward Open - "Ping" .. 259
Figure 63: EDS: connection entry for Null Forward Open - "Re-Configuration" ... 260
Figure 64: STC: connection entry for Null Forward Open - "Ping" ... 261
Figure 65: STC: connection entry for Null Forward Open - "Re-Configuration" ... 262

Appendix 272/272

EtherNet/IP Adapter V2.15.0 | Protocol API
DOC060301API22EN | Revision 22 | English | 2021-05 | Released | Update 01 | Public © Hilscher, 2006-2021

9.9 Contacts

Headquarters

Germany
Hilscher Gesellschaft für
Systemautomation mbH
Rheinstrasse 15
65795 Hattersheim
Phone: +49 (0) 6190 9907-0
Fax: +49 (0) 6190 9907-50
E-Mail: info@hilscher.com

Support
Phone: +49 (0) 6190 9907-99
E-Mail: de.support@hilscher.com

Subsidiaries

China
Hilscher Systemautomation (Shanghai) Co. Ltd.
200010 Shanghai
Phone: +86 (0) 21-6355-5161
E-Mail: info@hilscher.cn

Support
Phone: +86 (0) 21-6355-5161
E-Mail: cn.support@hilscher.com

France
Hilscher France S.a.r.l.
69800 Saint Priest
Phone: +33 (0) 4 72 37 98 40
E-Mail: info@hilscher.fr

Support
Phone: +33 (0) 4 72 37 98 40
E-Mail: fr.support@hilscher.com

India
Hilscher India Pvt. Ltd.
Pune, Delhi, Mumbai
Phone: +91 8888 750 777
E-Mail: info@hilscher.in

Italy
Hilscher Italia S.r.l.
20090 Vimodrone (MI)
Phone: +39 02 25007068
E-Mail: info@hilscher.it

Support
Phone: +39 02 25007068
E-Mail: it.support@hilscher.com

Japan
Hilscher Japan KK
Tokyo, 160-0022
Phone: +81 (0) 3-5362-0521
E-Mail: info@hilscher.jp

Support
Phone: +81 (0) 3-5362-0521
E-Mail: jp.support@hilscher.com

Korea
Hilscher Korea Inc.
Seongnam, Gyeonggi, 463-400
Phone: +82 (0) 31-789-3715
E-Mail: info@hilscher.kr

Switzerland
Hilscher Swiss GmbH
4500 Solothurn
Phone: +41 (0) 32 623 6633
E-Mail: info@hilscher.ch

Support
Phone: +49 (0) 6190 9907-99
E-Mail: ch.support@hilscher.com

USA
Hilscher North America, Inc.
Lisle, IL 60532
Phone: +1 630-505-5301
E-Mail: info@hilscher.us

Support
Phone: +1 630-505-5301
E-Mail: us.support@hilscher.com

mailto:info@hilscher.com
mailto:de.support@hilscher.com
mailto:info@hilscher.cn
mailto:cn.support@hilscher.com
mailto:info@hilscher.fr
mailto:fr.support@hilscher.com
mailto:info@hilscher.in
mailto:info@hilscher.it
mailto:it.support@hilscher.com
mailto:info@hilscher.jp
mailto:jp.support@hilscher.com
mailto:info@hilscher.kr
mailto:info@hilscher.ch
mailto:ch.support@hilscher.com
mailto:info@hilscher.us
mailto:us.support@hilscher.com

	1 Introduction
	1.1 Abstract
	1.2 List of Revisions
	1.3 System Requirements
	1.4 Intended Audience
	1.5 Specifications
	1.5.1 Technical Data
	1.5.2 Limitations
	1.5.3 Protocol Task System

	1.6 Terms, Abbreviations and Definitions
	1.7 References to documents

	2 The Common Industrial Protocol (CIP)
	2.1 Introduction
	2.1.1 CIP-based Communication Protocols
	2.1.2 Extensions to the CIP Family of Networks
	2.1.2.1 CIP Safety
	2.1.2.2 CIP Sync and CIP Motion

	2.1.3 Special Terms used by CIP

	2.2 Object Modeling
	2.3 Services
	2.4 The CIP Messaging Model
	2.4.1 Connected vs. Unconnected Messaging
	2.4.2 Connection Transport Classes
	2.4.3 Connection Establishment, Timeout and Closing
	2.4.3.1 Real Time Format
	2.4.3.2 32-Bit Header Format
	2.4.3.3 Modeless Format
	2.4.3.4 Heartbeat Format

	2.4.4 Connection Application Types
	2.4.4.1 Exclusive Owner Connection
	2.4.4.2 Input Only Connection
	2.4.4.3 Listen Only Connection

	2.4.5 Types of Ethernet/IP Communication
	2.4.6 Implicit Messaging
	2.4.6.1 Structure of Transmitted I/O Data
	2.4.6.2 Restrictions regarding the EtherNetInterface (NDIS) channel

	2.4.7 Explicit Messaging

	2.5 CIP Data Types
	2.6 Object Library
	2.7 CIP Device Profiles
	2.8 EDS (Electronic Data Sheet)

	3 Available CIP Classes in the Hilscher EtherNet/IP Stack
	3.1 Introduction
	3.2 Identity Object (Class Code: 0x01)
	3.2.1 Class Attributes
	3.2.2 Instance Attributes
	3.2.3 Supported Services

	3.3 Message Router Object (Class Code: 0x02)
	3.3.1 Supported Services

	3.4 Assembly Object (Class Code: 0x04)
	3.4.1 Class Attributes
	3.4.2 Instance Attributes
	3.4.3 Supported Services

	3.5 Connection Manager Object (Class Code: 0x06)
	3.5.1 Class Attributes
	3.5.2 Supported Services

	3.6 TCP/IP Interface Object (Class Code: 0xF5)
	3.6.1 Class Attributes
	3.6.2 Instance Attributes
	3.6.2.1 Status
	3.6.2.2 Configuration Capability
	3.6.2.3 Configuration Control
	3.6.2.4 Physical Link
	3.6.2.5 Interface Configuration
	3.6.2.6 TTL Value
	3.6.2.7 Mcast Config
	3.6.2.8 Select ACD
	3.6.2.9 Last Conflict Detected
	3.6.2.10 Encapsulation Inactivity Timeout

	3.6.3 Supported Services

	3.7 Ethernet Link Object (Class Code: 0xF6)
	3.7.1 Class Attributes
	3.7.2 Instance Attributes
	3.7.2.1 Interface Speed
	3.7.2.2 Interface Status Flags
	3.7.2.3 Physical Address
	3.7.2.4 Interface Counters
	3.7.2.5 Media Counters
	3.7.2.6 Interface Control
	3.7.2.7 Interface Type
	3.7.2.8 Interface State
	3.7.2.9 Admin State
	3.7.2.10 Interface Label
	3.7.2.11 Interface Capability

	3.7.3 Supported Services

	3.8 Time Sync Object (Class Code: 0x43)
	3.9 DLR Object (Class Code: 0x47)
	3.9.1 Class Attributes
	3.9.2 Instance Attributes
	3.9.2.1 Network Topology
	3.9.2.2 Network Status
	3.9.2.3 Active Supervisor Address
	3.9.2.4 Capability Flags

	3.9.3 Supported Services

	3.10 Quality of Service Object (Class Code: 0x48)
	3.10.1 Class Attributes
	3.10.2 Instance Attributes
	3.10.2.1 802.1Q Tag Enable
	3.10.2.2 DSCP Value Attributes

	3.10.3 Supported Services

	4 Getting Started/Configuration
	4.1 Task Structure of the EtherNet/IP Adapter Stack
	4.1.1 EIS_APS task
	4.1.2 EIS_OBJECT task
	4.1.3 EIS_ENCAP task
	4.1.4 EIS_CL1 task
	4.1.5 EIP_DLR task
	4.1.6 TCP/IP task

	4.2 Configuration Procedures
	4.2.1 Using the Packet API of the EtherNet/IP Protocol Stack
	4.2.2 Using the Configuration Tool SYCON.net

	4.3 Configuration Using the Packet API
	4.3.1 Basic Packet Set
	4.3.1.1 Configuration Packets
	4.3.1.2 Optional Request Packets
	4.3.1.3 Indication Packets the Host Application Needs to Handle

	4.3.2 Extended Packet Set
	4.3.2.1 Configuration Packets
	4.3.2.2 Optional Request Packets
	4.3.2.3 Indication Packets the Host Application Needs to Handle

	4.3.3 Stack Configuration Set
	4.3.3.1 Configuration Packets
	4.3.3.2 Indication Packets the Host Application Needs to Handle

	5 Status information
	6 The Application Interface
	6.1 The EIS_APS-Task
	6.1.1 EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ/CNF – Configure the Device with Configuration Parameter
	6.1.2 EIP_APS_CLEAR_WATCHDOG_REQ/CNF – Clear Watchdog error
	6.1.3 EIP_APS_SET_PARAMETER_REQ/CNF – Set Parameter Flags
	6.1.4 EIP_APS_MS_NS_CHANGE_IND/RES – Module Status/ Network Status Change Indication
	6.1.5 EIP_APS_GET_MS_NS_REQ/CNF – Get Module Status/Network Status
	6.1.6 EIP_APS_SET_MODULE_STATUS_REQ/CNF – Set Module Status
	6.1.7 Modify Configuration Parameters

	6.2 The EIS_OBJECT – Task
	6.2.1 EIP_OBJECT_FAULT_IND/RES – Fault Indication
	6.2.2 EIP_OBJECT_CONNECTION_IND/RES – Connection State Change Indication
	6.2.3 EIP_OBJECT_MR_REGISTER_REQ/CNF – Register an additional Object Class at the Message Router
	6.2.4 EIP_OBJECT_CL3_SERVICE_IND/RES - Indication of acyclic Data Transfer
	6.2.5 EIP_OBJECT_AS_REGISTER_REQ/CNF – Register a new Assembly Instance
	6.2.6 EIP_OBJECT_ID_SETDEVICEINFO_REQ/CNF – Set the Device’s Identity Information
	6.2.7 EIP_OBJECT_GET_INPUT_REQ/CNF – Getting the latest Input Data
	6.2.8 EIP_OBJECT_RESET_IND/RES – Indication of a Reset Request from the network
	6.2.9 EIP_OBJECT_RESET_REQ/CNF - Reset Request
	6.2.10 EIP_OBJECT_READY_REQ/CNF – Set Ready and Run/Idle State
	6.2.11 EIP_OBJECT_REGISTER_SERVICE_REQ/CNF – Register Service
	6.2.12 EIP_OBJECT_CONNECTION_CONFIG_IND/RES – Indication of Configuration Data received during Connection Establishment
	6.2.13 EIP_OBJECT_TI_SET_SNN_REQ/CNF – Set the Safety Network Number for the TCP/IP Interface Object
	6.2.14 EIP_OBJECT_SET_PARAMETER_REQ/CNF – Set Parameter
	6.2.14.1 Handling of connections of type “Application Object Trigger” or “Change of State”

	6.2.15 EIP_OBJECT_AS_TRIGGER_TYPE_IND/RES – Indication of the currently used trigger type
	6.2.16 EIP_OBJECT_CFG_QOS_REQ/CNF – Configure the QoS Object
	6.2.17 EIP_OBJECT_CIP_SERVICE_REQ/CNF – CIP Service Request
	6.2.18 EIP_OBJECT_CIP_OBJECT_CHANGE_IND/RES – CIP Object Change Indication
	6.2.19 EIP_OBJECT_CIP_OBJECT_ATTRIBUTE_ACTIVATE_REQ/CNF – CIP Object Attribute Activate Request
	6.2.20 RCX_LINK_STATUS_CHANGE_IND/RES – Link Status Change
	6.2.21 EIP_OBJECT_FWD_OPEN_FWD_IND/RES – Indication of a Forward_Open
	6.2.22 EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND/RES – Indication of Forward_Open Completion Result
	6.2.23 EIP_OBJECT_FWD_CLOSE_FWD_IND - Indication of a Forward_Close
	6.2.24 EIP_OBJECT_CREATE_OBJECT_TIMESYNC_REQ - Create Time Sync Object/Configuration of the Synchronization Mode

	6.3 The Encapsulation Task
	6.4 The EIS_CL1-Task
	6.5 The EIS_DLR-Task
	6.6 The TCP_IP-Task

	7 Special topics
	7.1 Getting the Receiver Task Handle of the Process Queue

	8 Status/Error Codes Overview
	8.1 Status/Error Codes EipObject-Task
	8.1.1 Diagnostic Codes

	8.2 Status/Error Codes EipEncap-Task
	8.2.1 Diagnostic Codes

	8.3 Status/Error Codes EIS_APS-Task
	8.3.1 Diagnostic Codes EIS_APS-Task

	8.4 Status/Error Codes Eip_DLR-Task
	8.5 General EtherNet/IP Error Codes

	9 Appendix
	9.1 Module and Network Status
	9.1.1 Module Status
	9.1.2 Network Status

	9.2 Quality of Service (QoS)
	9.2.1 Introduction
	9.2.2 DiffServ
	9.2.3 802.1D/Q Protocol
	9.2.4 The QoS Object
	9.2.4.1 Enable 802.1Q (VLAN tagging)

	9.3 DLR
	9.3.1 Ring Supervisors
	9.3.2 Precedence Rule for Multi-Supervisor Operation
	9.3.3 Beacon and Announce Frames
	9.3.4 Ring Nodes
	9.3.5 Normal Network Operation
	9.3.6 Rapid Fault/Restore Cycles
	9.3.7 States of Supervisor

	9.4 Quick Connect
	9.4.1 Introduction
	9.4.2 Requirements

	9.5 Non-Null Forward Open and Null Forward Open
	9.5.1 Introduction
	9.5.2 Use cases
	9.5.3 Using the Null Forward Open Feature
	9.5.3.1 Activatation
	9.5.3.2 Handling of use cases
	9.5.3.3 Preparing the EDS file for the Null Forward Open Support
	9.5.3.4 Preparing the STC file for the Null Forward Open Support

	9.6 Legal Notes
	9.7 List of Tables
	9.8 List of Figures
	9.9 Contacts

