
Protocol API
EtherNet/IP Adapter

DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

Table of Contents
1 Introduction ... 5

1.1 About this document .. 5
1.2 System requirements... 6
1.3 Target group.. 6
1.4 Specifications ... 6
1.5 Terms, abbreviations and definitions.. 7
1.6 Input and output data conventions ... 8
1.7 References to documents... 8

2 Hilscher EtherNet/IP stack capabilities... 9
2.1 Loadable Firmware (LFW) .. 9
2.2 Available object classes.. 10

2.2.1 Introduction... 10
2.2.2 Class attributes... 11
2.2.3 Instance attributes .. 12
2.2.4 Services... 12
2.2.5 Identity Object (class code: 0x01) .. 13
2.2.6 Message Router Object (class code: 0x02)... 15
2.2.7 Assembly Object (class code: 0x04) ... 16
2.2.8 Connection Manager Object (class code: 0x06) .. 17
2.2.9 Time Sync Object (class code: 0x43).. 18
2.2.10 Device Level Ring Object (class code: 0x47)... 21
2.2.11 Quality of Service Object (class code: 0x48) ... 22
2.2.12 TCP/IP Interface Object (class code: 0xF5) .. 23
2.2.13 Ethernet Link Object (class code: 0xF6) .. 25
2.2.14 LLDP Management Object (class code: 0x109).. 27
2.2.15 Predefined Connection Object (class code: 0x401)... 28
2.2.16 Diagnosis Object (class code: 0x403) .. 32
2.2.17 IO Mapping Object (class code: 0x402)... 33

2.3 Ethernet MAC address .. 34
2.4 Device data... 35

2.4.1 Device serial number .. 35
2.5 Status information ... 37

2.5.1 DPM communication status.. 37
2.5.2 DPM COS flags... 38
2.5.3 Other DPM status bits... 38

2.6 Module and network status .. 39
2.6.1 Module status .. 39
2.6.2 Network status ... 40

2.7 Handshake modes.. 41
2.7.1 Input handshake mode / output handshake mode .. 41
2.7.2 Synchronization handshake mode .. 42
2.7.3 Configuration... 42

2.8 Quality of Service .. 43
2.8.1 Introduction.. 43
2.8.2 DiffServ... 43
2.8.3 802.1D/Q Protocol ... 44
2.8.4 The QoS Object .. 44

2.9 Device Level Ring.. 45
2.9.1 Ring supervisors.. 45
2.9.2 Beacon and announce frames ... 46
2.9.3 Ring nodes... 46
2.9.4 Normal network operation.. 46
2.9.5 Rapid fault/restore cycles... 46

2.10 CIP device protection ... 47
2.10.1 Introduction... 47
2.10.2 Protection modes.. 47
2.10.3 Protection policy ... 47

Table of Contents 2 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

2.11 Module and Network Status LEDs ... 49
2.12 DHCP/BOOTP Client.. 50

2.12.1 DHCP Behavior .. 50
2.12.2 DHCP Device Level Behavior ... 50
2.12.3 Packet API.. 50
2.12.4 DHCP Options.. 51

2.13 QuickConnect... 53
3 Getting started / configuration.. 54

3.1 Configuration methods ... 54
3.2 Host application behavior.. 55

3.2.1 Startup... 56
3.2.2 Operational .. 56
3.2.3 Configuration .. 56
3.2.4 Reset... 56

3.3 Configuration using the packet API ... 57
3.3.1 Basic configuration packet set.. 57
3.3.2 Extended configuration packet set ... 59

3.4 Configuraion using Sycon.net ... 61
3.4.1 Configuration sequence ... 61

3.5 Remanent data... 62
3.5.1 Remanent data purpose... 62
3.5.2 Remanent data responsibility... 62
3.5.3 Remanent data state.. 63
3.5.4 Remanent data flow... 64
3.5.5 Remanent data content... 66

3.6 Bus State... 67
3.6.1 Purpose ... 67
3.6.2 BusOn and BusOff States ... 67
3.6.3 BusOn and Producing Assembly Run Status.. 67

4 Application interface ... 68
4.1 Configuring the EtherNet/IP Adapter.. 68

4.1.1 Set Configuration Parameters service... 69
4.1.2 Set Parameter Flags service ... 76
4.1.3 Finish configuration of CIP objects.. 77
4.1.4 Register an additional object class .. 78
4.1.5 Register a new Assembly instance.. 80
4.1.6 Register service ... 87
4.1.7 Set Parameter .. 88
4.1.8 CIP Service request.. 90
4.1.9 Set Watchdog Time.. 93
4.1.10 Register/Unregister Application .. 93
4.1.11 Start/Stop Communication .. 93
4.1.12 Channel Init... 93

4.2 Acyclic events indicated by the stack... 94
4.2.1 Application compliance ... 94
4.2.2 Indication of a reset request from the network .. 95
4.2.3 Connection State Change indication.. 97
4.2.4 Configuration Assemblies... 102
4.2.5 NULL ForwardOpen... 103
4.2.6 Acyclic Data Transfer indication.. 104
4.2.7 CIP Object Change indication.. 108
4.2.8 Link Status Change ... 112
4.2.9 Module Network Status Change.. 113
4.2.10 Forward_Open indication .. 114
4.2.11 Forward_Open_Completion indication.. 118
4.2.12 Forward_Close indication .. 119
4.2.13 Store Remanent Data indication .. 122

4.3 Additional services requested by the application ... 123
4.3.1 Get Module Status/ Network Status ... 124

Table of Contents 3 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

4.3.2 Set Watchdog Time.. 125
4.3.3 Get Watchdog Time ... 125
4.3.4 Get DPM I/O Information.. 125
4.3.5 Delete Configuration .. 125
4.3.6 Lock/Unlock Configuration... 125
4.3.7 Get Firmware Identification .. 125
4.3.8 Get Component Information... 125
4.3.9 Set Remanent Data request ... 126
4.3.10 Set Trigger Type.. 126
4.3.11 Get Trigger type ... 128
4.3.12 Force LED State service .. 129
4.3.13 Enable Attribute service .. 130
4.3.14 Set Attribute Permission service .. 131
4.3.15 Enable Attribute Notification service .. 132
4.3.16 Enable/Disable Attribute Protection service ... 133

5 Resource and feature configuration via tag list.. 134
6 Status/error codes.. 135

6.1 Stack-specific error codes ... 135
6.2 General EtherNet/IP error codes ... 139

7 Appendix .. 141
7.1 Legal notes ... 141
7.2 Third party software license .. 145
7.3 Contacts .. 146

Table of Contents 4 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Chapter 1 Introduction

1.1 About this document

This manual describes the user interface of the EtherNet/IP Adapter implementation on the netX companion chip. The
aim of this manual is to support the integration of netX-based devices with customer applications via the DPM interface.

The general approach of exchanging data between the Host CPU and the netX companion chip is independent of the
EtherNet/IP protocol. This general procedure, for the purpose of issuing commands toward the companion chip and
receiving events from it, are subject to the protocol-independent netX DPM Interface manual [1].

Chapter 1 Introduction 5 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

1.2 System requirements

This software package has following system requirements to its environment:

■ netX chip as CPU hardware platform

V5 firmware compatibility between EtherNet/IP Adapter firmware and Maintenance Firmware

This compatibility statement is important for use case C firmware for netX 90, which uses a Flash file system: To ensure
proper usage of Flash sectors during file write operations, a Flash Translation Layer (FTL) has been integrated in the
operating system of the firmware. The Flash file system layout has changed and is not compatible to earlier versions.

IMPORTANT Starting with firmware V5.2.0.0, the firmware requires a Flash file system in the new format and
Maintenance Firmware V1.3.0.0 (or higher).

In case you intent to update the EtherNet/IP Slave firmware from version 5.1 to version 5.2, this requires

1. to update the Maintenance Firmware to V1.3.0.0 (or higher),
2. to update the EtherNet/IP Adapter firmware to V5.2.0.0 (or higher) and finally
3. to reformat the file system using a full format request (HIL_FORMAT_REQ).

The full format request is a system service in the EtherNet/IP Adapter firmware V5.2.0.0 (or higher).

1.3 Target group

This manual is intended for software developers with knowledge of:

■ the netX DPM Interface manual
■ the Common Industrial Protocol (CIP™) Specification, volume 1
■ the Common Industrial Protocol (CIP™) Specification, volume 2

1.4 Specifications

The EtherNet/IP Adapter firmware specifications can be found in the corresponding firmware datasheet, see reference
[11].

Chapter 1 Introduction 6 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

1.5 Terms, abbreviations and definitions

Term Description

ACD Address Conflict Detection

AP Application on top of the Stack

API Actual Packet Interval or Application Programmer Interface

ARP Address Resolution Protocol

AS ASsembly object

BLOB Binary Large OBject

BOOTP Boot Protocol

CIP Common Industrial Protocol

CM Connection Manager

DDP Device Data Provider

DHCP Dynamic Host Configuration Protocol

DiffServ Differentiated Services

DLR Device Level Ring (i.e. ring topology on device level)

DPM Dual Port Memory

DSCP Differentiated Services Code Point

EIM Ethernet/IP Scanner (= Master)

EIP Ethernet/IP

EIS Ethernet/IP Adapter (= Slave)

ENCAP Encapsulation Layer

ERC Extended Error Code

FDL Flash Device Label

GRC Generic Error Code

IANA Internet Assigned Numbers Authority

ID Identity Object

IP Internet Protocol

LSB Least Significant Byte

MR Message Router Object

MS Module Status

MSB Most Significant Byte

NS Network Status

O2T Direction of data flow in CIP I/O connections: Originator to Target

ODVA Open DeviceNet Vendors Association

OEM Original Equipment Manufacturer

OSI Open Systems Interconnection (according to ISO 7498)

PHB Per-hop behavior

PLC Programmable Logic Controller

QoS Quality of Service

RPI Requested Packet Interval

T2O Direction of data flow in CIP I/O connections: Target to Originator

TCP/IP Transmission Control Protocol / Internet Protocol

TOS byte Type of Service byte

UCMM Unconnected Message Manager

UDP/IP User Datagram Protocol / Internet Protocol

VLAN Virtual Local Area Network

Table 1. Terms, abbreviations and definitions

All variables, parameters, and data used in this manual have the LSB/MSB (“Intel”) data format in compliance with the
convention of the Microsoft C Compiler.

Chapter 1 Introduction 7 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

1.6 Input and output data conventions

In certain cases, EtherNet/IP and netX use different naming schemes. To avoid problems, this section clarifies the naming
conventions:

EtherNet/IP netX EtherNet/IP stack Description

Producing/Input
(assembly data)

Application writes data into the
output area of the process data
memory

Producing/Input assembly Data sent to EtherNet/IP
Scanner (e.g. PLC).

Consuming/Output
(assembly data)

Application reads data from the
input area of the process data
memory

Consuming/Output assembly Data received from EtherNet/IP
Scanner (e.g. PLC).

1.7 References to documents

This document refers to the following documents:

[1] Hilscher Gesellschaft für Systemautomation mbH: Dual-Port Memory Manual, netX Dual-Port Memory Interface, Revision
17, English, 2020.

[2] Hilscher Gesellschaft für Systemautomation mbH: Protocol API, Socket Interface, Packet Interface, Revision 7, English,
2021.

[3] Hilscher Gesellschaft für Systemautomation mbH: Protocol API, Ethernet Interface, Packet Interface, Revision 12, English,
2022.

[4] Hilscher Gesellschaft für Systemautomation mbH: Application Note: CIP Sync, Revision 5, English, 2015.

[5] ODVA: The CIP Networks Library, Volume 1, “Common Industrial Protocol (CIP™)”, Edition 3.33, November 2022.

[6] ODVA: The CIP Networks Library, Volume 2, “EtherNet/IP Adaptation of CIP”, Edition 1.31, November 2022.

[7] The Common Industrial Protocol (CIP™) and the Family of CIP Networks, Publication Number: PUB00123R1,
downloadable from ODVA website (http://www.odva.org/).

[8] Hilscher Gesellschaft für Systemautomation mbH: Tag List Editor - Operating Instruction Manual - Revision V1.5, English,
2020.

[9] Hilscher Gesellschaft für Systemautomation mbH: Packet API, netX Dual-Port Memory, Packet-based services, For

Firmware version EtherNet/IP Adapter V3 (netX 50/51/52/100/500-based firmware) : Revision 5, English, 2021
For Firmware version EtherNet/IP Adapter V5 (netX 90/4000/4100-based firmware) : Revision 7, English, 2022

[11] Hilscher Gesellschaft für Systemautomation mbH: Firmware datasheet, located next to the corresponding firmware file

[12] ODVA - "Brand Standards + Identity Guidelines", Publication Number: PUB00036R10, downloadable from ODVA website
(http://www.odva.org/).

Chapter 1 Introduction 8 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

http://www.odva.org/
http://www.odva.org/

Chapter 2 Hilscher EtherNet/IP stack capabilities
This section describes the Hilscher EtherNet/IP stack interfaces, introduces the implemented CIP objects, and specifies
the provided CIP services and their availability via the different interfaces.

2.1 Loadable Firmware (LFW)

When running the LFW, the netX chip serves as a dedicated communication processor while the host application uses its
own processor.

The host application exchanges process data using the mechanism described in the DPM Interface manual [1]. In addition,
the host application uses the firmware packet interface (which is subject to this manual) for configuration and event
handling.

Figure Interfaces of the EtherNet/IP stack (LFW) shows that the firmware provides two interfaces:

1. The EIP-API (DPM/packet interface) toward the host application for exchange of commands, event notification and
process data via the Hilscher DPM interface.

2. The EtherNet/IP Network Interface acc. to the CIP specification. Based on TCP/IP and UDP/IP, external devices
communicate with the protocol stack via one of the 3 supported connection types:
■ Unconnected Explicit Messaging (UCMM)
■ Connected Explicit Messaging (class 3)
■ Implicit Messaging (class 1)

NOTE Depending on the type of firmware, there might be other provided interfaces (e.g. Ethernet API, Socket-
API). Those interfaces are not in the scope of this document. For which interfaces are available, please
refer to the corresponding firmware datasheet [11].

Figure 1. Interfaces of the EtherNet/IP stack (LFW)

Chapter 2 Hilscher EtherNet/IP stack capabilities 9 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

2.2 Available object classes

The following subsections describe all default CIP object classes available within the Hilscher EtherNet/IP stack. We
synonymously refer to this set of objects as built-in objects or default objects. Figure Default Hilscher Device object
model gives an overview of the available CIP objects and their instances in the default configuration of the protocol stack.

Figure 2. Default Hilscher Device object model

2.2.1 Introduction

Speaking of CIP object classes means to distinguish between class and instance level. Each object exists at class level
and, additionally, may have one or more instances. CIP services address a certain object class or instance by means of a
specified Instance ID. An Instance ID value of zero addresses the object class, whereas Instance IDs larger than zero
address the corresponding instance of that object class.

Each CIP object class and instance consists of a set of attributes and services. Of course, the attributes each object class
provides at class and instance levels differ from each other. The most common services are the Get_Attribute_Single and
Set_Attribute_Single services to read or write the attributes of the addressed object class or instance.

The following sections use four tables to describe each supported object class:

1. Class attributes
2. Instance attributes
3. Services available to the host application
4. Services available to EtherNet/IP clients over the network

Chapter 2 Hilscher EtherNet/IP stack capabilities 10 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

2.2.2 Class attributes

Class attributes are defined using the following notation:

Class attributes (instance 0)

Attr ID Name Access Description Default
value

Supported
by defaultfrom

network
from host

1 2 3 4 5 6 7

Table 2. Introduction of class attribute description

1. The Attribute ID is an integer identification value assigned to an attribute. Use the Attribute ID in the Get_Attributes
and Set_Attributes services list. The Attribute ID identifies the particular attribute being accessed.

2. Name specifies the name of the class attribute.
3. Access from network specifies the access permission of the attribute when the service is sent from the EtherNet/IP

network (protocol stack EtherNet/IP interface – see Loadable Firmware (LFW)). The definitions are:
■ Set (Settable) - The attribute is accessible by at least one of the set services (Set_Attribute_Single/

Set_Attribute_All).
■ Get (Gettable) - The attribute is accessible by at least one of the get services (Get_Attribute_Single/

Get_Attribute_All).
4. Access from host specifies the access permission of the attribute when the service is sent from the host application

using the DPM/Packet Interface see Loadable Firmware (LFW) of the stack (see description of packet

EIP_OBJECT_CIP_SERVICE_REQ).
Definitions for access rules:
■ Set (Settable) - The attribute is accessible by at least one of the set services (Set_Attribute_Single/

Set_Attribute_All).
■ Get (Gettable) - The attribute is accessible by at least one of the get services (Get_Attribute_Single/

Get_Attribute_All).
5. Description contains a descriptive text on the attribute.
6. Default value specifies the default value of the attribute.
7. Supported by default indicates whether the stack supports this attribute in a default configuration.

In a default configuration, the EtherNet/IP stack implements certain attributes, which are not accessible from the
EtherNet/IP network. In order to access these attributes via the network, the host application has to activate them

using a specific service EIP_OBJECT_ENABLE_ATTRIBUTE_REQ.

 → The attribute is supported and activated by default.

 → The attribute is supported and deactivated by default. The host can activate it.
 → The attribute is not supported. The host cannot activate it.

Chapter 2 Hilscher EtherNet/IP stack capabilities 11 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

2.2.3 Instance attributes

An instance attribute is an attribute that is specific to an object class instance. Instance attributes are defined in the same
notation as class attributes.

Instance attributes (Instance [1..N])

Attr ID Name Access Description Default
value

Supported
by defaultfrom

network
from host

1 2 3 4 5 6 7

Table 3. Introduction of instance attribute description

2.2.4 Services

Services can address the class level (Instance ID 0) or the instance level (Instance ID [1..N]) of a CIP object. Services may
be issued by the host application or by a client on the EtherNet/IP network.

For each object, services will be presented in a table of the following format:

Service code Name Addressing the object Description

class level instance level

1 2 3 4 5

Table 4. Introduction of service description

1. Service code is a unique identifier for the CIP service. The range of integer values [0..255] defines service codes
according to the EtherNet/IP specification.

2. Name specifies the name of the service.
3. Addressing the class level of the object

 → The stack supports this service at object class level (Instance ID 0).
 → The stack does not support this service at class level.

4. Addressing the instance level of the object

 → The stack supports this service at object instance level (instance 1-n).
 → The stack does not support this service at instance level.

5. Description contains descriptive text on the service.

Chapter 2 Hilscher EtherNet/IP stack capabilities 12 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

2.2.5 Identity Object (class code: 0x01)

The Identity object provides identification and general information about the device. The EtherNet/IP protocol stack
implements the Identity object at class level and a single instance with Instance ID 1.

2.2.5.1 Class attributes

Attr ID Name Access Description Default
Value

Supported
by defaultfrom

Network
from Host

1 Revision Get Get Revision of this object (2)

2 Max. Instance Get Get Max. instance number of an object
currently created in this class level of
the device

(1)

3 Number of Instances Get Get The number of instances currently
created in this class

(1)

6 Max. ID
Number Class Attributes

Get Get The attribute ID number of the last
class attribute of the class definition
implemented in the device.

(7)

7 Max. ID
Number Instance
Attributes

Get Get The attribute ID number of the last
instance attribute of the class definition
implemented in the device.

(19)

Table 5. Identity Object - class attributes

2.2.5.2 Instance attributes

Attr ID Name Access Description Default
Value

Supported
by defaultfrom

Network
from Host

1 Vendor ID Get Get/Set Vendor Identification (0x011B)
Hilscher

2 Device Type Get Get/Set Indication of general type of product (1)

3 Product Code Get Get/Set Identification of a particular product of
an individual vendor

(1)

4 Revision Get Get/Set Revision of the product (1.1)

5 Status Get Get Summary status of device

6 Serial Number Get Get Serial number of device See section
Device
serial
number

7 Product Name Get Get/Set Human readable identification
See [12] for information about
restrictions regarding product naming.

“netX”

8 State Get Get Present state of the device

9 Conf. Consist. Value Get Get/Set Configuration Consistency Value 0

10 Heartbeat Interval Get Get/Set The nominal interval between heartbeat
messages in seconds

0

19 Protection Mode Get Get/Set Current protection mode of the device
(see section CIP device protection for
more information)

0

Table 6. Identity Object - instance attributes

Chapter 2 Hilscher EtherNet/IP stack capabilities 13 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

2.2.5.3 Common services

These services are available to the host application and remote EtherNet/IP clients.

Service Code Name Addressing the object’s Description

Class Level Instance Level

0x01 Get Attribute All Retrieve all attribute values

0x05 Reset1) Reset the device

0x4B Flash LEDs Flash the device’s LEDs for identification

0x0E Get Attribute Single Retrieve attribute value

0x10 Set Attribute Single Modify attribute value
1) In case the Safety Network Number is activated (see section Instance attributes), the reset service will not be support for any
instance. In that case the service will be reject with general status code 0x08 “Service not supported”.

Table 7. Identity Object - common services

Chapter 2 Hilscher EtherNet/IP stack capabilities 14 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

2.2.6 Message Router Object (class code: 0x02)

The Message Router Object is responsible for dispatching service requests toward the addressed object class or object
class instance. The EtherNet/IP protocol stack implements the Message Router object exclusively at class level.

2.2.6.1 Class attributes

Attr ID Name Access Description Default
Value

Supported
by defaultfrom

Network
from Host

1 Revision Get Get Revision of this object (1)

2 Max. Instance Get Get Maximum instance number of an object
currently created in this class level of
the device

(1)

3 Number of Instances Get Get The number of instances currently
created in this class

(1)

6 Maximum ID
Number Class Attributes

Get Get The attribute ID number of the last
class attribute of the class definition
implemented in the device.

(7)

7 Maximum ID
Number Instance
Attributes

Get Get The attribute ID number of the last
instance attribute of the class definition
implemented in the device.

(0)

Table 8. Message Router Object - Class attributes

2.2.6.2 Instance attributes

The EtherNet/IP protocol stack implements the Message Router object exclusively at class level. It does not provide any
instances.

2.2.6.3 Common services

These services are available to the host application and remote EtherNet/IP clients.

Service Code Name Addressing the object’s Description

Class Level Instance Level

0x0E Get Attribute Single Retrieve attribute value

0x10 Set Attribute Single Modify attribute value

Table 9. Message Router Object - Common services

Chapter 2 Hilscher EtherNet/IP stack capabilities 15 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

2.2.7 Assembly Object (class code: 0x04)

The Assembly object stores process data for exchange with other EtherNet/IP devices over the network and with the
host application.

2.2.7.1 Class attributes

Attr ID Name Access Description Default
Value

Supported
by defaultfrom

Network
from Host

1 Revision Get Get Revision of this object (2)

2 Max. Instance Get Get Maximum instance number of an object
currently created in this class level of
the device

(0)

3 Number of Instances Get Get The number of instances currently
created in this class

(0)

6 Maximum ID
Number Class Attributes

Get Get The attribute ID number of the last
class attribute of the class definition
implemented in the device.

(7)

7 Maximum ID
Number Instance
Attributes

Get Get The attribute ID number of the last
instance attribute of the class definition
implemented in the device.

(4)

Table 10. Assembly Object - Class attributes

2.2.7.2 Instance attributes

Attr ID Name Access Description Default
Value

Supported
by defaultfrom

Network
from Host

1 Number of Member Get Get Number of members in List n.a. / 1)

2 Member Get Get Member list n.a. / 1)

3 Data Get/Set Get/Set Current process data snapshot n.a.

4 Size Get Get Process data size in number of bytes n.a.

769 Parameter None Get Assembly parameter n.a.

770 Status None Get Status of the assembly n.a.

1) Attributes 1 and 2 are not available for configuration assembly instances.

Configuration assembly instances are added by using the flag EIP_AS_TYPE_CONFIG.
For more information, see section EIP_OBJECT_AS_REGISTER_REQ.

Table 11. Assembly Object - Instance attributes

2.2.7.3 Common services

These services are available to the host application and remote EtherNet/IP clients.

Service Code Name Addressing the object’s Description

Class Level Instance Level

0x0E Get Attribute Single Retrieve attribute value

0x10 Set Attribute Single Modify attribute value

0x18 Get Member Get a member of instance attribute 2

Table 12. Assembly Object - Common services

Chapter 2 Hilscher EtherNet/IP stack capabilities 16 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

2.2.8 Connection Manager Object (class code: 0x06)

The Connection Manager Class manages class 1 implicit I/O and class 3 explicit connections.

2.2.8.1 Class attributes

Attr ID Name Access Description Default
Value

Supported
by defaultfrom

Network
from Host

1 Revision Get Get Revision of this object (1)

2 Max. Instance Get Get Maximum instance number of an object
currently created in this class level of
the device

(1)

3 Number of Instances Get Get The number of instances currently
created in this class

(1)

6 Maximum ID
Number Class Attributes

Get Get The attribute ID number of the last
class attribute of the class definition
implemented in the device.

(7)

7 Maximum ID
Number Instance
Attributes

Get Get The attribute ID number of the last
instance attribute of the class definition
implemented in the device.

(0)

Table 13. Connection Manager Object - Class attributes

2.2.8.2 Instance attributes

The EtherNet/IP protocol stack does not provide any instance attributes for the connection manager object.

2.2.8.3 Common services

These services are available to the host application and remote EtherNet/IP clients.

Service Code Name Addressing the object’s Description

Class Level Instance Level

0x0E Get Attribute Single Retrieve attribute value

0x10 Set Attribute Single Modify attribute value

0x54 Forward Open 1) Open new connection

0x4E Forward Close 1) Close connection
1) This service is only available to remote EtherNet/IP clients. Initiated from the host application, the service will be rejected with an
appropriate error code.

Table 14. Connection Manager Object - Common services

Chapter 2 Hilscher EtherNet/IP stack capabilities 17 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

2.2.9 Time Sync Object (class code: 0x43)

The Time Sync Object (used for CIP SYNC) provides a CIP interface to the IEEE 1588 (IEC 61588) Standard for a Precision
Clock Synchronization Protocol for Networked Measurement and Control Systems, commonly referred to as the
Precision Time Protocol (PTP). When starting the stack, this object is not available right away. The host application has to
activate the TimeSync object using the packet EIP_OBJECT_MR_REGISTER_REQ.

NOTE The TimeSync object has to be registered during the stack configuration sequence, before the
EIP_APS_CONFIG_DONE_REQ packet. Registration during runtime leads to undefined behavior.

For details on CIP Sync and its use with the EtherNet/IP protocol stack and your host application, refer to the
corresponding Application Note [4].

2.2.9.1 Class attributes

Attr ID Name Access Description Default
Value

Supported
by defaultfrom

Network
from Host

1 Revision Get Get Revision of this object (3)

2 Max. Instance Get Get Maximum instance number of an object
currently created in this class level of
the device

(1)

3 Number of Instances Get Get The number of instances currently
created in this class

(1)

6 Maximum ID
Number Class Attributes

Get Get The attribute ID number of the last
class attribute of the class definition
implemented in the device.

(7)

7 Maximum ID
Number Instance
Attributes

Get Get The attribute ID number of the last
instance attribute of the class definition
implemented in the device.

(768)

Table 15. Time Sync Object - Class attributes

2.2.9.2 Instance attributes

Attr ID Name Access Description Default
Value

Supported
by defaultfrom

Network
from Host

1 PTPEnable Get/Set Get/Set PTP Enable 0 (Disabled)

2 IsSynchronized Get Get Local clock is synchronized with master 0

3 SystemTimeMicrosecond
s

Get Get Current value of system_time in
microseconds

unsynchroni
zed clock
counts from
zero

4 SystemTimeNanosecond
s

Get Get Current value of system_time in
nanoseconds

unsynchroni
zed clock
counts from
zero

5 OffsetFromMaster Get Get Offset between local clock and master
clock

0

6 MaxOffsetFromMaster Get/Set Get/Set Maximum offset between local clock
and master clock since last reset of this
value.

0

7 MeanPathDelayToMaster Get Get Mean path delay to master 0

8 GrandMasterClockInfo Get Get Grandmaster Clock Info all 0

9 ParentClockInfo Get Get Parent Clock Info all 0

10 LocalClockIno Get Get Local Clock Info all 0

11 NumberOfPorts Get Get Number of ports 1

12 PortStateInfo Get Get Port state info disabled

Chapter 2 Hilscher EtherNet/IP stack capabilities 18 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

13 PortEnableCfg Get/Set Get/Set Port enable cfg enabled

14 PortLogAnnounceInterval
Cfg

Get/Set Get/Set Port log announce interval cfg 0

15 PortLogSyncIntervalCfg Get/Set Get/Set Port log sync interval cfg 0

16 Priority1 None Get/Set Priority 1 n.a.

17 Priority2 None Get/Set Priority 2 n.a.

18 DomainNumber Get/Set Get/Set Domain number 0

19 ClockType Get Get Clock type 0

20 ManufactureIdentity Get Get Manufacture identity all 0

21 ProductDescription Get Get Product description “”

22 RevisionData Get Get Revision data “”

23 UserDescription Get Get User description “”

24 PortProfileIdentityInfo Get Get Port profile identity info 00-21-6C-
00-01-00

25 PortPhysicalAddressInfo Get Get Port physical address info Filled in
automaticall
y according
to device’s
MAC
address

26 PortProtocolAddressInfo Get Get Port protocol address info Filled in
automaticall
y according
to device’s
IP address

27 StepsRemoved Get Get Steps removed 0

28 SystemTimeAndOffset Get Get System time and offset all 0

768 SyncParameters Get/Set1) Get/Set1) Synchronization Parameters See below
1) The time sync parameter attribute (attribute 768) is not available through the GetAttributesList and SetAttributesList services

Table 16. Time Sync Object - Instance attributes

2.2.9.3 Common services

These services are available to the host application and remote EtherNet/IP clients.

Service Code Name Addressing the object’s Description

Class Level Instance Level

0x03 Get Attributes List The Get_Attribute_List service returns the
contents of the selected attributes of the
specified object class or instance

0x04 Set Attributes List The Set_Attribute_List service sets the contents
of selected attributes of the specified object class
or instance

0x0E Get Attribute Single Retrieve attribute value

0x10 Set Attribute Single Modify attribute value

Table 17. Time Sync Object - Common services

2.2.9.4 Instance attributes

Attribute 768 (0x300) - Sync parameters

Attribute 768 of the Time Sync object controls synchronization-related parameters. These are used to adjust intervals and
offsets of the hardware synchronization signals Sync 0 and Sync 1.

The Sync 0 signal is the interrupt the host application will receive to retrieve the current system time. On each event, the
EtherNet/IP stack writes the current system time into the extended data area of the DPM interface. For details, see CIP
Sync Application Note [4]).

NOTE Currently, only Sync 0 can be used.

Chapter 2 Hilscher EtherNet/IP stack capabilities 19 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

The following table describes “Time Sync Object- Attribute 768 (0x300)”.

Variable Type Value/Range Description

ulSync0Interval UINT32 0, 10000 …

999999999

Default:
500000000

Sync0 Interval in nanoseconds

This parameter specifies the interval of the Sync 0 signal in

nanoseconds.

The value 0 means the signal is deactivated.

The starting point of the Sync0 signal is dependent on the
Sync0 Offset (see parameter ulSync0Offset).

ulSync0Offset UINT32 smaller than

ulSync0Interval

Default: 0

Sync 0 Offset in nanoseconds

This parameter specifies a nanosecond offset for the Sync 0
signal relative to the system time (Time of the Sync Master).

ulSync1Interval UINT32 0, 10000 …

999999999

Default:
500000000

Sync1 Interval in nanoseconds

This parameter specifies the interval of the Sync 1 signal in

nanoseconds.

The value 0 means the signal is deactivated.

The starting point of the Sync1 signal is dependent on the
Sync1 Offset (see parameter ulSync1Offset).

ulSync1Offset UINT32 smaller than

ulSync1Interval

Default: 150

Sync 1 Offset in nanoseconds

This parameter specifies a nanosecond offset for the Sync 1
signal relative to the system time (Time of the Sync Master).

ulPulseLength UINT32 1 … 500

AND
smaller than the
minimum of the
values
ulSync0Interval
and
ulSync1Interval,
when converted to

microseconds.

Default: 4

Pulse length of the trigger signals in microseconds

Table 18. Time Sync Object – Attribute 768 (0x300)

Chapter 2 Hilscher EtherNet/IP stack capabilities 20 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

2.2.10 Device Level Ring Object (class code: 0x47)

The Device Level Ring (DLR) Object provides the configuration of the DLR protocol. DLR is used for Ethernet Ring
topology.

2.2.10.1 Class attributes

Attr ID Name Access Description Default
Value

Supported
by defaultfrom

Network
from Host

1 Revision Get Get Revision of this object (3)

2 Max. Instance Get Get Maximum instance number of an object
currently created in this class level of
the device

(1)

3 Number of Instances Get Get The number of instances currently
created in this class

(1)

6 Maximum ID
Number Class Attributes

Get Get The attribute ID number of the last
class attribute of the class definition
implemented in the device.

(7)

7 Maximum ID
Number Instance
Attributes

Get Get The attribute ID number of the last
instance attribute of the class definition
implemented in the device.

(12)

Table 19. DLR Object - Class attributes

2.2.10.2 Instance attributes

Attr ID Name Access Description Default
Value

Supported
by defaultfrom

Network
from Host

1 Network Topology Get Get Current network topology 0 – Linear

2 Network Status Get Get Current network status 0 – Normal

10 Active Supervisor Get Get Active Supervisor Address (0)

12 Capability Flags Get Get DLR capability of the device 0x82
(Beacon
based Ring
Node, Flush
Table frame
support)

Table 20. DLR Object - Instance attributes

2.2.10.3 Common services

These services are available to the host application and remote EtherNet/IP clients.

Service Code Name Addressing the object’s Description

Class Level Instance Level

0x01 Get Attribute All Returns content of instance or class attributes

0x0E Get Attribute Single Retrieve attribute value

Table 21. DLR Object - Common services

Chapter 2 Hilscher EtherNet/IP stack capabilities 21 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

2.2.11 Quality of Service Object (class code: 0x48)

The Quality of Service (QoS) Object provides the configuration of frame priorities. Ethernet frame priorities are set at the
Differentiate Service Code Points (DSCP) or at the 802.1Q Tag.

2.2.11.1 Class attributes

Attr ID Name Access Description Default
Value

Supported
by defaultfrom

Network
from Host

1 Revision Get Get Revision of this object (1)

2 Max. Instance Get Get Maximum instance number of an object
currently created in this class level of
the device

(1)

3 Number of Instances Get Get The number of instances currently
created in this class

(1)

6 Maximum ID
Number Class Attributes

Get Get The attribute ID number of the last
class attribute of the class definition
implemented in the device.

(7)

7 Maximum ID
Number Instance
Attributes

Get Get The attribute ID number of the last
instance attribute of the class definition
implemented in the device.

(8)

Table 22. QoS Object - Class attributes

2.2.11.2 Instance attributes

Attr ID Name Access Description Default
Value

Supported
by defaultfrom

Network
from Host

1 Tag Enable Get/Set Get/Set Enables or disables sending 802.1Q
frames on CIP and IEEE 1588
messages

(0)

2 DSCP PTP Event Get/Set Get/Set DSCP value for PTP Event frames (59)

3 DSCP PTP General Get/Set Get/Set DSCP value for PTP general frames (47)

4 DSCP Urgent Get/Set Get/Set DSCP value for implicit messages with
urgent priority

(55)

5 DSCP Scheduled Get/Set Get/Set DSCP value for implicit messages with
scheduled priority

(47)

6 DSCP High Get/Set Get/Set DSCP value for implicit messages with
high priority

(43)

7 DSCP Low Get/Set Get/Set DSCP value for implicit messages with
low priority

(31)

8 DSCP Explicit Get/Set Get/Set DSCP value for explicit messages (27)

Table 23. QoS Object - Instance attributes

2.2.11.3 Common services

These services are available to the host application and remote EtherNet/IP clients.

Service Code Name Addressing the object’s Description

Class Level Instance Level

0x0E Get Attribute Single Retrieve attribute value

0x10 Set Attribute Single Modify attribute value

Table 24. Quality of Service Object - Common services

Chapter 2 Hilscher EtherNet/IP stack capabilities 22 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

2.2.12 TCP/IP Interface Object (class code: 0xF5)

The TCP/IP Interface Object provides an interface to control a device’s TCP/IPv4 network configuration, most
importantly the device’s IP Address, Network Mask, and Gateway Address.

The EtherNet/IP Adapter stack supports exactly one instance of the TCP/IP Interface Object.

2.2.12.1 Class attributes

Attr ID Name Access Description Default
Value

Supported
by defaultfrom

Network
from Host

1 Revision Get Get Revision of this object (4)

2 Max. Instance Get Get Maximum instance number of an object
currently created in this class level of
the device

(1)

3 Number of Instances Get Get The number of instances currently
created in this class

(1)

6 Maximum ID
Number Class Attributes

Get Get The attribute ID number of the last
class attribute of the class definition
implemented in the device.

(7)

7 Maximum ID
Number Instance
Attributes

Get Get The attribute ID number of the last
instance attribute of the class definition
implemented in the device.

(14)

Table 25. TCP/IP Interface Object - Class attributes

2.2.12.2 Instance attributes

Attr ID Name Access Description Default
Value

Supported
by defaultfrom

Network
from Host

1 Status Get Get/Set Interface status

2 Configuration Capability Get Get/Set Interface capability flags (0x95)

3 Configuration Control Get/Set Get/Set Interface control flags. This allows to
select between static and dynamic IP
configuration.

(0)

4 Physical Link Object Get Get Path to physical link object (0x20 0xF6
0x24 0x01)

5 Interface Configuration Get/Set Get/Set Interface Configuration (IP address,
subnet mask, gateway address etc.).
This attribute reflects the current IP
address of the device. In case of
dynamic IP configuration, write/set
access to this attribute is prohibited.
For static IP configuration, the attribute
has transactional semantics: An IP
configuration can actively be set, and
any IP configuation that is passively set,
will be reflected as the current attrbute
value. See section DHCP/BOOTP
Client for details.

(0)

6 Host Name Get/Set Get/Set The Host Name attribute contains the
device’s host name, which can be used
for informational purposes.

(“”)

7 Safety Network Number 1) Get Get/Set See CIP Safety Specification, volume 5,
section 3

(0xFF 0xFF
0xFF 0xFF
0xFF 0xFF)

8 TTL Value Get/Set Get/Set TTL value for EtherNet/IP multicast
packets

(1)

Chapter 2 Hilscher EtherNet/IP stack capabilities 23 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

9 Mcast Config Get/Set Get/Set IP multicast address
Configuration

(0)

10 SelectAcd Get/Set Get/Set Activates the use of ACD (1)

11 LastConflictDetected Get/Set Get/Set Structure containing information
related to the last conflict detected

(0)

12 EtherNet/IP Quick
Connect

Get/Set Get/Set Enable/Disable of Quick Connect
feature

(0)

13 Encapsulation Inactivity
Timeout

Get/Set Get/Set Number of seconds till TCP connection
is closed on encapsulation inactivity

(120)

14 IANA Port Admin Get Get/Set IANA port admin configuration tcp: 44818

udp: 44818
udp: 2222

1) Activating the Safety Network Number will automatically switch off the support of the Identity object’s reset service. The reset

service will be reject with general status 0x08 “Service not supported”

Table 26. TCP/IP Interface Object - Instance attributes

2.2.12.3 Common services

These services are available to the host application and remote EtherNet/IP clients.

Service Code Name Addressing the object’s Description

Class Level Instance Level

0x01 Get Attribute All Returns content of instance or class attributes

0x0E Get Attribute Single Retrieve attribute value

0x10 Set Attribute Single Modify attribute value

Table 27. TCP/IP Interface Object - Common services

Chapter 2 Hilscher EtherNet/IP stack capabilities 24 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

2.2.13 Ethernet Link Object (class code: 0xF6)

The Ethernet Link Object maintains link-specific status information for the Ethernet communications interface. If the
device is a multi-port device, it holds more than one instance of this object. Usually, when using the Dual-Port Virtual
Ethernet Switch, instance 1 refers to Ethernet port 0 and instance 2 to Ethernet port 1.

2.2.13.1 Class attributes

Attr ID Name Access Description Default
Value

Supported
by defaultfrom

Network
from Host

1 Revision Get Get Revision of this object (4)

2 Max. Instance Get Get Maximum instance number of an object
currently created in this class level of
the device

(2)

3 Number of Instances Get Get The number of instances currently
created in this class

(2)

6 Maximum ID
Number Class Attributes

Get Get The attribute ID number of the last
class attribute of the class definition
implemented in the device.

(7)

7 Maximum ID
Number Instance
Attributes

Get Get The attribute ID number of the last
instance attribute of the class definition
implemented in the device.

(768)

Table 28. Ethernet Link Object - Class attributes

2.2.13.2 Instance attributes

Attr ID Name Access Description Default
Value

Supported
by defaultfrom

Network
from Host

1 Interface Speed Get Get Interface speed currently in use (100)

2 Interface Flags Get Get Interface status flags (0x20)

3 Physical Address Get Get MAC layer address

4 Interface Counters Get Get Interface specific counters

5 Media Counters Get Get Media specific counters

6 Interface Control Get/Set Get/Set Configuration for physical interface (0)

7 Interface Type Get Get/Set Type of interface: twisted pair, fiber (0x02)

8 Interface State Get Get Current state of interface (0)

9 Admin State Get/Set Get/Set Administrative state:

1 EIP_EN_INTF_ST
ATE_ENABLE

Enable
interface

2 EIP_EN_INTF_ST
ATE_DISABLE

Disable
Interface

(disable)

10 Interface Label Get Get/Set Human readable identification (“port1”,”por
t2”)

11 Interface Capability Get Get/Set Indication of capabilities of the
interface

10 / HD,

10 / FD,

100 / HD,
100 / FD

Chapter 2 Hilscher EtherNet/IP stack capabilities 25 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

768 MDIX Get/Set Get/Set MDIX configuration
Format: uint8_t, range [1 .. 3]

1 EIP_EN_INTF_M
DIX_AUTO

Auto
detect

2 EIP_EN_INTF_M
DIX_MDI

Explicit
MDI

3 EIP_EN_INTF_M
DIX_MDIX

Explicit
MDIX

1

Table 29. Ethernet Link Object - Instance attributes

2.2.13.3 Common services

These services are available to the host application and remote EtherNet/IP clients.

Service Code Name Addressing the object’s Description

Class Level Instance Level

0x01 Get Attribute All Returns content of instance or class attributes

0x0E Get Attribute Single Retrieve attribute value

0x10 Set Attribute Single Modify attribute value

Table 30. Ethernet Link Object - Common services

2.2.13.4 Class-specific services

These services are available to the host application and remote EtherNet/IP clients.

Service Code Name Addressing the object’s Description

Class Level Instance Level

0x4C Get and Clear Retrieves attribute value and subsequently sets
the attribute value to zero (only for attributes
Interface-Counters and Media-Counters).

Table 31. Ethernet Link Object - Class-specific services

Chapter 2 Hilscher EtherNet/IP stack capabilities 26 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

2.2.14 LLDP Management Object (class code: 0x109)

The LLDP Management Object provides the CIP-level interface for the Firmware’s implementation of the LLDP protocol.

All information about neighboring devices that is stored in the data tables of the LLDP protocol stack can currently only be
accessed using the SNMP protocol (LLDP-MIB, OID 1.0.8802.1.1.2.1). There is no interface for the host application to read
the neighboring device information directly.

2.2.14.1 Class attributes

Attr ID Name Access Description Default
Value

Supported
by defaultfrom

Network
from Host

1 Revision Get Get Revision of this object (1)

2 Max. Instance Get Get Maximum instance number of an object
currently created in this class level of
the device

(1)

3 Number of Instances Get Get The number of instances currently
created in this class

(1)

6 Maximum ID
Number Class Attributes

Get Get The attribute ID number of the last
class attribute of the class definition
implemented in the device.

(7)

7 Maximum ID
Number Instance
Attributes

Get Get The attribute ID number of the last
instance attribute of the class definition
implemented in the device.

(5)

Table 32. LLDP Management Object - Class attributes

2.2.14.2 Instance attributes

Attr ID Name Access Description Default
Value

Supported
by defaultfrom

Network
from Host

1 LLDP Enable Get/Set Get/Set Enables/Disables LLDP global or per
port.

All ports
enabled

2 msgTxInterval Get/Set Get/Set From 802.1AB-2016. The interval in
seconds for transmitting LLDP frames
from this device.

(30)

3 msgTxHold Get/Set Get/Set From 802.1AB-2016. A multiplier of
msgTxInterval to determine the value of
the TTL TLV sent to neighboring
devices.

(4)

4 LLDP Datastore Get Get An indication of the retrieval methods
for the LLDP database supported by
the device.

(0x02)
(SNMP)

5 Last Change Get Get The value of sysUpTime taken the last
time any entry in the local LLDP
database changed.

(0)

Table 33. LLDP Management Object - Instance attributes

2.2.14.3 Common services

These services are available to the host application and remote EtherNet/IP clients.

Service Code Name Addressing the object’s Description

Class Level Instance Level

0x0E Get Attribute Single Retrieve attribute value

0x10 Set Attribute Single Modify attribute value

Table 34. LLDP Management Object - Common services

Chapter 2 Hilscher EtherNet/IP stack capabilities 27 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

2.2.15 Predefined Connection Object (class code: 0x401)

The Predefined Connection Object (PDC) defines and maintains the implicit (class 0/1) connections of the EtherNet/IP
Adapter. It is a Hilscher-specific CIP object, which is not covered by the CIP specification.

The PDC object has two purposes:

1. During the configuration phase, let the host application define the set of implicit connections the EtherNet/IP Adapter
supports. For each connection, the following parameters are defined:
■ The connection endpoints, a.k.a. Assembly instances for the Input and Output data directions
■ The allowed range of packet intervals (RPI), further limiting the range the protocol stack is technically capable of, if

intended
■ The set of connection trigger types supported by the connection
■ The connection type (class 0, class 1, listen only, input only)

2. During the runtime phase, provide information about the current state of the connections.

2.2.15.1 Class attributes

Attr ID Name Access Description Default
Value

Supported
by defaultfrom

Network
from Host

1 Revision Get Get Revision of this object (1)

2 Max. Instance Get Get Maximum instance number of an object
currently created in this class level of
the device.

(3) in default
config

3 Number of Instances Get Get The number of instances currently
created in this class.

(3) in default
config

6 Maximum ID
Number Class Attributes

Get Get The attribute ID number of the last
class attribute of the class definition
implemented in the device.

(7)

7 Maximum ID
Number Instance
Attributes

Get Get The attribute ID number of the last
instance attribute of the class definition
implemented in the device.

(3)

Table 35. Predefined Connection Object - Class attributes

2.2.15.2 Instance attributes

Attr ID Name Access Description Default
Value

Supported
by defaultfrom

Network
from Host

1 State Get Get Provides information about the current

state of the connection.
FREE (0), UNCONNECTED (1),
CONNECTED (2), TIMEOUT (3)

0

2 Count Get Get Indicates how many connections of
that type are currently opened.

0

3 Configuration Get Get/Set Connection configuration (see
Structure of PDC Instance Attibute 3 -
Configuration)

Table 36. Predefined Connection Object - Instance attributes

2.2.15.3 Configuration - Attribute 3

The Configuration attribute 3 indicates a specific implicit connection that can be opened to the EtherNet/IP Adapter.

Chapter 2 Hilscher EtherNet/IP stack capabilities 28 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Name Byte Size Description

Consumer Connection Point 4 Connection point addressing the O2T (Originator to Target) direction.
Typically, this is an assembly instance number. The value 0xFFFFFFFF serves a wildcard
(don’t care) purpose. If the wildcard is given, any Assembly of the proper data direction,
type and size, will be accepted as the connection endpoint. Specifying explicit
connection endpoints is to be preferred over using the wildcard feature for the sake of a
clearer system design.

Producer Connection Point 4 Connection point addressing the T2O (Target to Originator) direction.
Typically, this is an assembly instance number. The value 0xFFFFFFFF serves a wildcard
(don’t care) purpose. If the wildcard is given, any Assembly of the proper data direction,
type and size, will be accepted as the connection endpoint. Specifying explicit
connection endpoints is to be preferred over using the wildcard feature for the sake of a
clearer system design.

Configuration Connection
Point

4 Connection point addressing a configuration assembly instance.
The value 0xFFFFFFFF serves a wildcard (don’t care) purpose. If the wildcard is given,
any Configuration Assembly of the proper size, will be accepted. Specifying explicit
connection endpoints is to be preferred over using the wildcard feature for the sake of a
clearer system design.

Minimum O2T RPI 4 Min. RPI of the consuming direction in microseconds

Maximum O2T RPI 4 Max. RPI of the consuming direction in microseconds

Minimum T2O RPI 4 Min. RPI of the producing direction in microseconds

Maximum T2O RPI 4 Max. RPI of the producing direction in microseconds

Supported Trigger Types 1 Supported trigger types of the connection. There can be up to 3 trigger types supported,
see section Supported Trigger Types.

Connection type 1 This field specifies the connection application type. The following types are available:

#define CIP_CTYPE_EXCLUSIVE_OWNER 0x01
#define CIP_CTYPE_LISTEN_ONLY 0x03
#define CIP_CTYPE_INPUT_ONLY 0x04

For more information about application types see [5].

Table 37. Structure of PDC Instance Attibute 3 - Configuration

2.2.15.4 Common services

These services are available to the host application and remote EtherNet/IP clients.

Service Code Name Addressing the object’s Description

Class Level Instance Level

0x0E Get Attribute Single Retrieve attribute value

0x10 Set Attribute Single Modify attribute value

0x08 Create 1) Create new predefined connection instance

0x09 Delete 1) Delete predefined connection instance
1) This service is only available to the host application. Initiated from the network, the service will be rejected with general status code
0x08 “Service not supported”.

Table 38. Predefined Connection Object - Common services

Chapter 2 Hilscher EtherNet/IP stack capabilities 29 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

2.2.15.5 Create (0x08)

The “Create” service creates a new instance of the Predefined Connection object.

NOTE This service may execute successfully with faulty configurations, e.g. invalid assembly instances.
However, inconsistent configuration might lead to a non-functioning connection.

Request Service Data Field Parameters:

The request service data equals the PDC instance attribute 3 structure (see Structure of PDC Instance Attibute 3 -
Configuration).

Successful Response Service Data Field Parameters:

The response data to the “Create” service provides the CIP instance number of the newly created Predefined Connection
object instance.

Name Byte Size Description

CIP instance number that
has been created

2 CIP Instance that has been created inside the Predefined Connection class.

Unsuccessful Response Service Data Field Parameters:

The unsuccessful response does not provide any data.

2.2.15.6 Delete (0x09)

The “Delete” service deletes an instance of the Predefined Connection object. Deleting of an instance is only possible if
the instance is not participating in an active connection. Otherwise, the service will be answered with general status code
0x0C “Bad Object Mode”.

Request Service Data Field Parameters:

The service does not accept any parameters.

Success Response Service Data Field Parameters:

The service has no response parameters.

Unsuccessful Response Service Data Field Parameters:

The unsuccessful response does not provide any data.

Chapter 2 Hilscher EtherNet/IP stack capabilities 30 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

2.2.15.7 Supported Trigger Types

The following trigger type flags can be used:

#define CIP_PDC_TTYPE_CYCLIC 0x01 /* Cyclic */
#define CIP_PDC_TTYPE_COS 0x02 /* Change of State */
#define CIP_PDC_TTYPE_APPLICATION 0x04 /* Application Triggered */

NOTE the trigger type only affects the message production in the T2O (producing) direction. Which trigger
type is used for the connection depends on what the originator of the connection (e.g. PLC) is
requesting. Here, we only configure what types the specific connection supports. The following
description of the different trigger types reference the “Transmission Trigger Timer” and the
“Production Inhibit Timer”. These timers are described in more detail below.

Cyclic

The Transmission Trigger Timer triggers the Message production.

In that case, the message production on the network is completely independent to when the host application updates the
data in the DPM (e.g. via xChannelIoWrite). Therefore, the host application can update the producing data at their own
rate without having influence on the frames sent on the network.

Application Triggered

Message production is triggered when the application updates the application production data (e.g. via xChannelIoWrite)
and by the Transmission Trigger Timer.

The message production triggered by the application additionally depends on the Production Inhibit Timer (see below).

Change of State

Message production is triggered when the application production data has changed (e.g. via xChannelIoWrite) and by the
Transmission Trigger Timer. Note: the protocol stack will not check for production data changes. Therefore, the host
application is responsible to update production data only if it has changed. The message production triggered by the
application additionally depends on the Production Inhibit Timer (see below).

Transmission Trigger Timer

The Transmission Trigger Timer is using the RPI rate the connection originator (e.g. PLC) requested during connection
establishment. The expiration of this timer will result in the production of the producing data on the network regardless of
the connection’s trigger type.

Production Inhibit Timer

The Production Inhibit Timer applies only to “Change of State” or “Application Triggered” connections. The timer is
started only when the application updates the production data (e.g. xChannelIoWrite). Data produced due to the
expiration of the Transmission Trigger Timer will not result in a restart of the Production Inhibit Timer (one shot). While the
timer is running, the protocol stack suppresses new message production to the network. If one or more new data events
occur while this timer is running the protocol stack will produce the most recent new data immediately when it expires.
The mechanism intends to limit the production intervals to the lower levels. The originator of the connection can
configured the timer via a “Production Inhibit Time” segment attached to the ForwardOpen message. If this segment is
not present, the stack will set the timer value to ¼ of the RPI (as defined by CIP).

Chapter 2 Hilscher EtherNet/IP stack capabilities 31 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

2.2.16 Diagnosis Object (class code: 0x403)

The diagnosis object provides diagnostic information on the product. Any user may read the diagnostic information
through the EtherNet/IP network or the host interface and provide it to the Hilscher support team, precisely identifying
the affected product. The diagnostis object is a Hilscher-specific CIP object.

2.2.16.1 Class attributes

Attr ID Name Access Description Default
Value

Supported
by defaultfrom

Network
from Host

1 Revision Get Get Revision of this object (1)

2 Max. Instance Get Get Maximum instance number of an object
currently created in this class level of
the device

(1)

3 Number of Instances Get Get The number of instances currently
created in this class

(1)

6 Maximum ID
Number Class Attributes

Get Get The attribute ID number of the last
class attribute of the class definition
implemented in the device.

(7)

7 Maximum ID
Number Instance
Attributes

Get Get The attribute ID number of the last
instance attribute of the class definition
implemented in the device.

(9)

Table 39. Diagnosis Object - Class attributes

2.2.16.2 Instance attributes

Attr ID Name Access Description Default
Value

Supported
by defaultfrom

Network
from Host

1 Chip info Get Get Name of the used netX chip, data type
SHORT_STRING

Product
specific

2 OS info Get Get Name of the used operating system,
data type SHORT_STRING

Product
specific

3 Stack info Get Get Name/Version of the used protocol
stack core component, data type
SHORT_STRING

Product
specific

4 Firmware info Get Get Name/Version of the used EtherNet/IP
firmware, data type SHORT_STRING

Product
specific

6 Build date Get Get Build date of the used EtherNet/IP
firmware, data type SHORT_STRING

Product
specific

7 Build type Get Get Build type of the used EtherNet/IP
firmware, data type SHORT_STRING

“release”

8 Build host Get Get Build machine name of the used
EtherNet/IP firmware, data type
SHORT_STRING

Product
specific

9 Uptime Get Get Device uptime in seconds, data type
UDINT

0

Table 40. Diagnosis Object - Instance attributes

2.2.16.3 Common services

These services are available to the host application and remote EtherNet/IP clients.

Service Code Name Addressing the object’s Description

Class Level Instance Level

0x0E Get Attribute Single Retrieve attribute value

Table 41. Diagnosis Object - Common services

Chapter 2 Hilscher EtherNet/IP stack capabilities 32 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

2.2.17 IO Mapping Object (class code: 0x402)

The IO Mapping Object is responsible for partitioning of the DPM I/O input and output areas and mapping of those
partitions, i.e. members, to the related instances of the Assembly object. This is a Hilscher-specific CIP object, which is
not covered by the CIP specification.

2.2.17.1 Class attributes

Attr ID Name Access Description Default
Value

Supported
by defaultfrom

Network
from Host

1 Revision Get Get Revision of this object (1)

2 Max. Instance Get Get Maximum instance number of an object
currently created in this class level of
the device

(1)

3 Number of Instances Get Get The number of instances currently
created in this class

(1)

6 Maximum ID
Number Class Attributes

Get Get The attribute ID number of the last
class attribute of the class definition
implemented in the device.

(7)

7 Maximum ID
Number Instance
Attributes

Get Get The attribute ID number of the last
instance attribute of the class definition
implemented in the device.

(3)

Table 42. IO Mapping Object - Class attributes

2.2.17.2 Instance attributes

Attr ID Name Access Description Default
Value

Supported
by defaultfrom

Network
from Host

1 Status Get Get Status of I/O data (Data direction, State
of connection)

2 Length Get Get Length of I/O data

3 Data Get Get I/O data

Table 43. IO Mapping Object - Instance attributes

2.2.17.3 Common services

These services are available to the host application and remote EtherNet/IP clients.

Service Code Name Addressing the object’s Description

Class Level Instance Level

0x0E Get Attribute Single Retrieve attribute value

0x10 Set Attribute Single Modify attribute value

Table 44. IO Mapping Object - Common services

Chapter 2 Hilscher EtherNet/IP stack capabilities 33 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

2.3 Ethernet MAC address

The protocol stack requires one MAC address to operate. This MAC address, as reflected in the corresponding attribute
3 of the CIP Ethernet Link object, is naturally unique in the physical network in which the device operates. Each vendor is
responsible for guaranteeing the uniqueness of their device’s MAC addresses by assigning them from a certain, IEEE-
registered, range.

Per default, the protocol stack applies the MAC address from the underlying Device Data Provider (DDP), which in turn
fetches it from either the Security-Memory or Flash Device Data (FDL) sources. The host application cannot set the MAC
address CIP attribute directly.

Speaking for the firmware, three to four MAC addresses may be required:

■ one for the EtherNet/IP protocol stack itself (reflected in CIP Ethernet-Link attribute 3)
■ two additional Port-Mac addresses that are used by LLDP (Link Layer Discovery Protocol)
■ one for the Ethernet API on DPM Comm channel 1, which can be enabled statically by means of the taglist (see section

Resource and feature configuration via tag list).

The table Ethernet MAC addresses shows the use of the DDP MAC addresses.

Anyway, if the host application seeks to set its own MAC addresses number, e.g. if no SecMem is available, the firmware
has to be taglist-modified accordingly as well (refer to section Resource and feature configuration via tag list). Then, it
uses the DDP MAC addresses attribute to set a range of custom MACs and set the DDP active. The following pseudo
code shows this approach:

/* optionally when initial DDP state is passive: set DDP base device parameters: MAC addresses */
HIL_DDP_SERVICE_SET_REQ_T *ptReq = (HIL_DDP_SERVICE_SET_REQ_T*)&myPacket;
uint8_t abMyComMacAddresses[8][6] =
{
 { 0xa, 0xb, 0xc, 0xd, 0xe, 0x0 }, /* This is the first chassis MAC address which is used by EtherNet/IP */
 { 0xa, 0xb, 0xc, 0xd, 0xe, 0x1 }, /* Port 0 MAC Address used for LLDP */
 { 0xa, 0xb, 0xc, 0xd, 0xe, 0x2 }, /* Port 1 MAC Address used for LLDP */
 { 0xa, 0xb, 0xc, 0xd, 0xe, 0x3 }, /* This is the second chassis MAC (Ethernet API) */
 { 0xa, 0xb, 0xc, 0xd, 0xe, 0x4 },
 { 0xa, 0xb, 0xc, 0xd, 0xe, 0x5 },
 { 0xa, 0xb, 0xc, 0xd, 0xe, 0x6 },
 { 0xa, 0xb, 0xc, 0xd, 0xe, 0x7 },
};
HIL_DDP_SERVICE_SET_REQ_T *ptReq = (HIL_DDP_SERVICE_SET_REQ_T*)&myPacket;
memset(&ptReq->tHead, 0, sizeof(ptReq->tHead));
ptReq->tHead.ulCmd = HIL_DDP_SERVICE_SET_REQ;
ptReq->tHead.ulLen = sizeof(ptReq->tData.ulDataType) + sizeof(abMyComMacAddresses);

/* Set MAC address for the protocol stack (override pre-defined MAC address from FDL) */
ptReq->tData.ulDataType = HIL_DDP_SERVICE_DATATYPE_MAC_ADDRESSES_COM;
memcpy(ptReq->tData.uDataType.atMacAddress, abMyComMacAddresses, sizeof(abMyComMacAddresses));
SendPacket(&myPacket, mychannel);
/* required when inital DPP state is passive: Set DDP active now */
ptReq->tHead.ulCmd = HIL_DDP_SERVICE_SET_REQ;
ptReq->tHead.ulLen = sizeof(ptReq->tData.ulDataType) + sizeof(ptReq->tData.uDataType.ulValue);
ptReq->tData.ulDataType = HIL_DDP_SERVICE_DATATYPE_STATE;
ptReq->tData.uDataType.ulValue = HIL_DDP_SERVICE_STATE_ACTIVE;
SendPacket(&myPacket, mychannel);

MAC address Used for Mapped to
Flash Device Label

Required

1st DDP MAC address EtherNet/IP communication

(DPM channel 0)
Socket API communication
(DPM channel 1)

MAC address 1 (communication
CPU)

Yes

2nd and 3rd DDP MAC address LLDP communication. One MAC
address for each ethernet port

MAC address 2 and 3
(communication CPU)

Yes

4th DDP MAC address Ethernet API (DPM channel 1) MAC address 4 (communication
CPU)

Required if the Ethernet API is
taglist-activated.

Table 45. Ethernet MAC addresses

Chapter 2 Hilscher EtherNet/IP stack capabilities 34 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

2.4 Device data

The FDL contains device-specific data that is set during the production of the device. While the firmware starts, it reads
this data into the DDP.

The following table lists the device data and describes how the EtherNet/IP Adapter stack maps this data to EtherNet/IP.

Name EtherNet/IP mapping

Manufacturer ID Not mapped to EtherNet/IP.

Device class Not mapped to EtherNet/IP.

Device number Not mapped to EtherNet/IP.

Serial number Mapped to Identity Object, attribute 6.

Hardware compatibility number Not mapped to EtherNet/IP.

Hardware revision number Not mapped to EtherNet/IP.

Production date Not mapped to EtherNet/IP.

Table 46. Basic device data in the FDL

The FDL allows storing OEM-specific device data. If used, a consistent set of parameters needs to be provided, i.e. all
OEM parameters need to be set and activated, even if the firmware does not use some of the OEM parameters. The
following table lists the mapping of the OEM-specific device data to EtherNet/IP.

Name EtherNet/IP mapping EtherNet/IP coding

OEM data option
flags

In case the parameters from basic device data shall be used, this

field shall be set to zero.
In case the parameters from OEM identification shall be used, this
field shall be set to 0xF.

-

OEM serial number Mapped to Identity Object, attribute 6. Null-terminated c string with decimal values
"1" … "4294967295"

OEM order number Not mapped to EtherNet/IP. -

OEM hardware
revision

Not mapped to EtherNet/IP. -

OEM production
date/time

Not mapped to EtherNet/IP. -

Table 47. OEM identification in the FDL

2.4.1 Device serial number

Together with the vendor ID, the device serial number (as reflected in the CIP Identity Object, attribute 6) forms a unique
identifier for each device on any CIP network. Each vendor is responsible for guaranteeing the uniqueness of the serial
number across all devices.

Per default, the protocol stack applies the serial number from the underlying DDP which in turn fetches it from either the
SecMem or FDL data sources. The host application cannot set the serial number attribute directly. In the
EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ, it may have to parameterize a value of zero for the serial
number. This should be fine for most applications.

If the host application seeks to set its own serial number, e.g. if no SecMem is available, the firmware has to be taglist-
modified accordingly (refer to section Resource and feature configuration via tag list). Then, it uses the OEM serial
number attribute of the DDP to set a custom serial number, to render this data valid, and finally to activate the DDP.

The following pseudo-code illustrates this approach:

/* optionally when initial DDP state is passive:
 set additional (OEM) DDP base device parameters*/
HIL_DDP_SERVICE_SET_REQ_T* ptReq = (HIL_DDP_SERVICE_SET_REQ_T*)&myPacket;

memset(ptReq, 0, sizeof(*ptReq));

/* serial number */
char* szSerialNumber = "76543";
ptReq->tHead.ulCmd = HIL_DDP_SERVICE_SET_REQ;
ptReq->tHead.ulLen = sizeof(ptReq->tData.ulDataType) + strlen(szSerialNumber) + 1;

Chapter 2 Hilscher EtherNet/IP stack capabilities 35 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

ptReq->tData.ulDataType = HIL_DDP_SERVICE_DATATYPE_OEM_SERIALNUMBER;

memcpy(ptReq->tData.uDataType.szString, szSerialNumber, strlen(szSerialNumber) + 1);
SendPacket(&myPacket, mychannel);

/* order number */
char* szOrderNum = "34567";
ptReq->tHead.ulCmd = HIL_DDP_SERVICE_SET_REQ;
ptReq->tHead.ulLen = sizeof(ptReq->tData.ulDataType) + strlen(szOrderNum) + 1;
ptReq->tData.ulDataType = HIL_DDP_SERVICE_DATATYPE_OEM_ORDERNUMBER;

memcpy(ptReq->tData.uDataType.szString, szOrderNum, strlen(szOrderNum) + 1);
SendPacket(&myPacket, mychannel);

/* hardware revision */
char* szHwRev = "123";
ptReq->tHead.ulCmd = HIL_DDP_SERVICE_SET_REQ;
ptReq->tHead.ulLen = sizeof(ptReq->tData.ulDataType) + strlen(szHwRev) + 1;
ptReq->tData.ulDataType = HIL_DDP_SERVICE_DATATYPE_OEM_HARDWAREREVISION;

memcpy(ptReq->tData.uDataType.szString, szHwRev, strlen(szHwRev) + 1);
SendPacket(&myPacket, mychannel);

/* production date */
char* szProductionDate = "4321";
ptReq->tHead.ulCmd = HIL_DDP_SERVICE_SET_REQ;
ptReq->tHead.ulLen = sizeof(ptReq->tData.ulDataType) + strlen(szProductionDate) + 1;
ptReq->tData.ulDataType = HIL_DDP_SERVICE_DATATYPE_OEM_PRODUCTIONDATE;

memcpy(ptReq->tData.uDataType.szString, szProductionDate, strlen(szProductionDate) + 1);
SendPacket(&myPacket, mychannel);

/* also set the OEM identification "valid" */
ptReq->tHead.ulCmd = HIL_DDP_SERVICE_SET_REQ;
ptReq->tHead.ulLen = sizeof(ptReq->tData.ulDataType)
 + sizeof(ptReq->tData.uDataType.ulValue);
ptReq->tData.ulDataType = HIL_DDP_SERVICE_DATATYPE_OEM_OPTIONS;
ptReq->tData.uDataType.ulValue = 0xF; /* set OEM identification valid */

SendPacket(&myPacket, mychannel);

/* required when initial DPP state is passive: Set DDP active now */
ptReq->tHead.ulCmd = HIL_DDP_SERVICE_SET_REQ;
ptReq->tHead.ulLen = sizeof(ptReq->tData.ulDataType)
 + sizeof(ptReq->tData.uDataType.ulValue);
ptReq->tData.ulDataType = HIL_DDP_SERVICE_DATATYPE_STATE;
ptReq->tData.uDataType.ulValue = HIL_DDP_SERVICE_STATE_ACTIVE;

SendPacket(&myPacket, mychannel);

NOTE OEMization is EtherNet/IP-specific. Other software components will reflect the Hilscher serial number
from the basic device data anyway instead of the OEM-data, e.g. the netIdent/EtherNetDeviceConfig
subsystem.

Chapter 2 Hilscher EtherNet/IP stack capabilities 36 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

2.5 Status information

2.5.1 DPM communication status

This section describes how the EtherNet/IP Adapter uses the communication status. The communication status is
located in the DPM as described in netX DPM Interface manual [1].

State Description

OFFLINE The device is not configured. No frames are generated.

STOP The device is configured and Bus OFF is set. The device is not responsive to network communication.

IDLE The device is configured and Bus ON is set, but the device has no open connections (class0, class1 or class3).

OPERATE The device is configured and Bus ON is set. The device has at least one open connection (class0, class1 or class3).
During this communication state, also the COM Bit (NCF_COMMUNICATING) will be set.

Table 48. Communication states

The following figure shows how the communication status transitions depend on specific events.

Figure 3. Communication status transitions

Chapter 2 Hilscher EtherNet/IP stack capabilities 37 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

2.5.2 DPM COS flags

Flag Description

DPM flag CONFIGURATION NEW The EtherNet/IP protocol stack does not handle the DPM flag
HIL_COMM_COS_CONFIG_NEW located in the communication status field
(ulCommunicationCOS).

DPM flag RESTART REQUIRED The EtherNet/IP protocol stack does not handle the DPM flag
HIL_COMM_COS_RESTART_REQUIRED located in the communication status field
(ulCommunicationCOS).

DPM flag RESTART REQUIRED ENABLE The EtherNet/IP protocol stack does not handle the DPM flag
HIL_COMM_COS_RESTART_REQUIRED_ENABLE located in the communication
status field (ulCommunicationCOS).

Table 49. DPM COS flags

2.5.3 Other DPM status bits

Bit NCF_COMMUNICATING will be set for the DPM channel if at least one CIP class 0, class 1 or class 3 connection is open
for which we are the target.

The protocol stack updates the bit in a low-priority path, asynchronously with the processing of high-priority I/O data.
Thus, it is not suitable for the application to decide on whether or not input data of the channel is “valid”. Instead, the
feature EIP_AS_OPTION_MAP_RUNIDLE can be used to retrieve such status information. Unless
EIP_AS_OPTION_HOLDLASTSTATE is used, the input data of a connection will read all zeroes when no connection is
established or a connection is not (yet) in the RUN status.

Chapter 2 Hilscher EtherNet/IP stack capabilities 38 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

2.6 Module and network status

This section describes the LED signaling of EtherNet/IP Adapter devices.

Two LEDs display status information:

■ the module status LED (MS)
■ the network status LED (NS)

2.6.1 Module status

The following table lists the possible module status values and their meanings (Parameter ulModuleStatus):

Symbolic name Numeric
value

Meaning

EIP_MS_NO_POWER 0 No power
If no power is supplied to the device, the module status indicator is
permanently off.

EIP_MS_SELFTEST 1 Self-test
While the device is performing its power-on testing, the module
status indicator is flashing green/red.

EIP_MS_STANDBY 2 Standby
If the device has not been configured, the module status indicator
is flashing green.

EIP_MS_OPERATE 3 Device operational
If the device is operating correctly, the module status indicator is
permanently green.

EIP_MS_MAJOR_RECOVERABLE_FAULT 4 Major recoverable fault
If the device has detected a major recoverable fault, the module

status indicator is flashing red.

Note: An incorrect or inconsistent configuration is considered a
major recoverable fault.

EIP_MS_MAJOR_UNRECOVERABLE_FAULT 5 Major unrecoverable fault
If the device has detected an unrecoverable major fault, the
module status indicator is permanently red.

Table 50. Possible values of the module status

Chapter 2 Hilscher EtherNet/IP stack capabilities 39 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

2.6.2 Network status

The following table lists the possible network status values and their meaning (Parameter ulNetworkStatus):

Symbolic name Numeric
value

Meaning

EIP_NS_NO_POWER 0 Not powered, no IP address
Either the device is not powered or it is powered, but no IP address has been
configured yet. The network status indicator LED is off.

EIP_NS_NO_CONNECTION 1 No connections
An IP address has been configured, but no CIP connections are established, and
an exclusive owner connection has not timed out. The network status indicator
is flashing green.

EIP_NS_CONNECTED 2 Connected
At least one CIP connection of any transport class is established, and an
exclusive owner connection has not timed out. The network status indicator is
permanently green.

EIP_NS_TIMEOUT 3 Connection timeout
An exclusive owner connection for which this device is the target has timed out.
The network status returns to EIP_NS_CONNECTED when connections to all
those consumer connection points are reestablished, whose connections
previously timed out.

EIP_NS_DUPIP 4 Duplicate IP
The device has detected that its IP address is already in use. The network status
indicator is permanently red.

EIP_NS_SELFTEST 5 Self-Test
The device is performing its power-on self-test (POST). During POST, the
network status indicator is flashing green and red alternately.

Table 51. Possible values of the network status

Chapter 2 Hilscher EtherNet/IP stack capabilities 40 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

2.7 Handshake modes

The handshake mode is get and set by means of the services HIL_GET_TRIGGER_TYPE_REQ and
HIL_SET_TRIGGER_TYPE_REQ. The EtherNet/IP protocol stack offers the following handshake modes for exchange of
process data with the host application and global time synchronization:

Input handshake mode Output handshake mode Synchronization handshake mode

Free-running
Receive (RX) triggered

Free-running Disabled
Enabled

Table 52. Supported handshake modes

2.7.1 Input handshake mode / output handshake mode

Free-running handshake mode: This is the default handshake mode for input and output data, i.e. assemblies of the types
EIP_AS_TYPE_INPUT and EIP_AS_TYPE_OUTPUT. In this mode, when the host reads I/O data from or writes I/O data to the
protocol stack, control over the input or output areas, is given to the protocol stack which immediately copies the current
process data into (or out of) the DPM and returns the control over the area to the host. If no valid input data is available,
e.g. if the Run bit was not set in the previous process data telegram, unless otherwise specified, the copied data read as
zeroes. The free-running handshake mode is the only supported mode for the output handshake.

Receive (RX) triggered handshake mode: This mode is available for assemblies that consume data from the network, i.e.
assemblies of type EIP_AS_TYPE_INPUT. If this handshake mode is configured, at least one input assembly has to be
present and be marked as a trigger assembly with the option flag EIP_AS_OPTION_RXTRIGGER, see table Assembly Types
and Option Flags. In this mode, when the host attempts to read process data from the protocol stack, control over the
DPM input area is given to the protocol stack. The stack will then wait for the next (current) process data from the
network directed toward one of the trigger assemblies, copy that data into the DPM and pass control over the input area
back to the application. If there are multiple trigger assemblies, it is undefined which subset of them has possibly been
updated and the host application has to take further means to decide on the age of the data segment of each assembly.
For details, see assembly option flag EIP_AS_OPTION_MAP_SEQCOUNT in table Assembly Types and Option Flags.

NOTE The handshake mode, once configured, is kept until explicitly reconfigured to another mode or the
protocol stack reboots (due to a physical reset or a "warm restart" of the firmware).

NOTE During the design phase of your project we encourage you to decide on whether a time-triggered (sync
handshake) or an event-triggered (receive-triggered) system suits your needs best and to opt for one
type. Although it is technically possible to combine both modes, using only one method leads to a clear
design and a less complex implementation.

NOTE If the handshake mode “receive (RX) triggered” is used and if currently no I/O connection is established
towards any assembly that is eligible for triggering, control over the input area will not be returned to
the host until a new connection is established and a first I/O frame is received.

Chapter 2 Hilscher EtherNet/IP stack capabilities 41 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

2.7.2 Synchronization handshake mode

Irrespective of the input / output handshake modes, a synchronization handshake based on the EtherNet/IP TimeSync
Module according to the CIPSync device specification is available in the following two modes:

Synchronization handshake disabled: The protocol stack will not trigger a synchronization handshake. This is the default.

Synchronization handshake enabled: A synchronization interrupt is generated periodically in the synchronization interval
as specified by the TimeSync Object synchronization parameters while the clock is synchronized to the master clock.

For a detailed description of CIP Sync, see Application Note [4].

2.7.3 Configuration

To configure the handshake mode, use Set Trigger Type Request HIL_SET_TRIGGER_TYPE_REQ. For details, see
section HIL_SET_TRIGGER_TYPE_REQ or reference [9].

Example 1

Configure input handshake mode “Free-running” and "Synchronization handshake enabled"

HIL_SET_TRIGGER_TYPE_REQ_T tReq;
tReq.tData.usPdInHskTriggerType = HIL_TRIGGER_TYPE_PDIN_NONE;
tReq.tData.usPdOutHskTriggerType = HIL_TRIGGER_TYPE_PDOUT_NONE;
tReq.tData.usSyncHsdkTriggerType = HIL_TRIGGER_TYPE_SYNC_TIMED_ACTIVATION;
tReq.tHead.ulLen = HIL_SET_TRIGGER_TYPE_REQ_SIZE;
tReq.tHead.ulCmd = HIL_SET_TRIGGER_TYPE_REQ;
tReq.tHead.ulId = 0;
SendPacket(&tReq);

Example 2

Configure input handshake mode “RX triggered” and "Synchronization handshake disabled"

HIL_SET_TRIGGER_TYPE_REQ_T tReq;
tReq.tData.usPdInHskTriggerType = HIL_TRIGGER_TYPE_PDIN_RX_DATA_RECEIVED;
tReq.tData.usPdOutHskTriggerType = HIL_TRIGGER_TYPE_PDOUT_NONE;
tReq.tData.usSyncHsdkTriggerType = HIL_TRIGGER_TYPE_SYNC_NONE;
tReq.tHead.ulLen = HIL_SET_TRIGGER_TYPE_REQ_SIZE;
tReq.tHead.ulCmd = HIL_SET_TRIGGER_TYPE_REQ;
tReq.tHead.ulId = 0;
SendPacket(&tReq);

Chapter 2 Hilscher EtherNet/IP stack capabilities 42 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

2.8 Quality of Service

2.8.1 Introduction

Quality of Service (QoS) is a mechanism that treats data streams according to their delivery characteristics. The most
important characteristic is the priority of the data stream. In the context of EtherNet/IP, QoS means priority-dependent
control of Ethernet data streams. QoS is of special importance for advanced time-critical applications such as CIP Sync
and CIP Motion and is mandatory for DLR (see section Device Level Ring).

TCP/IP-based protocols have two standard mechanisms for implementing QoS (described below):

■ Differentiated Services (DiffServ)
■ 802.1D/Q protocols

Introducing QoS means providing network infrastructure devices such as switches and hubs to differentiate between
frames of different priority. These devices write priority information into the frames. This technique is called priority
tagging.

2.8.2 DiffServ

In the definition of an IP v4 frame, the second byte is denominated as TOS. See figure below:

Figure 4. TOS Byte in IP v4 Frame Definition

DiffServ is a schematic model for the priority-based classification of IP frames based on an alternative interpretation of the
TOS byte. DiffServ is specified in RFC 2474.

The idea of DiffServ consists in redefining 6 bits (i.e. bits 8 to 13 of the whole IP v4 frame) and using them as a code point.
Thus, these 6 bits are denominated as DSCP (Differentiated Services Code Point) in the context of DiffServ. These 6 bits
allow addressing 63 predefined routing behaviors, which can be applied for routing the frame at the next router, and
specify exactly how to process the frame there. These routing behaviors are called PHBs (Per-Hop behavior). Many PHBs
have been predefined and the IANA has assigned DSCPs to them. For a list of these DSCPs and the assigned PHBs, see

http://www.iana.org/assignments/dscp-registry/dscpregistry.xhtml.

Mapping of DSCP to EtherNet/IP

The following table shows the default assignment of DSCPs to different kinds of data traffic in EtherNet/IP (according to
the CIP specification).

Traffic type CIP priority DSCP (numeric) DSCP (bin)

CIP class 0 and 1 Urgent (3) 55 110111

Scheduled (2) 47 101111

High (1) 43 101011

Low (0) 31 011111

CIP class 3

CIP UCMM
All other encapsulation messages

All 27 011011

Table 53. Default assignment of DSCPs in EtherNet/IP

Chapter 2 Hilscher EtherNet/IP stack capabilities 43 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

http://www.iana.org/assignments/dscp-registry/dscpregistry.xhtml
http://www.iana.org/assignments/dscp-registry/dscpregistry.xhtml
http://www.iana.org/assignments/dscp-registry/dscpregistry.xhtml
http://www.iana.org/assignments/dscp-registry/dscpregistry.xhtml
http://www.iana.org/assignments/dscp-registry/dscpregistry.xhtml
http://www.iana.org/assignments/dscp-registry/dscpregistry.xhtml
http://www.iana.org/assignments/dscp-registry/dscpregistry.xhtml

2.8.3 802.1D/Q Protocol

802.1Q uses another possibility. IEEE 802.1Q is a standard for defining virtual LANs (VLANs) on an Ethernet network. It
introduces an additional header (the IEEE 802.1Q header) located between Source MAC and Ethertype and Size in the
standard Ethernet frame.

The IEEE 802.1Q header has the Ethertype 0x8100. It allows specifying

■ the ID of the VLAN (VLAN ID, 12-bit wide) and
■ the priority (defined in 802.1D)

Figure 5. Ethernet frame with IEEE 802.1Q header

Since the header definition reserves only 3 bits for the priority, only 8 priorities (levels from 0 to 7) can be used here.

Mapping of 802.1D/Q to EtherNet/IP

The following table shows the default assignment of 802.1D priorities to different kinds of data traffic in EtherNet/IP
(according to the CIP specification).

Traffic type CIP priority 802.1D priority

CIP class 0 and 1 Urgent (3) 6

Scheduled (2) 5

High (1) 5

Low (0) 3

CIP class 3

CIP UCMM
All other encapsulation messages

All 3

Table 54. Default assignment of 802.1D/Q priorities in EtherNet/IP

2.8.4 The QoS Object

Within the EtherNet/IP implementation of QoS, the DiffServ mechanism is usually always present and need not be
activated explicitly. In contrast to this, 802.1Q must explicitly be activated on all participating devices. The main
capabilities of the QoS object are:

■ to enable 802.1Q (VLAN tagging)
■ to enable setting parameters related to DiffServ (DSCP parameters)

For details on the QoS object in the Hilscher EtherNet/IP Adapter protocol stack, see section Quality of Service Object
(class code: 0x48).

2.8.4.1 Enable 802.1Q (VLAN tagging)

To turn the 802.1Q VLAN tagging mechanism on and off, set attribute 1 (802.1Q Tag Enable) of the QoS object to value 1.

Chapter 2 Hilscher EtherNet/IP stack capabilities 44 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

2.9 Device Level Ring

This section gives a brief overview of the basics and concepts of the Device Level Ring (DLR) networking technology
supported by Hilscher’s EtherNet/IP Adapter protocol stack.

DLR is a technology for creating a single ring topology with media redundancy. DLR is based on Layer 2 (Data link) of the
ISO/OSI model of networking and thus transparent for higher layers (except the existence of the DLR object providing
configuration and diagnosis).

In general, there are two types of devices in the network:

■ Ring supervisors
■ Ring nodes

DLR requires that all devices be equipped with two Ethernet ports and internal switching technology. Each sent frame is
forwarded on both ports, in both directions, through the ring.

On receiving the frame, each device within the DLR network checks whether the target address in the frame matches the
MAC address of the device.

■ If the frame is targeting the MAC address of the device, the device will process the frame, which will not be forwarded
any further through the ring.

■ If the frame targets another MAC, the device forwards the frame on the other port to the next ring node.

To technically achieve a line topology and prevent looping frames, the active ring supervisor disables one of its ports.

2.9.1 Ring supervisors

Two types of supervisors are defined:

■ active supervisors
■ back-up supervisors

NOTE The Hilscher EtherNet/IP stack does not support the ring supervisor mode.

Active supervisors

Tasks:

■ It periodically sends beacon and announce frames.
■ It permanently verifies the ring integrity.
■ It reconfigures the ring to ensure operation in case of single faults.
■ It collects diagnostic information from the ring.

Exactly one active ring supervisor is required within a DLR network.

Back-up supervisors

It is recommended (but not required) that each DLR network have at least one back-up supervisor. If the active supervisor
of the network fails, the back-up supervisor will take over and become the active ring supervisor. For this purpose, a
precedence value is assigned to each supervisor. The supervisor with the highest precedence becomes the active ring
supervisor. The others remain passive in the role of back-up supervisors.

Chapter 2 Hilscher EtherNet/IP stack capabilities 45 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

2.9.2 Beacon and announce frames

Beacon frames and announce frames both serve to inform the devices within the ring of the transition (i.e. the topology
change) from linear operation to the ring operation of the network.

They differ in:

Direction

■ Beacon frames are sent in both directions.
■ Announce frames are sent only in one direction of the ring.

Frequency

■ Beacon frames are sent periodically at every beacon interval (typically at intervals of 400 microseconds). Announce
frames are sent once per second.

Support for precedence number

■ Only beacon frames contain the internal precedence number of the supervisor which sent them

Support for network fault detection

■ The loss of beacon frames allows the active supervisor to detect and discriminate various types of network faults in the
ring.

2.9.3 Ring nodes

This subsection deals with the ring modules without supervisor capabilities, the so-called (normal) ring nodes.

The network has two types of normal ring nodes:

■ beacon-based nodes
■ announce-based nodes

A DLR network may contain an arbitrary number of normal nodes.

Capabilities

Beacon-based nodes:

■ implement the DLR protocol, but without ring supervisor capability
■ must be able to process beacon frames with hardware assistance

Announce-based nodes:

■ implement the DLR protocol, but without ring supervisor capability
■ forward beacon frames without processing them
■ must be able to process announce frames
■ are often only a software solution

NOTE The EtherNet/IP firmware always runs as a beacon-based ring node.

2.9.4 Normal network operation

In normal operation, the supervisor sends beacon and announce frames to monitor the state of the network. Usual ring
nodes and back-up supervisors receive these frames and react. The supervisor sends announce frames once per second
and, additionally, if an error is detected.

2.9.5 Rapid fault/restore cycles

Sometimes a series of rapid faults and restore cycles may occur in the DLR network, e.g. if a connector is faulty. If the
supervisor detects 5 faults within 30 seconds, it will set a flag (Rapid fault/Restore cycles). The user then has to reset this
flag explicitly via the Clear Rapid Faults service.

Chapter 2 Hilscher EtherNet/IP stack capabilities 46 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

2.10 CIP device protection

2.10.1 Introduction

CIP device protection refers to the mechanism that protects the configuration of a device against changes, which would
disrupt the operational state. As a prime example, it is to avoid changes to the IPv4 configuration settings while a device is
participating in an I/O connection.

This section gives an overview of the device protection, protection modes, protection policy and Hilscher’s
implementation of device protection.

For the complete description of device protection mode, see: CIP specification, volume 1, section 5A-2 - Identity object.
[5]

2.10.2 Protection modes

The protection mode is mapped to attribute 19 of the Identity object.

The CIP specification defines two different protection modes:

■ Implicit protection
■ enabled implicitly when at least one active I/O connection is established with the device
■ disabled as soon as the last I/O connection closes
■ not modifiable programmatically

■ Explicit protection
■ may be set explicitly by the application on demand using bit CIP_ID_PROTECTION_MODE_EXPLICIT_PROTECTION in

the value of the attribute

The effect of the enabled device protection (implicit or explicit) is that a well-known set of object attributes becomes
immutable and certain services become unavailable. The following sections describe this in detail.

2.10.3 Protection policy

Enabled device protection, regardless of whether it is due to implicit a/o explicit protection, has the following effects:

1. A request to the Reset service of the Identity Object will be rejected with the reply CIP_GSR_DEV_IN_WRONG_STATE
(0x10).

2. A Set Attribute Single request will be rejected with the reply CIP_GSR_DEV_IN_WRONG_STATE (0x10) if the request
targets an attribute that is subject to the protection policy.

Per default, the attributes of the following table are subject to the protection policy:

Class Instance ID Attribute ID Attribute name

TCP/IP interface (0xF5) 1 3 Configuration Control

5 Interface Configuration

6 Host Name

8 TTL Value

9 Mcast Config

10 SelectAcd

12 EtherNet/IP
QuickConnect

Ethernet Link (0xF6) 1, 2 6 Interface Control

9 Admin State

768 MDIX Config

Chapter 2 Hilscher EtherNet/IP stack capabilities 47 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Class Instance ID Attribute ID Attribute name

Quality of Service (0x48) 1 1 802.1Q Tag Enable

2 DSCP PTP Event

3 DSCP PTP General

4 DSCP Urgent

5 DSCP Scheduled

6 DSCP High

7 DSCP Low

8 DSCP Explicit

Table 55. Hilscher’s default protection policy

The user application can modify the protection policy as described in section
EIP_OBJECT_ENABLE_DISABLE_ATTRIBUTE_PROTECTION_REQ.

Chapter 2 Hilscher EtherNet/IP stack capabilities 48 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

2.11 Module and Network Status LEDs

A CIP device typically has two LED status indicators, which we refer to as MS-LED and NS-LED, and which are supposed
to reflect the Module Status and Network Status of the Device.

Normally, the LEDs are implicitly controlled by the protocol stack to indicate the current behaviorial state of the device
according to a default mapping. The host application may however take explicit control of the LEDs and implement a
different mapping. This is further described in section EIP_OBJECT_FORCE_LED_STATE_REQ.

Basically, the default mapping of the device state to the LED indicators is defined by the CIP specification. Since these
definitions are rather unspecific, we give a more detailed description of the LEDs from a vendor-specific perspective in
the following table.

Device state MS-LED NS-LED

The device is not powered off off

Self-test due to power-on, reboot or
(CIP) reset

red/green
blinking

red/green blinking

A major recoverable fault has
occurred

red blinking undefined

A major unrecoverable fault has
occurred

solid red undefined

No (valid) configuration has been
applied.

blinking green off

A (valid) configuration has been
applied through either:

■ A database that has been
downloaded and applied

■ The simple configuration packets
EIP_APS_SET_CONFIGURATIO
N_PARAMETERS_REQ and
HIL_CHANNEL_INIT_REQ

■ Extended configuration steps
finished with
EIP_APS_CONFIG_DONE_REQ

solid green According to the following table

Network status NS-LED state

No valid IP is yet assigned to the device’s network
interface

off

An IP address conflict has been detected by the ACD solid red

A valid IP was assigned to the device’s network
interface

blinking green

At least one CIP class 0/1/3 connection has been
opened in the device

solid green

At least one exclusive owner connection that has been
open previously has timed out and was not reopened yet

blinking red

Table 56. Default mapping between device states and LED indicators

Chapter 2 Hilscher EtherNet/IP stack capabilities 49 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

2.12 DHCP/BOOTP Client

The Hilscher EtherNet/IP provides the following methods for IP configuration:

1. Static configuration, where a fixed IP address is set into attribute 5 of the TCP/IP object instance.
2. Dynamic configuration through either the BOOTP or DHCP protocols.

The configuration method is selected through attribute 3 of the CIP TCP/IP Interface Object as described in section
TCP/IP Interface Object (class code: 0xF5).

This section specifically describes the aspects of dynamic configuration, i.e. retrieving an IP configuration from the a
BOOTP/DHCP server. Typically, this server maintains a static list to uniquely map a set of MAC addresses to IP addresses
and assigns these relations on client request. The DHCP protocol is defined in RFC2131.

Subsequently, we will be using the term DHCP exclusively to describe both, the DHCP and BOOTP client protocols
implemented in the EtherNet/IP stack. BOOTP can be thought of a subset of DHCP. Where the behavior or capabilities
differ, it is mentioned explicitly.

2.12.1 DHCP Behavior

When configured at the TCP/IP Interface Object, DHCP will become active immediately. If a previous, static IP
configuration was active, all active connections will close and the network interface is set down, disrupting any IP
communication in the netX-based system.

The DHCP state machine will then try to discover a DHCP server in increasing intervals of up to 60 seconds until a DHCP
server responds and assigns the device an IP configuration. After optionally ACD-probing, this IP address will eventually
be used by the device and therefore set into attribute 5 of the TCP/IP Interface object. Please note that the discovery
intervals currently cannot be modified through the API.

If the DHCP server has assigned lease time, renewal time or rebinding time intervals, the DHCP state machine will
become active again and perform the corresponding operation in time. This may lead to the previously assigned IP
configuration to be dropped autonomously (typically only on misconfiguration or DHCP server failure). The DHCP client
state machine will also get active in case of the events described below.

2.12.2 DHCP Device Level Behavior

The DHCP Client will typically perform DHCP-DISCOVERY, based on UDP broadcast from source IP address 0.0.0.0 in
case of at least the following events:

1. On PowerOn, after the first successful configuration, if DHCP mode is configured.
2. A CIP Reset is performed through the Identity Object.
3. The network link was lost and is reestablished, may it be through a cable disconnect or an internal reconfiguration of

the network PHY which interrupted the link.
4. DHCP-Rebinding failed.

The DHCP Client will perform DHCP-RENEWAL, based on UDP unicast from a valid previously assigned IP address in
case of at least the following events:

1. A BusOff/BusOn cycle is performed (see Bus State).
2. Channel initialization (see HIL_CHANNEL_INIT_REQ).
3. A DHCP-Renewal interval has been assigned by the DHCP server and has exceeded

The DHCP Client will typically perform DHCP-REBINDING, based on UDP broadcast from a valid previously assigned IP
address in case of at least the following events:

1. A DHCP-Rebinding interval has been assigned by the DHCP server and has exceeded.
2. DHCP-Renewal failed.

2.12.3 Packet API

The host application cannot control the DHCP client directly, but through the CIP TCP/IP Interface Object only. The
behavior and state of the DHCP client is mostly transparent as well and cannot be observed explicitly.

As an exception, in case the EtherNet/IP-Stack drops the IP address (which is common if a fresh DHCP DISCOVERY
cycle is started, or when the lease expires) the following effect can be observed at the packet API and at the CIP interface

Chapter 2 Hilscher EtherNet/IP stack capabilities 50 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

level:

The IP address of the TCP/IP interface will be set to 0.0.0.0 in order to DHCP-discover from that IP. The TCP/IP interface
is then unusable for communication, until a new DHCP lease has been acquired. This IP 0.0.0.0 will be set into the CIP
object dictionary (TCP/IP Interface Object instance attribute 5) in the meantime and a
EIP_OBJECT_CIP_OBJECT_CHANGE_IND for the attribute will be generated to indicate the condition to the host
application, as it is done for all changes of this attribute.

However, we have to emphasize the special semantics of this change indication for its indicative and temporary character.
The attribute 5 of the TCP/IP interface Object ambiguously serves two purposes and has transactional semantics:

1. In case of static configuration, write access to the attribute allows the host application to set the IP configuration
2. Read access to the attribute allows the host application to query the current IP configuration. This applies for both

configuration methods, static and, more importantly, dynamic IP configuration.

The value of attribute 5 of the TCP/IP interface Object is normally stored remanently, i.e the last valid IP address of the
device is retained over power cycles. As an exception to this behavior, an IP address of 0.0.0.0, when set into attribute 5
to indicate a ongoing DHCP cycle or a missing ethernet link, will never be stored remanently. It has a strictly indicative
purpose. All nonzero IPs, in contrast, will be stored remanently when set into attribute 5. The value of attribute 5 may
change actively when set by the host application (only in case of static IP configuration) and/or will change passively due
to either:

1. A CIP Identity reset
2. A CIP client modifying attribute 3 over the network.
3. A CIP client modifying attribute 5 over the network.
4. DHCP/BOOTP restarting DHCP-discovery
5. Link loss: A lost ethernet link which also disrupts the IP-level
6. Any other netX subsystem, e.g. the Hilscher Ethernet Device Configuration Tool

Only valid (nonzero) IP configurations will be stored remanently and to indicate otherwise, the
EIP_OBJECT_CIP_OBJECT_CHANGE_IND packet will have the flag
EIP_OBJECT_CIP_OBJECT_CHANGE_NV_STORING_BYPASSED set in the field ulInfoFlags.

2.12.4 DHCP Options

Next to the IP address, the EtherNet/IP Stack’s DHCP client is capable of assigning further IP configuration parameters
as per at least the following DHCP-options:

Option ID Option name Description/Usage

1 subnet mask Assigns a subnet mask. If no such option is given, a class A, B or C network
subnet mask will be set according to the given IP. The subnet mask will be
set into the TCP/IP Interface Object instance attribute 5

3 router Assigns a gateway/router IP address. The gateway address will be set into
the TCP/IP Interface Object instance attribute 5. The gateway will be
subsequently be addressed for IP communication for target addresses
which are not in the device’s subnet.

6 dns server Assigns up to four name server IP addresses of which the first two will be
set into the TCP/IP Interface Object instance attribute 5. Since no DNS
features are implemented, the name servers have no further effects in the
device.

12 hostname Assigns a hostname. If given, the host name is set into the TCP/IP Interface
Object instance attribute 6. Since no DNS features are implemented, the
hostname has no further effect in the device.

15 domainname Assigns a domainname. If given, the domain name is set into TCP/IP
Interface Object instance attribute 5. Since no DNS features are
implemented, the domainname has no further effect in the device.

51 lease time Assigns a lease time for the given configuration. The lease time will not be
directly observable through the APIs. If assigned, the device will drop the IP
address after the given lease time expires.

Chapter 2 Hilscher EtherNet/IP stack capabilities 51 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Option ID Option name Description/Usage

58 T1, renewal time Assigns a renew interval to the DHCP state machine so that it will renew the
acquired IP lease at the DHCP server when expired. The renewal time is not
directly observable through the APIs. If renewal fails, the state machine will
fall back to rebinding state. Renews use UDP unicasts with a nonzero
source IP address.

59 T2, rebinding time Assigns a rebinding interval to the DHCP state machine so that it will rebind
the current IP address at a DHCP server. The rebinding time is not directly
observable through the APIs. Rebinds use UDP broadcasts with a nonzero
source IP address.

Table 57. DHCP options that are at least supported by the EtherNet/IP Stack

Chapter 2 Hilscher EtherNet/IP stack capabilities 52 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

2.13 QuickConnect

QuickConnect serves to establish an I/O connection quickly after power-on of the device.

After power-on, a connection to the adapter has to be established in 500 ms or less. The device has to be ready to accept
TCP connections in less than 350 ms after power-on. This is required by the CIP specification.

When the system starts, the QuickConnect function enables the network PHYs with fixed duplex modes and MAU types.
This saves linking time and costs for automatic detection.

QuickConnect devices must be able to set the forced speed/duplex mode (at least for 10/100 MB Ethernet) via the
Ethernet Link object. On devices with two external Ethernet ports, each port has a name to allow identification: Port 1
(channel 0) and port 2 (channel 1). The configuration of port 1 (channel 0) is MDI, that of port 2 (channel 1) is MDIX.

QuickConnect allows the protocol stack to skip the ACD probing stage of 2 s after power-on (during which the device
figures out whether it can use the IP address without risking collisions).

QuickConnect limits the number of ARP announces of the ACD mechanism to the network to max. 40 (1 per 25 ms) or to
enter the detection phase as soon as the I/O connection is established.

The use of the QuickConnect function requires adding specified keywords and values to a device EDS file.

The TCP/IP object attribute 12 enables/disables the QuickConnect function.

For configuring QuickConnect, the application can use one of the two configuration packet sets:

■ To control the QuickConnect configuration, attribute bQuickConnectFlags provides two bits. For details, see table
EIP_APS_CONFIGURATION_PARAMETER_SET_V3_T – Configuration Parameter Set V3.

■ For the extended configuration set, the application has to manually enable the attribute (see section
EIP_OBJECT_ENABLE_ATTRIBUTE_REQ) and set it to the desired value during the configuration phase with service
EIP_OBJECT_CIP_SERVICE_REQ, Set_Attr_Single.

When enabled, QuickConnect becomes effective with the next power-on.

When effective, attributes 6 and 768 of the EtherNetLink object will be set to fixed values during system start (Port 1: 100
Mbit/s FDX, MDI and Port 2: 100 Mbit/s, FDX, MDIX), overwriting the current device settings. When QuickConnect is
disabled, the previous settings will get active again.

While QuickConnect is active, changes to attribute 6 of the EtherNetLink object are rejected.

Chapter 2 Hilscher EtherNet/IP stack capabilities 53 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Chapter 3 Getting started / configuration

3.1 Configuration methods

The EtherNet/IP Adapter stack requires configuration parameters. The protocol stack offers the following configuration
methods:

1. The application can set the configuration parameters using the Basic Configuration Packet Set (see section
Configuration using the packet API).

2. The application can set the configuration parameters using the Extended Configuration Packet Set (see section
Configuration using the packet API).

3. The stack can be configured by using the configuration software SYCON.net. This tool creates a database that is
loaded into the file system of the netX.

Chapter 3 Getting started / configuration 54 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

3.2 Host application behavior

The following diagram gives an overview of the different scenarios of host application behavior.

Figure 6. Host application: Startup, configuration and reset behavior

Chapter 3 Getting started / configuration 55 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

3.2.1 Startup

NOTE Setting the MAC address is conditional.
For details, see section Ethernet MAC address.

NOTE Setting remanent data is conditional.
For details, see section Remanent data.

3.2.2 Operational

In the operational state, the host application enters its main process loop which includes I/O data handling, protocol stack
event handling.

3.2.3 Configuration

The configuration behavior depends on the chosen method (see section Configuration methods). The sections that
explain the specific configuration methods show the different configuration sequences.

For configuration via

■ Basic Configuration Packet Set, see section Configuration sequence
■ Extended Configuration Packet Set, see section Configuration sequence
■ SYCON.net, see section Configuration sequence

3.2.4 Reset

The reset behavior is independent of the chosen configuration method. For more information on “Reset indication” and
“Delete Config” handling, see section EIP_OBJECT_RESET_IND and HIL_DELETE_CONFIG_REQ.

Chapter 3 Getting started / configuration 56 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

3.3 Configuration using the packet API

This section explains the configuration process which uses the Packet API of the EtherNet/IP stack.

Section Hilscher EtherNet/IP stack capabilities describes the default Hilscher CIP Object Model. The configuration of the
EtherNet/IP protocol stack will create instances of these CIP object classes and initialize their attribute data according to
the provided configuration information.

The stack offers two different configuration sequences based on two sets of packets: The basic and the extended
configuration packet sets. Choose the configuration packet set according to the requirements of your device.

Table Configuration packet sets shows the available configuration packet sets and outlines the capabilities of each of the
two configuration variants.

Configuration packet
set

Description

Basic This set provides a basic functionality

■ Cyclic communication/implicit messaging (transport class1 and Class0). Two assembly instances are
available, one for input and one for output data.

■ Acyclic access (explicit messaging) to all predefined Hilscher CIP objects (unconnected/connected).

■ Support of DLR protocol.

■ Support of ACD

■ Implementation of additional CIP objects, which might be mandatory when a special CIP profile is used.
These objects are also accessible via acyclic/explicit messages.

A default CIP object model, as illustrated in Default Hilscher Device object model, is established with the basic
configuration packet set. If your device needs advanced functionality that the basic configuration set does not
cover, use the extended configuration set described below.

Limitations when using this configuration packet set:

■ Max. 2 assembly instances are supported

■ No configuration assembly instances are supported

■ CIP Sync is not supported

Extended Using this configuration packet set, the host application is free to extend the CIP object model of the device in
all aspects. In addition to the functionality available the basic configuration packet set, this extended
configuration variant:

■ Allows up to 10 assembly instances.
This also includes configuration assembly instances.

■ Allows optional configuration assemblies (necessary if the device needs configuration parameters from the
scanner/originator/PLC before going into cyclic communication).

■ Supports CIP Sync. For this purpose, the CIP Time Sync object has to be activated (see section
EIP_OBJECT_MR_REGISTER_REQ).

The extended configuration allows establishing configurations that are a superset of those that can be
established the basic configuration packet set.

Table 58. Configuration packet sets

3.3.1 Basic configuration packet set

3.3.1.1 Configuration packets

To configure the EtherNet/IP stack via the basic configuration packet set, the following packets are necessary:

Packet name Command code (REQ/CNF)

HIL_REGISTER_APP_REQ 0x2F10/0x2F11

EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ 0x3612/0x3613

HIL_SET_REMANENT_DATA_REQ (conditional) 0x2F8C/0x2F8D

HIL_CHANNEL_INIT_REQ 0x2F80/0x2F81

Table 59. Basic configuration packet set - configuration packets

Chapter 3 Getting started / configuration 57 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

3.3.1.2 Optional request packets

In addition to the request packets required for configuration, the application can optionally issue the following requests
during the configuration phase. If your application uses these optional packets, we recommend an application-controlled
start as configurable per member ulSystemFlags of request packet
EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ.

Packet name

EIP_APS_SET_PARAMETER_REQ

EIP_APS_GET_MS_NS_REQ

EIP_OBJECT_MR_REGISTER_REQ

EIP_OBJECT_REGISTER_SERVICE_REQ

EIP_OBJECT_SET_PARAMETER_REQ

EIP_OBJECT_FORCE_LED_STATE_REQ

Table 60. Additional request packets using the basic configuration packet set

3.3.1.3 Indication packets the host application has to handle

The EtherNet/IP protocol stack might generate the following indication packets which the host application has to process
and to which the application has to reply with the corresponding response packet:

Packet name Command code (IND/RES)

EIP_OBJECT_RESET_IND 0x1A24/0x1A25

EIP_OBJECT_CONNECTION_IND 0x1A2E/0x1A2F

EIP_OBJECT_CL3_SERVICE_IND 0x1A3E/0x1A3F

EIP_OBJECT_CIP_OBJECT_CHANGE_IND 0x1AFA/0x1AFB

HIL_STORE_REMANENT_DATA_IND (conditional) 0x2F8E/0x2F8F

HIL_LINK_STATUS_CHANGE_IND 0x2F8A/0x2F8B

Table 61. Indication packets using the basic configuration packet set

3.3.1.4 Configuration sequence

Figure Configuration sequence using the basic configuration packet set below illustrates the configuration packet
sequence when using the Basic Configuration Packet Set. For details on how to integrate the configuration sequence into
the general behavior of the host application, see section Host application behavior.

Figure 7. Configuration sequence using the basic configuration packet set

Chapter 3 Getting started / configuration 58 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

3.3.2 Extended configuration packet set

3.3.2.1 Configuration packets

To configure the EtherNet/IP stack via the extended configuration packet set, the following packets are necessary:

Packet name Command code (REQ/CNF)

HIL_REGISTER_APP_REQ 0x2F10/0x2F11

EIP_OBJECT_CIP_SERVICE_REQ 0x1AF8/0x1AF9

EIP_OBJECT_AS_REGISTER_REQ 0x1A0C/0x1A0D

EIP_APS_CONFIG_DONE_REQ 0x3614/0x3615

HIL_SET_REMANENT_DATA_REQ (conditional) 0x2F8C/0x2F8D

Table 62. Extended configuration packet set - configuration packets

3.3.2.2 Optional request packets

In addition to the request packets required for configuration, the application can optionally issue the following requests
during the configuration phase:

Packet name Command code (REQ/CNF)

EIP_APS_SET_PARAMETER_REQ 0x360A/0x360B

EIP_APS_GET_MS_NS_REQ 0x360E/0x360F

EIP_OBJECT_MR_REGISTER_REQ 0x1A02/0x1A03

EIP_OBJECT_REGISTER_SERVICE_REQ 0x1A44/0x1A45

EIP_OBJECT_FORCE_LED_STATE_REQ 0x1A40/0x1A41

Table 63. Additional request packets using the extended configuration packet set

3.3.2.3 Indication packets the host application has to handle

The EtherNet/IP protocol stack might generate the following indication packets toward the host application, which it has
to process and reply to with the corresponding response packet:

Packet name Command code (IND/RES)

EIP_OBJECT_RESET_IND 0x1A24/0x1A25

EIP_OBJECT_CONNECTION_IND 0x1A2E/0x1A2F

EIP_OBJECT_CL3_SERVICE_IND 0x1A3E/0x1A3F

EIP_OBJECT_CIP_OBJECT_CHANGE_IND 0x1AFA/0x1AFB

HIL_STORE_REMANENT_DATA_IND (conditional) 0x2F8E/0x2F8F

HIL_LINK_STATUS_CHANGE_IND 0x2F8A/0x2F8B

Table 64. Indication packets using the extended configuration set

Chapter 3 Getting started / configuration 59 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

3.3.2.4 Configuration sequence

Figure Configuration sequence using the extended configuration set below illustrates the configuration packet sequence
when using the Extended Configuration Packet Set. For details on how to integrate the configuration sequence into the
general behavior of the host application, see section Host application behavior.

Figure 8. Configuration sequence using the extended configuration set

Chapter 3 Getting started / configuration 60 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

3.4 Configuraion using Sycon.net

3.4.1 Configuration sequence

Figure Configuration sequence using the database below illustrates the configuration packet sequence when using a
database. For details on how to integrate the configuration sequence into the general behavior of the host application, see
section Host application behavior.

Figure 9. Configuration sequence using the database

Chapter 3 Getting started / configuration 61 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

3.5 Remanent data

3.5.1 Remanent data purpose

In an EtherNet/IP device, it is common that attribute values of implemented CIP objects change due to services issued
towards the device via the network. These attributes may contribute to the configuration of the device and thus, this
runtime configuration may change on the fly.

CIP object attributes are:

■ volatile (their value will not be retained via power cycles) or
■ non-volatile (the attribute values are persistently stored in the device)

The set of persistently stored attributes of the EtherNet/IP protocol stack is called remanent data. The protocol stack
automatically updates the remanent data whenever a non-volatile attribute changes.

Modifying non-volatile attributes via network or host interface causes a Flash write access. When the device is
reconfigured, the previously stored state of these attributes will be applied in addition to the configuration of the device.

The CIP Identity object offers a service that allows a reset of the device configuration to the factory default configuration.
Basically, this is implemented by deleting the remanent data before the reset. To delete remanent data, use the command
HIL_DELETE_CONFIG_REQ.

3.5.2 Remanent data responsibility

When you design your application, you have to decide who stores the remanent data, the protocol stack or the
application.

If the system designer decides that the application stores the remanent data, the taglist of the firmware must be modified
as described in section Resource and feature configuration via tag list.

NOTE The Hilscher EtherNet/IP stack is capable of handling remanent data for the built-in CIP objects only. If
the host application implements further CIP objects with non-volatile attributes, they will have to be
handled completely within the scope of the host application. Since stack mechanisms do not support
the latter case, this is not subject of this manual.

Remanent data is
stored by

Description

Protocol stack The stack stores the remanent data

Requirements
The protocol stack requires access to non-volatile memory.

Firmware configuration
In the tag list “Remanent Data Responsibility” the tag “Remanent Data stored by Host” has to be set to disabled
in the firmware file (.nxf or.nxi). This is the default setting in a firmware.

Chapter 3 Getting started / configuration 62 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Remanent data is
stored by

Description

Application The application stores the remanent data
If the host application stores remanent data, the protocol stack no longer accesses the Flash memory, but
provides the complete remanent data block towards the host application per indication. The host application
has to store the provided data with each indication and has to set this data back to the stack in the

(re)configuration process.

Requirement
The application has to use the Channel Component Information service
(GENAP_GET_COMPONENT_IDS_REQ) to get the information on the required size for remanent data of each
protocol stack component. The application has to use the Set Remanent Data service [sec-appintf-set-

remanent-data> and to support the Store Remanent Data service <<sec-appintf-store-remanent-data].

Firmware configuration
In the tag list “Remanent Data Responsibility” the tag “Remanent Data stored by Host” has to be set to enabled
in the firmware file (.nxf or .nxi).

*Configuration
The application has to use the Set Remanent Data service HIL_SET_REMANENT_DATA_REQ to provide the
remanent data to each protocol stack component any time the host application starts up for the first time (e.g.
after power-on) and before the application sends the EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ.

For a state diagram, see section Host application behavior.

During runtime
The stack component indicates to the application the Store Remanent Data service
HIL_STORE_REMANENT_DATA_IND each time remanent data has been changed. The stack component
provides the remanent data as a block to the application. The application has to store the remanent data with

each indication.

Note
For a detailed description of the Channel Component Information service, the Set Remanent Data service, and
the Store Remanent Data service, see reference [9].

Table 65. Protocol stack or host application stores remanent data

3.5.3 Remanent data state

The remanent data is either available/undeleted or unavailable/deleted. This state is not explicitly observable, but
maintained by the protocol stack. This state is stored in the remanent data BLOB itself. If there is no such valid BLOB, the
remanent data counts as unavailable/deleted. Figure Remanent data state transitions illustrates these two states and the
events that trigger transitions between these states.

Figure 10. Remanent data state transitions

Chapter 3 Getting started / configuration 63 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

3.5.4 Remanent data flow

When the basic configuration packet set is used, the protocol stack is initialized primarily with the packets
EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ and HIL_CHANNEL_INIT_REQ. This leads to a data flow of
configuration data and remanent data as illustrated in Figure Remanent data flow with basic configuration packets.

Figure 11. Remanent data flow with basic configuration packets

With the extended configuration packet, EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ is not used and thus
the stored configuration is pointless in this scenario. Instead, the factory default configuration is set via
EIP_OBJECT_CIP_SERVICE_REQ, Set_Attribute_Single directly into the object model. The
EIP_APS_CONFIG_DONE_REQ is used instead of the HIL_CHANNEL_INIT_REQ to trigger the application of remanent
data in addition to these factory defaults.

Chapter 3 Getting started / configuration 64 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

The HIL_CHANNEL_INIT_REQ has a different purpose if no stored configuration is available: It resets the protocol stack
to its initial state so that a fresh (factory default) configuration can be set as illustrated in Figure Remanent data flow with
extended configuration packets.

Figure 12. Remanent data flow with extended configuration packets

What these figures do not show, but what needs to be emphasized for both configuration package sets, is that there is a
difference in behavior of the EIP_OBJECT_CIP_SERVICE_REQ: Set_Attribute_Single depending on whether the
protocol stack is in the configuration phase or runtime phase.

Phase Behavior of EIP_OBJECT_CIP_SERVICE_REQ: Set_Attribute_Single

Configuration phase The attribute settings are manifested in the object model only. Thus, the attribute settings

alter the factory default configuration.
With the basic configuration packet set, the attributes may be overwritten later with the

stored configuration.
With both configuration packet sets, the attributes may be overwritten later with the
remanent data.

Runtime phase The attribute settings are manifested in the object model and in the remanent data. Thus,
the attribute settings alter the device runtime configuration.

Chapter 3 Getting started / configuration 65 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

3.5.5 Remanent data content

All implemented attributes, which are non-volatile according to the CIP specification, and which can dynamically change
their value, contribute to the remanent data.

Object Attribute

Identity (0x1) Heartbeat Interval (10)

TimeSync (0x43) PTP Enable (1)

Port Enable Config (13)

Port Log Announce Interval Config (14)

Port Log Sync Interval Config (15)

Priority1 (16)

Priority2 (17)

Domain Number (18)

Sync Parameters (768)

Quality of Service (0x48) 802.1Q Tag Enable (1)

DSCP PTP Event (2)

DSCP PTP General (3)

DSCP Urgent (4)

DSCP Scheduled (5)

DSCP High (6)

DSCP Low (7)

DSCP Explicit (8)

TCP/IP Interface (0xF5) Configuration Control (3)

Interface Configuration (5)

Host Name (6)

TTL Value (8)

Multicast Configuration (9)

Select ACD (10)

Last Conflict Detected (11)

Quick Connect Enable (12)

Encapsulation Inactivity Timeout (13)

EtherNet Link (0xF6) Interface Control (6)

Admin State (9)

MDI Configuration (768)

LLDP Management (0x109) LLDP Enable (1)

MsgTxInterval (2)

MsgTxHold (3)

Table 66. Remanently stored CIP attributes

NOTE This table is for information only. If the host application stores the remanent data as configurable per
tag list, the remanent data is provided as an opaque BLOB to the host application. The host application
will occasionally provide this data back without modification. It is not intended that the host application
modifies the contents of the remanent data block directly. The above table does not describe the
internal structure of the BLOB.

Chapter 3 Getting started / configuration 66 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

3.6 Bus State

3.6.1 Purpose

The BusOn Signal is a netX COS Flag, so BusOn is a command on the one hand and an internal state of the firmware on
the other.

The host application can set and clear the BusOn signal, and the Firmware will transit to the corresponding state Bus On
or Bus Off in a manner that is specific to the implemented protocol family and the firmware version.

This section specifies the semantics of the BusOn and BusOff states for this EtherNet/IP-Firmware.

NOTE The BusOn Signal may also be modified by the host application through the packet API with
HIL_START_STOP_COMM_REQ

3.6.2 BusOn and BusOff States

Basically, BusOn and BusOff Signals/States affect the ulCommunicationState field in the DPM Common Status Block. See
section Status information for a description of the possible communication states. When successfully configured, BusOn
causes the system to transit from communication state HIL_COMM_STATE_STOP to HIL_COMM_STATE_IDLE. Once a
connection has been established, it will further transit to HIL_COMM_STATE_OPERATE. It will go back to
HIL_COMM_STATE_STOP on BusOff.

The first BusOn signal will establish the physical (MAC) and logical (IP) link. In a subsequent BusOff, the physical and
logical links will remain active. Instead, the protocol stack will drop all CIP connections and ignore all UDP traffic and
reject all new TCP connections during such an intermediate BusOff state. Other subsystems at the network remain still
active, e.g. the Webserver or the Ethernet Device Configuration Service.

When using the Basic Configuration Packets, depending on configuration parameter ulSystemFlags in the SetConfig
packet, the BusOn Signal may be set automatically (during HIL_CHANNEL_INIT_REQ). Optionally, the user can select
application controlled start to suppress automatic transition to BusOn State. Then, the application has to control this
programmatically. The same applies for a database configuration which also contains a ulSystemFlags attribute. With the
Extended Packet Configuration, the BusOn control mode is always application controlled.

During BusOff, no CIP-based network communication from/to the device takes place. Therefore, the CIP object
dictionary is not subject to any external changes and will remain in a consistent state. All indication packets that are
generated due to external CIP requests will thus not be generated during BusOff, e.g. the Object Change Indication and
the Class 3 Service Indication. The system will also cause less load on the netX device’s processor, memory and the
network.

3.6.3 BusOn and Producing Assembly Run Status

When the system is properly configured and the BusOn signal is set and eventually the system is in mode OPERATE, all
producing assemblies will transit from the IDLE to the RUN state. If the Assembly is used as a producing connection
endpoint and that connection has a RUN/IDLE header, the Assembly’s RUN status will be signaled over the connection as
well. This situation regularly occurs in the EtherNet/IP Scanner and may also occur in the adapter when RUN/IDLE
Information is transmitted in T2O direction, though that is a rather uncommon use case.

In case the RUN/IDLE status is explicitly controlled by the host application (feature MAP_RUNIDLE), the producing
Assembly’s RUN/IDLE status will be derived from the application-provided value in the DPM.

The RUN/IDLE Status of consuming Assemblies is not directly affected by the BusOn state, but will eventually be IDLE as
well since all connections should be dropped due to the BusOff. Once BusOn is set again, and a connection is
reestablished, the RUN/IDLE status from the received I/O frames is reflected. If the connection is modeless, the RUN
status will be set with the first valid I/O frame received.

Chapter 3 Getting started / configuration 67 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Chapter 4 Application interface
This section defines the application interface of the EtherNet/IP Adapter.

4.1 Configuring the EtherNet/IP Adapter

This section explains the packets used to configure the EtherNet/IP Adapter with the DPM/packet interface. For details
on the configuration sequence, see section Configuration using the packet API.

The following packets are available for the configuration:

Packet Command code (REQ)

EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ 0x00003612

EIP_APS_SET_PARAMETER_REQ 0x0000360A

EIP_APS_CONFIG_DONE_REQ 0x00003614

EIP_OBJECT_MR_REGISTER_REQ 0x00001A02

EIP_OBJECT_AS_REGISTER_REQ 0x00001A0C

EIP_OBJECT_REGISTER_SERVICE_REQ 0x00001A44

EIP_OBJECT_SET_PARAMETER_REQ 0x00001AF2

EIP_OBJECT_CIP_SERVICE_REQ 0x00001AF8

HIL_SET_WATCHDOG_TIME_REQ 0x00002F04

HIL_REGISTER_APP_REQ 0x00002F10

HIL_START_STOP_COMM_REQ 0x00002F30

HIL_CHANNEL_INIT_REQ 0x00002F80

Table 67. Overview: Configuration packets of the EtherNet/IP Adapter

Chapter 4 Application interface 68 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

4.1.1 Set Configuration Parameters service

The host application uses this service to configure the device with configuration parameters. This packet is part of the
basic configuration set and provides a basic configuration of all built-in CIP objects.

Using this configuration method, the stack automatically creates two assembly instances serving as connection endpoints
for implicit/cyclic data exchange. The I/O data of these instances will start at offset 0 in the DPM (relative offset to the
base addresses of the input and output areas of the DPM).

NOTE If the application sets the revision information or the product name to zero or to an empty string, the
protocol stack will apply default (Hilscher-specific) values.

NOTE If the application sets the serial number to zero, the protocol stack will apply the device-specific
information from the Security Memory or FDL, if available.

In case of EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ, the EtherNet/IP Adapter protocol stack will

■ test the “configuration locked” condition and reject the request thereafter, see section
HIL_LOCK_UNLOCK_CONFIG_REQ

■ perform consistency and integrity checks on the received configuration and reject the configuration in case of errors
■ in case of success, the buffered configuration will be applied with the next channel initialization

(HIL_CHANNEL_INIT_REQ).

This request does not register the application with the stack. The host application has to register itself by means of packet
HIL_REGISTER_APP_REQ as described in the netX DPM Manual to receive indication packets from the netX (see section
HIL_REGISTER_APP_REQ).

NOTE Parameter set V3 (and newer) is supported only. The stack will reject any older parameter versions or
packet lengths.

Request packet description

Variable Type Value/Range Description
ulDest uint32_t 0x20 Destination

ulLen uint32_t Packet data length in bytes
EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ_SIZE +
EIP_APS_CONFIGURATION_PARAMETER_SET_V3_SIZE

ulSta uint32_t 0 See section Status/error codes

ulCmd uint32_t 0x3612 EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ

tData (EIP_APS_SET_CONFIGURATION_PARAMETERS_REQ_T)

ulParameterVersion uint32_t 3 (latest
version)

Version of the following parameter structure

unConfig.tV3 union See Table
EIP_APS_CONFIGURATION_PARAMETER_SET_V3_T –
Configuration Parameter Set V3

Table 68. EIP_APS_PACKET_SET_CONFIGURATION_PARAMETERS_REQ_T – Set Configuration Parameters request

Chapter 4 Application interface 69 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Structure EIP_APS_CONFIGURATION_PARAMETER_SET_V3_T

ulSystemFlags uint32_t (Bit field) 0, 1 System flags area
The device start can be automatic or application-

controlled:

Automatic (0):
Network connections are opened automatically
regardless of the state of the host application. After a
device start, the communication with a controller is
allowed without the flag BUS_ON, but will be interrupted

if the flag BUS_ON changes state to 0.

Application-controlled (1):
The channel firmware has to wait until the host
application sets the Application Ready flag in the
communication change of the state register.
Communication with controller is allowed only with the

flag BUS_ON.

For details on this topic, see reference [1].

ulWdgTime uint32_t 0, 20..65535 Watchdog time (in milliseconds).

0 = Watchdog timer has been switched off
Default value: 1000

ulInputLen uint32_t 0..504
Default: 16

Length of Input data (O→T direction, data the device
receives from a Scanner/PLC)

ulOutputLen uint32_t 0..504
Default: 16

Length of Output data (T→O direction, data the device
sends to a Scanner/PLC)

ulTcpFlag uint32_t Default value:
0x00000410

The TCP flags configure the TCP stack behavior related
the IP Address assignment (STATIC, BOOTP, DHCP)
and the Ethernet port settings (such as Auto-Neg,

100/10MBits, Full/Half Duplex).
For more information, see Table Available TCP flags in

bit field ulTcpFlag of the Basic Configuration Packet.

Recommended default value:
0x00000410 (DHCP active and both ports set to Auto-

Negotiation)

Note: For a valid configuration, one of the following bits

must be set:

0: STATIC IP

3: BOOTP

4: DHCP
If no bit is set, the firmware will use the static IP
address 192.168.210.10 as a default.

ulIPAddr uint32_t All valid IP-addresses
Default: 0.0.0.0

IP Address
See detailed explanation in the corresponding TCP/IP
Manual (reference [2])

ulNetMask uint32_t All valid masks
Default: 0.0.0.0

Network Mask
See detailed explanation in the corresponding TCP/IP
Manual (reference [2])

ulGateway uint32_t All valid IP-addresses
Default: 0.0.0.0

Gateway Address
See detailed explanation in the corresponding TCP/IP
Manual (reference [2])

Chapter 4 Application interface 70 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Structure EIP_APS_CONFIGURATION_PARAMETER_SET_V3_T

usVendorID uint16_t 0..65535 Vendor identification:
This is an identification number for the manufacturer of

an EtherNet/IP device.
Vendor IDs are managed by ODVA (see

www.odva.org).
The host application is responsible for setting a
nonzero value as defined by the CIP specification. The

protocol stack does not restrict the value.
Default value: 283 (Hilscher)

usProductType uint16_t 0..65535 CIP Device Type (former “Product Type”)
The list of device types is managed by ODVA (see
www.odva.org). It is used to identify the device profile
that a particular product is using. Device profiles define
minimum requirements a device must implement as

well as common options.

Publicly defined: 0x00 - 0x63

Vendor-specific: 0x64 - 0xC7

Publicly defined: 0xC8

Reserved by CIP: 0xC9 - 0xFF

Publicly defined: 0x100 - 0x2FF

Vendor-specific: 0x300 - 0x4FF

Reserved by CIP: 0x500 - 0xFFFF
Default: 0x0C (Communications Adapter)

usProductCode uint16_t 1..65535 Product code
The vendor assigned Product Code identifies a
particular product within a device type. Each vendor
assigns this code to each of its products. The Product
Code typically maps to one or more catalog/model
numbers. Products shall have different codes if their
configuration and/or runtime options are different.
Such devices present a different logical view to the
network. On the other hand, for example, two products
that are the same except for their color or mounting
feet are the same logically and may share the same
product code. The value zero is not valid.

ulSerialNumber uint32_t 0 Deprecated. This value has to be set to zero.
The firmware will apply the serial number as stored in
the Device Data Provider (DDP), which in turn fetches it

from either the SecMem or FDL data sources.
Refer to section Device serial number for details.

bMinorRev uint8_t 1..255 Minor revision

bMajorRev uint8_t 1..127 Major revision

abDeviceName[32] uint8_t Device Name
This text string should represent a short description of
the product/product family represented by the product
code. The same product code may have a variety of

product name strings.
Byte 0 indicates the length of the name. Bytes 1 -30

contain the characters of the device name)

Example: “Test Name”

abDeviceName[0] = 9

abDeviceName[1..9] = “Test Name”

See [12] for information about restrictions regarding
product naming.

Chapter 4 Application interface 71 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Structure EIP_APS_CONFIGURATION_PARAMETER_SET_V3_T

ulInputAssInstance uint32_t 1…0xFFFFFFFE
Default: 100

Instance number of input assembly (O→T direction)

See Table Assembly instance number ranges.
Note: The value of ulInputAssInstance must differ from

the value of ulOutputAssInstance.
Note: The host application is responsible to choose an
assembly ID from a proper range as defined in CIP Vol1,
table “Assembly instance ID ranges”.

ulInputAssFlags uint32_t Bit mask Input assembly (O→T) flags
See Table Assembly Types and Option Flags for a

description of available Assembly flags.
The flag EIP_AS_TYPE_INPUT must be set at minimum.

ulOutputAssInstance uint32_t 1 … 0xFFFFFFFE
Default: 101

Instance number of output assembly (T→O direction)

See Table Assembly instance number ranges.
Note: The value of ulInputAssInstance must differ from

the value of ulOutputAssInstance.
Note: The host application is responsible to choose an
assembly ID from a proper range as defined in CIP Vol1,
table “Assembly instance ID ranges”.

ulOutputAssFlags uint32_t Bit mask Output assembly (T→O) flags
See Table Assembly Types and Option Flags for a
description of available Assembly flags.

tQoS_Config EIP_DPMINTF_QOS
_CONFIG_T

See Table Quality of
Service Structure
Description (struct
EIP_DPMINTF_QOS
_CONFIG_T)

Quality of Service configuration
This parameter set configures the Quality of Service
Object (CIP ID 0x48)

ulNameServer uint32_t Name Server 1
This parameter configures the NameServer element of

attribute 5 of the TCP/IP Interface Object.
See section TCP/IP Interface Object (class code: 0xF5)

for more information.
Default: 0.0.0.0

ulNameServer_2 uint32_t Name Server 2
This parameter configures the NameServer2 element

of attribute 5 of the TCP/IP Interface Object.
See section TCP/IP Interface Object (class code: 0xF5)

for more information.
Default: 0.0.0.0

abDomainName[48 + 2] uint8_t Domain Name
This parameter configures the DomainName element of

attribute 5 of the TCP/IP Interface Object.
See section TCP/IP Interface Object (class code: 0xF5)
for more information.

abHostName[64+2] uint8_t Host Name
This parameter configures attribute 6 of the TCP/IP

Interface Object.
See section TCP/IP Interface Object (class code: 0xF5)
for more information.

bSelectAcd uint8_t Select ACD
This parameter configures attribute 10 of the TCP/IP

Interface Object.
The valid range of values is [0..255], where a value of
zero maps to value zero of the corresponding attribute
and all values different from zero map to value 1 of the

corresponding attribute.
See section TCP/IP Interface Object (class code: 0xF5)
for more information.

Chapter 4 Application interface 72 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Structure EIP_APS_CONFIGURATION_PARAMETER_SET_V3_T

tLastConflictDetected EIP_DPMINTF_TI_A
CD_LAST_CONFLIC
T_T

Last Detected Conflict
This parameter configures attribute 11 of the TCP/IP

Interface Object.
See Table Acd Last Conflict Structure Description
(struct EIP_DPMINTF_TI_ACD_LAST_CONFLICT_T)
and section TCP/IP Interface Object (class code: 0xF5)
for more information.

bQuickConnectFlags uint8_t 0,1,3
Default: All zero

Quick Connect Flags
This parameter enables/ disables the Quick Connect
functionality within the stack. This affects the TCP
Interface Object (0xF5) attribute 12. See section
TCP/IP Interface Object (class code: 0xF5) for more

information.

Bit 0 (EIP_OBJECT_QC_FLAGS_ACTIVATE_ATTRIBUTE):
If set (1), the Quick Connect Attribute 12 of the TCP
Interface Object (0xF5) is activated (i.e. it is present
and accessible via CIP services). You can configure the

actual value of Quick Connect Attribute 12 using bit 1.

Bit 1 (EIP_OBJECT_QC_FLAGS_ENABLE_QC):
This bit configures the current value of attribute 12. If
set, attribute 12 has the value 1 (Quick Connect
enabled). If not set, Quick connect is disabled. This bit
will be evaluated only if bit 0 is set (1).

abAdminState[2] uint8_t 1, 2 Admin State
This parameter configures attribute 9 of the Ethernet

Link Object.

Default: Both entries 0x01 (enabled)
See section Ethernet Link Object (class code: 0xF6) for
more information.

bTTLValue uint8_t 1-255
Default: 1

This parameter corresponds to attribute 8 of the

TCP/IP Interface Object (CIP Id 0xF5).
The TTL value attribute shall use for the IP header
Time-to-Live when sending EtherNet/IP packets via
multicast. This attribute shall be stored in non-volatile
memory.

tMCastConfig EIP_DPMINTF_TI_M
CAST_CONFIG_T

This parameter corresponds to attribute 9 of the
TCP/IP Interface Object (CIP Id 0xF5). The MCast
Config set the used multicast range for multicast
connections. This attribute shall be stored in

nonvolatile memory.
See Table Multicast Configuration Structure
Description (struct
EIP_DPMINTF_TI_MCAST_CONFIG_T) and section
TCP/IP Interface Object (class code: 0xF5) for more
information.

usEncapInactivityTimer uint16_t 0-3600
Default: 120 seconds

This parameter corresponds to attribute 13 of the

TCP/IP Interface Object (CIP Id 0xF5).
The Encapsulation Inactivity Timeout closes the
sockets when the defined time (specified in seconds)
elapsed without Encapsulation activity. This attribute
shall be stored in non-volatile memory.

Table 69. EIP_APS_CONFIGURATION_PARAMETER_SET_V3_T – Configuration Parameter Set V3

The bits of the ulTcpFlag member have the following semantics:

Bits Description

31 … 29 Reserved for future use

28 Speed Selection (Ethernet Port 2):
Only evaluated if bit 15 is set. Behaves the same as bit 12.

Chapter 4 Application interface 73 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Bits Description

27 Duplex Operation (Ethernet Port 2):
Only evaluated if bit 15 is set. Behaves the same as bit 11.

26 Auto-Negotiation (Ethernet Port 2):
Only evaluated if bit 15 is set. Behaves the same as bit 10.

25 … 16 Reserved for future use

15 Extended Flag:
Use this flag, if the device has two Ethernet ports in case you intend to configure the two ports separately regarding

“Speed Selection”, “Duplex Operation” or “Auto-Negotiation”.

If not set (0), configure both ports with the same parameters using the bits 10 to 12.
If set (1), configure port 1 using bits 10 to 12. Configure Port 2 using the bits 26 to 28.

13 .. 14 Reserved for future use

12 Speed Selection: (Ethernet Port 1)

If set (1), the device will operate at 100 MBit/s, otherwise at 10 MBit/s.
The stack will evaluate this parameter only, if auto-negotiation (bit 10) is not set (0).

11 Duplex Operation: (Ethernet Port 1)

If set (1), full-duplex operation will be enabled, otherwise the device will operate in half duplex mode
The stack will evaluate this parameter only, if auto-negotiation (bit 10) is not set (0).

10 Auto-Negotiation: (Ethernet Port 1)

If set (1), the device will negotiate speed and duplex with connected link partner.
If set (1), this flag overwrites Bit 11 and Bit 12 .

9 … 5 Reserved for future use

4 Enable DHCP:
If set (1), the device tries to obtain its IP configuration from a DHCP server.

3 Enable BOOTP:
If set (1), the device tries to obtain its IP configuration from a BOOTP server.

2 Gateway available:

If set (1), the stack will evaluate the content of the ulGateway parameter.
If the flag is not set (0), you must set ulGateway to 0.0.0.0.

1 Netmask available:
If set (1), the stack will evaluate the content of the ulNetMask parameter. If the flag is not set the device will assume to be
an isolated host which is not connected to any network. The ulGateway parameter will be ignored in this case.

0 IP address available:
If set (1), the stack will evaluate the content of the ulIpAddr parameter. In this case, the parameter ulNetMask must contain
a valid net mask.

Table 70. Available TCP flags in bit field ulTcpFlag of the Basic Configuration Packet

Variable Type Value/Range Description
ulQoSFlags uint32_t 0 Deprecated, set to 0.

bTag802Enable uint8_t 0-1 Enables or disables sending 802.1Q frames on CIP messages.

0: 802.1Q is disabled (default)

1: 802.1Q is enabled
Note: the EtherNet/IP stack does currently not support attribute 1
of the QoS object. This field only serves as a placeholder for future
implementations.

bDSCP_PTP_Event uint8_t 0-63
Default: 59

DSCP value for PTP (IEEE 1588) event messages.
Relates to QoS Attribute 2

bDSCP_PTP_General uint8_t 0-63
Default: 47

DSCP value for PTP (IEEE 1588) general messages.
Relates to QoS Attribute 3

bDSCP_Urgent uint8_t 0-63
Default: 55

DSCP value for CIP transport class 0/1 Urgent priority messages.
Relates to QoS Attribute 4

Chapter 4 Application interface 74 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Variable Type Value/Range Description
bDSCP_Scheduled uint8_t 0-63

Default: 47
DSCP value for CIP transport class 0/1 Scheduled priority

messages.
Relates to QoS Attribute 5

bDSCP_High uint8_t 0-63
Default: 43

DSCP value for CIP transport class 0/1 High priority messages.
Relates to QoS Attribute 6

bDSCP_Low uint8_t 0-63
Default: 31

DSCP value for CIP transport class 0/1 low priority messages.
Relates to QoS Attribute 7

bDSCP_Explicit uint8_t 0-63
Default: 27

DSCP value for CIP explicit messages (messages with transport

class 3 and UCMM messages).
Relates to QoS Attribute 8

Table 71. Quality of Service Structure Description (struct EIP_DPMINTF_QOS_CONFIG_T)

Variable Type Value/Range Description
bAcdActivity uint8_t Default: 0 State of ACD activity when last conflict detected

abRemoteMac[6] uint8_t Default: all 0 MAC address of remote node from the ARP PDU in which a
conflict was detected.

abArpPdu[28] uint8_t Default: all 0 Copy of the raw ARP frame in which a conflict was detected.

Table 72. Acd Last Conflict Structure Description (struct EIP_DPMINTF_TI_ACD_LAST_CONFLICT_T)

Variable Type Value/Range Description
bAllocControl uint8_t 0-1

Default: 0
0: Multicast addresses shall be generated using the
default allocation algorithm. When 0 is specified the
values of usNumMcast and ulMcastStartAddr shall also

be 0.

1: Multicast addresses shall be allocated according to
the values specified in Num Mcast and Mcast Start
Addr.

bReserved uint8_t 0

usNumMCast uint16_t 0 (if bAllocControl == 0),
Default: 0

Number of IP multicast addresses to allocate for
EtherNet/IP.

ulMcastStartAddr uint32_t 0 (if bAllocControl == 0),

0xE0000000 < addr < 0xF0000000
Default: 0

Mcast Start Addr is the starting multicast address from
which Num Mcast addresses are allocated.

Table 73. Multicast Configuration Structure Description (struct EIP_DPMINTF_TI_MCAST_CONFIG_T)

Confirmation packet description

Variable Type Value/Range Description
ulLen UINT32 0 Packet data length in bytes

ulSta UINT32 See section Status/error codes

ulCmd UINT32 0x3613 EIP_APS_SET_CONFIGURATION_PARAMETERS_CNF

Table 74. EIP_APS_PACKET_SET_CONFIGURATION_PARAMETERS_CNF_T – Set Configuration Parameters confirmation

Chapter 4 Application interface 75 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

4.1.2 Set Parameter Flags service

The host application sends the EIP_APS_SET_PARAMETER_REQ packet to activate or deactivate special functionalities
or behaviors of the Firmware. The request packet therefore contains a flag field in which each bit stands for a specific
functionality.

Bit Description

0 Flag EIP_APS_PRM_SIGNAL_MS_NS_CHANGE (0x00000001)
If set (1), the stack will notify the host application whenever the network or module status changes. LEDs at EtherNet/IP
devices display the module and the network status (For more information, see section Module and network status). When
enabled, the protocol stack generates indication packets EIP_APS_MS_NS_CHANGE_IND on state changes of the

module or network status.
If not set (0), the stack will not send any notifications.

1..31 Reserved for future use.

Table 75. EIP_APS_SET_PARAMETER_REQ Flags

Request packet description

Variable Type Value/Range Description
ulDest uint32_t 0x20 Destination

ulLen uint32_t 4 Packet data length in bytes

ulSta uint32_t 0 See section Status/error codes

ulCmd uint32_t 0x360A EIP_APS_SET_PARAMETER_REQ

tData (EIP_APS_SET_PARAMETER_REQ_T)

ulParameterFlags uint32_t See Table
EIP_APS_SET_
PARAMETER_
REQ Flags for
possible values

Bit field

Table 76. EIP_APS_PACKET_SET_PARAMETER_REQ_T – Set Parameter Flags request

Confirmation packet description

Variable Type Value/Range Description
ulLen uint32_t 0 Packet data length in bytes

ulSta uint32_t See section Status/error codes

ulCmd uint32_t 0x360B EIP_APS_SET_PARAMETER_CNF

Table 77. EIP_APS_PACKET_SET_PARAMETER_CNF_T – Confirmation to Set Parameter Flags request

Chapter 4 Application interface 76 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

4.1.3 Finish configuration of CIP objects

The packet EIP_APS_CONFIG_DONE_REQ is part of the Extended Configuration Set. The host application sends this
packet to inform the protocol stack that all CIP objects have been registered and configured and thus, that the
EtherNet/IP Adapter Stack configuration is finished and it is clear to start its normal operation.

Figure 13. Sequence Diagram for the EIP_APS_CONFIG_DONE_REQ/CNF Packet

Request packet description

Variable Type Value/Range Description
ulDest uint32_t 0x20 Destination

ulLen uint32_t 0 Packet data length in bytes

ulSta uint32_t 0 See section Status/error codes

ulCmd uint32_t 0x3614 EIP_APS_CONFIG_DONE_REQ

Table 78. EIP_APS_PACKET_CONFIG_DONE_REQ_T – Signal end of configuration request

Confirmation packet description

Variable Type Value/Range Description
ulLen uint32_t 0 Packet data length in bytes

ulSta uint32_t See section Status/error codes

ulCmd uint32_t 0x3615 EIP_APS_CONFIG_DONE_CNF

Table 79. EIP_APS_PACKET_CONFIG_DONE_CNF_T – Confirmation of end of configuration request

Chapter 4 Application interface 77 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

4.1.4 Register an additional object class

The host application sends the request EIP_OBJECT_MR_REGISTER_REQ to register or activate an additional object
class at the message router. Registration/Activation of an additional object class extends the object model of the device
by the given object class (see Figure Default Hilscher Device object model for the default object model).

We distinguish between two types of non-default objects:

1. CIP object classes, which the stack already provides, but which remain deactivated in a default configuration, e.g. the
Time Sync object. Sending this request for such an object will activate the object. The protocol stack subsequently
processes all service requests towards such object types entirely and internally, just as it does for default objects.
There is no need for the host application to provided service handlers for objects of this type. These objects can only
be activated using the Extended Packet Set configuration (section Extended configuration packet set).

2. CIP objects that are not present in the protocol stack at all. The host application is responsible to implement the
provided services and attributes of such an object type at class and instance level. To achieve this, the stack will
forward all explicit messages addressing application-registered object classes to the host application via the indication
EIP_OBJECT_CL3_SERVICE_IND.

The class code parameter ulClass uniquely identifies the object class. According to the CIP specification Vol. 1 section 5,
the overall range of class codes splits into certain ranges as shown in Table Address Ranges for the ulClass parameter:

Address Range Meaning

0x0001 - 0x0063 Open

0x0064 - 0x00C7 Vendor-specific

0x00C8 - 0x00EF Reserved by ODVA for future use

0x00F0 - 0x02FF Open

0x0300 - 0x04FF Vendor-specific

0x0500 - 0xFFFF Reserved by ODVA for future use

Table 80. Address Ranges for the ulClass parameter

Various volumes of the CIP specification define class code values, which are “open”. Class code values, which are
“vendor-specific”, are available to extend your device’s capabilities beyond the available Open options.

NOTE Note that in the vendor specific range 0x300-0x03FF, the EtherNet/IP stack provides a few built-in
Hilscher-specific objects. If the host application registers such an object IDa second time, the service
will succeed anyway. In such a scenario, the Host-registered object will subsequently be available to
explicit services from the network, whereas the Hilscher-specific object will remain available only at the
DPM packet interface for explicit service requests. Thus, the object class ID is ambigiously used in the
system, and the addressing will be made unique by considering the interface as a secondary key.

Chapter 4 Application interface 78 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Request packet description

Variable Type Value/Range Description
ulDest uint32_t 0x20 Destination.

ulLen uint32_t 12 EIP_OBJECT_MR_REGISTER_REQ_SIZE – Packet data length in
bytes

ulSta uint32_t 0 See section Status/error codes

ulCmd uint32_t 0x1A02 EIP_OBJECT_MR_REGISTER_REQ

tData (EIP_OBJECT_MR_REGISTER_REQ_T)

ulReserved1 uint32_t 0 Reserved, set to 0

ulClass uint32_t 0x1..0xFFFF Class identifier (predefined class code as described in the CIP

specification Vol. 1 section 5 (reference [5])
Take care of the address ranges specified above within Table
Address Ranges for the ulClass parameter.

ulOptionFlags uint32_t 0, 1 For type 1, set bit 0 to 1 (flag
EIP_OBJECT_MR_REGISTER_OPTION_FLAGS_USE_OBJECT_PROVID

ED_BY_STACK)

For type 2, set to 0

Additional CIP object that can be registered with type 1:
- Time Sync object (class code 0x43)

Table 81. EIP_OBJECT_MR_PACKET_REGISTER_REQ_T – Request command for register a new class object

Confirmation packet description

Variable Type Value/Range Description
ulLen uint32_t 0 Packet data length in bytes

ulSta uint32_t See section Status/error codes

ulCmd uint32_t 0x1A03 EIP_OBJECT_MR_REGISTER_CNF

Table 82. EIP_OBJECT_MR_PACKET_REGISTER_CNF_T – Confirmation command of register a new class object

Chapter 4 Application interface 79 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

4.1.5 Register a new Assembly instance

The host application sends the packet EIP_OBJECT_AS_REGISTER_REQ to create a new Assembly object class
instance. The parameter ulInstance of the packet specifies the assembly instance number to create. The ulFlags member
of the packet, amongst other options, designates the Assembly instance as an Input, Output, Input-Only or Listen-Only
Connection Point.

The newly created Assembly instance may occupy a certain range of up to a size of 504 bytes in the Input- or Output-
Area of the DPM, respectively. This range is specified by the member’s ulDPMOffset and ulSize of the packet, where
ulDPMOffset determines the relative memory address starting from the base address of the appropriate DPM I/O area
abPd0Input or abPd0Output (see reference [1]). If multiple assembly instances are registered, you probably want to ensure
that the data range of the different instances do not overlap in the DPM I/O area.

Table Assembly instance number ranges lists the assembly instance number ranges specified by the CIP Networks
Library (reference [5]).

Assembly instance number range Device profile usage Vendor-specific device profile usage

0x0001 – 0x0063 Open (defined in device profile) Vendor-specific

0x0064 – 0x00C7 Vendor-specific Vendor-specific

0x00C8 – 0x00D1 Open (defined in device profile) Vendor-specific

0x00D2 – 0x00EF Reserved by CIP for future use Reserved by CIP for future use

0x00F0 – 0x00FF Vendor-specific Vendor-specific

0x0100 – 0x02FF Open (defined in device profile) Vendor-specific

0x0300 – 0x04FF Vendor-specific Vendor-specific

0x0500 – 0xFFFF Open (defined in device profile) Vendor-specific

0x00010000 – 0x000FFFFF Open (defined in device profile) Vendor-specific

0x00100000 – 0xFFFFFFFF Reserved by CIP for future use Reserved by CIP for future use

Table 83. Assembly instance number ranges

NOTE The instance numbers 192 and 193 (0xC0 and 0xC1) are the Hilscher’s default assembly instances for
Listen Only and Input Only connection. Do not use these instance numbers for additional assembly
instances when configuring the protocol stack with the Basic Configuration Packet Set.

NOTE When using the Basic Configuration Packet Set, the stack creates default assemblies at offsets 0 in the
DPM input and output areas.

Further properties of the assembly instance are configurable with the Assembly Flags parameter ulFlags of this request
packet. For descriptions of the valid assembly flags, see Table Assembly Types and Option Flags.

Per default, as long as no data has ever been set and no connection is established toward the assembly instance, the
assigned DPM I/O area holds zeroed data.

Chapter 4 Application interface 80 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Request packet description

Variable Type Value/Range Description
ulDest uint32_t 0x20 Destination

32 (0x20): Destination is the protocol stack

ulLen uint32_t 16 EIP_OBJECT_AS_REGISTER_REQ_SIZE - Packet data length in
bytes

ulSta uint32_t 0 See section Status/error codes

ulCmd uint32_t 0x1A0C EIP_OBJECT_AS_REGISTER_REQ

tData (EIP_OBJECT_AS_REGISTER_REQ_T)

ulInstance uint32_t 0x0000001…

0xFFFFFFFE
(except 0xC0
and 0xC1, see
description
above)

Assembly instance number
See Table Assembly instance number ranges.

ulDPMOffset uint32_t 0..5760 DPM offset of the instance data area

Note:
This offset is not the total DPM offset. It is the relative offset within
the beginning of the corresponding input/output data areas

abPd0Input[5760] and abPd0Output[5760]

The first instance (for each data direction) that is created usually

will have ulDPMOffset = 0.

If multiple assembly instances are registered, make sure that the
data ranges of these instances do not overlap in the DPM.

ulSize uint32_t 1..504 [..516] Size of the data area for the assembly instance data including:

[4 bytes] when optional Run/Idle header is active

[4 bytes] when optional Sequence count is active
[4 bytes] when optional Producing flags is active

ulFlags uint32_t Bitmap Property Flags for the assembly instance, see Table Assembly
Types and Option Flags.

Table 84. EIP_OBJECT_AS_PACKET_REGISTER_REQ_T – Request command for creating an assembly instance

Chapter 4 Application interface 81 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

The following table describes the available bits to configure each assembly’s type and options:

Bits Name (Bitmask) Description

31 EIP_AS_TYPE_LISTENONLY (0x80000000) Assembly type: Setting this flag declares an assembly of type "listen only".

30 EIP_AS_TYPE_INPUTONLY (0x40000000) Assembly type: Setting this flag declares an assembly of type "input only".

31…13 Reserved Reserved for future use

12 EIP_AS_OPTION_MAP_PRODUCING_FLAGS
(0x00001000)

Assembly option: For output (producing) assemblies, this bit decides whether
an additional 4-byte flag field is available preceding the assembly’s output
data (see Figure DPM Input/Output area layout). This bit must not be set for

input assembly instances.

The producing flag field offers the host application additional control related
to the output data. If this bit is set, the 4-byte flag field will be part of the
output data image. See Table Definition of the “Producing Flags” for details on
what functionality comes with this flag field.

11 EIP_AS_OPTION_RXTRIGGER (0x00000800) Assembly option: If this flag is set for an input assembly and the DPM
handshake mode was set to the EtherNet/IP-specific mode "Receive (RX)
Triggered Handshake Mode" (see Input handshake mode / output handshake
mode), then each change of the assembly’s data will toggle the DPM
handshake bits, promptly presenting the newly received data to the
application.

10 EIP_AS_OPTION_MAP_SEQCOUNT
(0x00000400)

Assembly option:
This flag decides whether the 2-byte data sequence count field of the
EtherNet/IP PDU will be mapped into the I/O area. Four additional bytes have
to be reserved in the assembly’s size and offsets. The lower two bytes will
contain the sequence count value consistent to the assembly’s data. The byte
order is little endian. The sequence counter wraps-around to zero at value

65536.

For input assemblies, thus, the host application has the possibility to detect

which assemblies have recently received new data.

If the bit is set, the sequence count field will be part of the input data image
(see Figure DPM Input/Output area layout). The most recent sequence count
field encountered on the network is copied into the DPM and can be read by

the host application.

Note:
- The sequence count is incremented only when the connected PLC

application updates its production data.

- The sequence count is not designed to detect lost packets
- The sequence count information remains unchanged when the assembly
data is modified over an EtherNet/IP explicit service, whereas the data may

has changed.

For output assemblies, thus, the host application has to control the value of
the sequence counter directly. If the bit is set, the sequence count field will be
part of the output data image. The host application will increment the
sequence count value with each update of its output I/O data.

9 EIP_AS_OPTION_INVISIBLE (0x00000200) Assembly option: This flag decides whether EtherNet/IP explicit services from

the network can access the assembly instance.

Flag is set: The assembly instance is not visible at the network.
Flag is not set: The assembly instance is visible at the network.

Chapter 4 Application interface 82 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Bits Name (Bitmask) Description

8 EIP_AS_OPTION_MAP_RUNIDLE
(0x00000100)

Assembly option: If the bit is set, the 4-byte run/idle header will be part of the
I/O data image. An additional 4-byte DPM-Mapping preceeding the assembly
data contains the RUN/IDLE header as also contained in the I/O frames. Four
additional bytes have to be reserved in the assembly’s size and offsets (see

Figure DPM Input/Output area layout). Byte order is little endian.

For input assemblies that receive the run/idle header, this allows the host

application to evaluate the run/idle information on its own.

Note:
- The RUN/IDLE status in the DPM is only updated when the connected PLC
application updates its production data, i.e. the received sequence count field

increments.
- The RUN/IDLE information remains unchanged when the assembly data is
modified over an EtherNet/IP explicit service, whereas the data may has

changed.

For output assemblies, that send the run/idle header1), this allows the host
application to have direct control over the RUN/IDLE status of a connection.

7 EIP_AS_OPTION_FIXED_SIZE (0x00000080) Assembly option: This flag decides whether the assembly instance allows to
be establish connections with a smaller connection size than specified for the
assembly. If it is not set, any connection size up to the specified size will be

accepted.
This flag is not allowed for assemblies of types input only, listen only and

configuration.
If the bit is set (1), the connection size in a ForwardOpen must directly

correspond to ulSize.

If the bit is not set (0), the connection size can be smaller or equal to ulSize.
Example:

■ ulSize = 16 (Bit 7 of ulFlags is 0)
A connection to this assembly instance can be opened with a smaller or

matching I/O size, e.g. 8.

■ ulSize = 6 (Bit 7 of ulFlags is 1)
A connection can only be opened with a matching I/O size, i.e. 6 bytes.

6 EIP_AS_OPTION_HOLDLASTSTATE
(0x00000040)

Assembly option: This flag decides whether the data that is mapped into the
corresponding DPM memory area is cleared upon closing of the connection
or whether the last sent/received data remains unchanged in the memory. If
the bit is set, the data will remain unchanged.

5 EIP_AS_TYPE_CONFIG (0x00000020) Assembly type: This flag signifies that the current assembly is a configuration
assembly, which can be used to receive configuration data upon connection

establishment.

Note:
Compared to input and output assembly instances a configuration instance is

set only once via the Forward_Open frame. It is not exchanged cyclically.
On connection establishment the configuration data is sent to the host
application via the packet EIP_OBJECT_CL3_SERVICE_IND, service
CIP_CMD_SET_ATTR_SINGLE, addressing attribute 3 of the corresponding
assembly object instance.

4 Reserved Reserved for future use

3 EIP_AS_OPTION_NO_RUNIDLE
(0x00000008)

Assembly option: If set, the assembly data is considered as modeless (i.e. it
does not contain run/idle information). This parameter has to be consistent

with your device’s EDS.
If not set, the assembly instance’s real time format is the 32-Bit Run/Idle
header.

2…1 Reserved Reserved for future use.

Chapter 4 Application interface 83 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Bits Name (Bitmask) Description

0 EIP_AS_TYPE_INPUT (0x00000001) Assembly type: This flag configures the newly registered assembly instance

as an input assembly or an output assembly.
Flag is set: Assembly instance is an input assembly. An input assembly will

only receive data from the network.
Flag is not set: Assembly instance is an output assembly. An output assembly
will transmit data to the network.

1) This is unusual for adapter devices. In most setups, no RUN/IDLE status is sent in T2O direction.

Table 85. Assembly Types and Option Flags

Figure 14. DPM Input/Output area layout according to options EIP_AS_OPTION_MAP_RUNIDLE, EIP_AS_OPTION_MAP_SEQCOUNT,
EIP_AS_OPTION_MAP_PRODUCING_FLAGS and the given Assembly size

Chapter 4 Application interface 84 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

The following table describes the structure of the “Producing flags” bitfield that may be mapped into the DPM output area
for each assembly by means of option EIP_AS_OPTION_MAP_PRODUCING_FLAGS (see Figure DPM Input/Output area
layout).

Bits Name (Bitmask) Description

0 CIP_AS_PRODUCING_FLAG_TRIGGER_PROCE
SS_DATA_UPDATE (0x00000001)

Controls whether or not the process data frame shall be updated with the

provided assembly data.

For I/O connections of type "cyclic":
Value 0: the assembly is updated with the new producing data, but the data
will not be copied into the process data frame. This means the data will not be

sent to the originator of the connection.
Value 1: the assembly is updated with the new producing data, and the data

will be copied into the process data frame.
Note: typically, for I/O connections of type "cyclic" this bit should be set to

value 1 all the time.

For I/O connections of type "application triggered":
By using this bit, the application can control whether or not the protocol stack
shall send a new process data frame on the network. Usually, when running an
application controlled connection, each update of the assembly’s process
data will trigger a new process data frame on the network. However, in case
multiple output assemblies are used, the application may not want to set new
data for all assemblies at the same time, but only for selected assembly

instances (e.g. CIP Safety).
Value 0: the assembly is updated with the new producing data, but the data
will not be copied into the process data frame. No process data frame will be

sent.
Value 1: the assembly is updated with the new producing data, and the data
will be copied into the process data frame. Process data frame will be sent
right away.

1-31 Reserved Reserved for future use.

Table 86. Definition of the “Producing Flags”

Chapter 4 Application interface 85 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Source code example

The following sample code shows how to fill in the parameter fields of the EIP_OBJECT_AS_REGISTER_REQ packet in
order to create two assembly instances, one input and one output instance.

/* Fill the EIP_OBJECT_AS_REGISTER_REQ packet to create an input (T->O) assembly instance 100 that
holds 16 bytes of data, has the modeless real-time format and does not allow smaller
connection sizes. */

EIP_OBJECT_AS_PACKET_REGISTER_REQ_T tReq;

 tReq.tHead.ulCmd = EIP_OBJECT_AS_REGISTER_REQ;
 tReq.tHead.ulLen = EIP_OBJECT_AS_REGISTER_REQ_SIZE;

 tReq.tData.ulInstance = 100;
 tReq.tData.ulSize = 16;
 tReq.tData.ulFlags = EIP_AS_TYPE_OUTPUT |EIP_AS_OPTION_NO_RUNIDLE | EIP_AS_OPTION_FIXED_SIZE;
 tReq.tData.ulDPMOffset = 0;

 /* Fill the EIP_OBJECT_AS_REGISTER_REQ packet to create an output (OT) assembly instance 101
 that holds 8 bytes of data, has the run/idle real-time format and does allow smaller
 connection sizes. */

 EIP_OBJECT_AS_PACKET_REGISTER_REQ_T tReq;

 tReq.tHead.ulCmd = EIP_OBJECT_AS_REGISTER_REQ;
 tReq.tHead.ulLen = EIP_OBJECT_AS_REGISTER_REQ_SIZE;

 tReq.tData.ulInstance = 101;
 tReq.tData.ulSize = 8;
 tReq.tData.ulFlags = EIP_AS_TYPE_INPUT;
 tReq.tData.ulDPMOffset = 0;

Confirmation packet description

Variable Type Value/Range Description
ulLen uint32_t 20 EIP_OBJECT_AS_REGISTER_CNF_SIZE - Packet data length in

bytes

ulSta uint32_t See section Status/error codes

ulCmd uint32_t 0x1A0D EIP_OBJECT_AS_REGISTER_CNF

tData (EIP_OBJECT_AS_REGISTER_CNF_T)

ulInstance uint32_t Instance of the Assembly Object (from the request packet)

ulDPMOffset uint32_t Offset of the data in the DPM (from the request packet)

ulSize uint32_t <=504 [..516] Size of the assembly instance data (from the request packet)

ulFlags uint32_t Property flags of the assembly instance
(from the request packet)

hDataBuf uint32_t Ignore (deprecated)

Table 87. EIP_OBJECT_AS_PACKET_REGISTER_CNF_T – Confirmation command of register a new class object

Chapter 4 Application interface 86 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

4.1.6 Register service

The host application sends EIP_OBJECT_REGISTER_SERVICE_REQ to register a service, which is not directly bound to
a CIP object.

Usually, services use the CIP addressing format Class → Instance → Attribute. In contrast, if for example Tags are to be
supported which allow addressing the device’s data using string identifiers, there may be the requirement to have object-
independent/ standalone services using non-standard addressing formats.

Therefore, the host application can register a vendor specific service code (see Table Specified ranges of numeric values
of service codes (variable bService)). If the device then receives a corresponding service request (sent from a Scanner or
other EtherNet/IP client), it will forward the request to the host application via the indication
EIP_OBJECT_CL3_SERVICE_IND.

Request packet description

Variable Type Value/Range Description
ulDest uint32_t 0x20 Destination. Set to 32 (0x20): Destination is the protocol stack

ulLen uint32_t 1 Packet data length in bytes

ulSta uint32_t 0 See section Status/error codes

ulCmd uint32_t 0x00001A44 EIP_OBJECT_REGISTER_SERVICE_REQ

tData (EIP_OBJECT_REGISTER_SERVICE_REQ_T)

bService uint8_t Vendor-specific service code (see Table Specified ranges of
numeric values of service codes (variable bService))

Table 88. EIP_OBJECT_PACKET_REGISTER_SERVICE_REQ_T - Register Service

Confirmation packet description

Variable Type Value/Range Description
ulLen uint32_t 0 Packet data length in bytes

ulSta uint32_t See section Status/error codes

ulCmd uint32_t 0x00001A45 EIP_OBJECT_REGISTER_SERVICE_CNF

Table 89. EIP_OBJECT_PACKET_REGISTER_SERVICE_CNF_T – Confirmation command for Register Service confirmation

Chapter 4 Application interface 87 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

4.1.7 Set Parameter

The host application sends EIP_OBJECT_SET_PARAMETER_REQ to activate or deactivate certain non-default behavior
of the EtherNet/IP protocol stack.

Table EIP_OBJECT_SET_PARAMETER_REQ – Packet Status/Error gives an overview of the bits, which can be set for
the member ulParameterFlags of the request in order to control the protocol stack’s behavior.

Parameter Flags – ulParameterFlags

Bit Description

0 EIP_OBJECT_PRM_FWRD_OPEN_CLOSE_FORWARDING
Enables or disables forwarding of Forward_Open and Forward_Close frames to the host application.

Forward_Open frames:
If set (1), all Forward_Open frames will be forwarded to the host application via the packet

EIP_OBJECT_LFWD_OPEN_FWD_IND.

If not set (0), the Forward_Open will not be forwarded.

Forward_Close frames:

If set (1), all Forward_Close frames will be forwarded via the packet EIP_OBJECT_FWD_CLOSE_FWD_IND.
If not set (0), the Forward_Open/Close will not be forwarded.

1 EIP_OBJECT_PRM_DISABLE_FLASH_LEDS_SERVICE
Enables or disables the Flash_LEDs service (0x4B) of the CIP Identity object. The Flash_LEDs service is enabled by

default.

If set (1), the Flash_LEDs service is disabled.
If not set (0), the Flash_LEDs service is enabled.

2 EIP_OBJECT_PRM_DISABLE_TRANSMISSION_TRIGGER_TIMER
This flag affects the timing of data production in case of "Application Object" or "Change Of State" triggered data.
Setting this flag will turn off the transmission trigger timer for all application-triggered and change-of-state connections.
Data production is then only triggered by the EtherNet/IP Application when providing new data to the protocol stack (e.g.
each call of xChannelIoWrite() will trigger a new data from on the network). For connections of type "cyclic", the
transmission trigger timer will not be disabled.

3 EIP_OBJECT_PRM_HOST_CONTROLS_IDENTITY_STATE_ATTRIBUTE_8
This flag affects the handling of attribute 8 (State) of the Identity object. Usually, the protocol stack controls this attribute

autonomously. However, there are types of host applications that need to control this attribute them self (e.g. CIP Safety).
If set, the protocol stack will stop controlling the state attribute. Instead, the host application has to take care of the
content of the attribute. The application has to send a CIP set attribute single service (0x10) to attribute 8 (use packet

command EIP_OBJECT_CIP_SERVICE_REQ).
Note: The designer of the application has to decide whether or not it needs this feature. Activating and, after a while,
deactivating the write access must be avoided as this might lead to invalid state attribute values.

4 EIP_OBJECT_PRM_ENABLE_NULL_FWRD_OPEN
This flag affects whether or not the firmware will be capable of processing NULL-ForwardOpen requests, i.e.

ForwardOpen requests which have the transport type NULL for both directions, O2T and T2O.

If set, NULL ForwardOpen requests from the network will be accepted.

If cleared they will be rejected with an appropriate error code.

Per default, NULL ForwardOpen support is disabled.
See also section NULL ForwardOpen.

5-31 Reserved
Has to be set to 0.

Table 90. EIP_OBJECT_SET_PARAMETER_REQ – Packet Status/Error

Chapter 4 Application interface 88 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Request packet description

Variable Type Value/Range Description
ulDest uint32_t 0x20 Destination

ulLen uint32_t 4 EIP_OBJECT_SET_PARAMETER_REQ_SIZE
Packet data length in bytes

ulSta uint32_t 0 See section Status/error codes

ulCmd uint32_t 0x00001AF2 EIP_OBJECT_SET_PARAMETER_REQ

tData (EIP_OBJECT_SET_PARAMETER_REQ_T)

ulParameterFlags uint32_t See Table EIP_OBJECT_SET_PARAMETER_REQ – Packet
Status/Error

Table 91. EIP_OBJECT_PACKET_SET_PARAMETER_REQ_T – Set Parameter request

Confirmation packet description

Variable Type Value/Range Description
ulLen uint32_t 0 Packet data length in bytes

ulSta uint32_t See Status/error codes

ulCmd uint32_t 0x00001AF3 EIP_OBJECT_SET_PARAMETER_CNF

Table 92. EIP_OBJECT_PACKET_SET_PARAMETER_CNF_T – Set Parameter confirmation

Chapter 4 Application interface 89 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

4.1.8 CIP Service request

The host application issues CIP service requests toward the EtherNet/IP stack by sending the request packet
EIP_OBJECT_CIP_SERVICE_REQ. The service to request is denoted by its service code passed in member bService in
the request packet. Typically, a service addresses an object class or instance and optionally an attribute of that class or
instance by means of the members ulClass, ulInstance, ulAttribute and ulMember.

If the requested service requires parameter data to be sent along with the service, this parameter data has to be encoded
into member abData[] of the packet. In those cases, the number of bytes in abData[] must then be added to the ulLen field
of the packet header.

The result of the service is returned in the fields ulGRC (Generic Error Code) and ulERC (Additional Error Code) of the
confirmation packet. The host application should evaluate the Generic Error Code to determine about success or failure of
the service request. In case of successful execution, the variables ulGRC and ulERC of the confirmation packet will have
the value 0. In most cases, the stack will only set the Generic Error Code to a nonzero value on errors, whereas only a
small number of services set the Extended Error Code to provide additional diagnostic information. Table CIP Generic
Status Codes Definitions (Variable ulGRC) shows possible GRC values and their meaning.

If data is received along with the confirmation, it correspondingly can be found in the array abData[]. The ulLen field of the
packet header specifies the overall number of bytes received with the confirmation packet, including the response data
array.

Generic Error Codes as denoted by member ulGRC of the Service response

For a comprehensive description of the errors in the following table, see section Status/error codes of this document.

Define Value Name
CIP_GSR_SUCCESS 0x00 No error

CIP_GSR_FAILURE 0x01 Connection Failure

CIP_GSR_NO_RESOURCE 0x02 Resource unavailable

CIP_GSR_BAD_DATA 0x03 Invalid parameter value (deprecated, use
CIP_GSR_INVALID_PARAMETER)

CIP_GSR_BAD_PATh 0x04 Path segment error

CIP_GSR_BAD_CLASS_INSTANCE 0x05 Path destination unknown

CIP_GSR_PARTIAL_DATA 0x06 Partial Transfer

CIP_GSR_CONN_LOST 0x07 Connection Lost

CIP_GSR_BAD_SERVICE 0x08 Service not supported

CIP_GSR_BAD_ATTR_DATA 0x09 Invalid attribute data detected

CIP_GSR_ATTR_LIST_ERROR 0x0A Attribute List Error

CIP_GSR_ALREADY_IN_MODE 0x0B Already in requested mode/state

CIP_GSR_BAD_OBJ_MODE 0x0C Object state conflict

CIP_GSR_OBJ_ALREADY_EXISTS 0x0D Object already exists

CIP_GSR_ATTR_NOT_SETTABLE 0x0E Attribute not settable

CIP_GSR_PERMISSION_DENIED 0x0F Privilege violation

CIP_GSR_DEV_IN_WRONG_STATE 0x10 Device state conflict

CIP_GSR_REPLY_DATA_TOO_LARGE 0x11 Reply data too large

CIP_GSR_FRAGMENT_PRIMITIVE 0x12 Fragmentation of a primitive value

CIP_GSR_CONFIG_TOO_SMALL 0x13 Not enough data

CIP_GSR_UNDEFINED_ATTR 0x14 Attribute not supported

CIP_GSR_CONFIG_TOO_BIG 0x15 Too much data

CIP_GSR_OBJ_DOES_NOT_EXIST 0x16 Object does not exist

CIP_GSR_NO_FRAGMENTATION 0x17 Service fragmentation sequence not in progress

CIP_GSR_DATA_NOT_SAVED 0x18 No stored attribute data

CIP_GSR_DATA_WRITE_FAILURE 0x19 Store operation failure

CIP_GSR_REQUEST_TOO_LARGE 0x1A Routing failure, request packet too large

CIP_GSR_RESPONSE_TOO_LARGE 0x1B Routing failure, response packet too large

CIP_GSR_MISSING_LIST_DATA 0x1C Missing attribute list entry data

CIP_GSR_INVALID_LIST_STATUS 0x1D Invalid attribute value list

Chapter 4 Application interface 90 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Define Value Name
CIP_GSR_SERVICE_ERROR 0x1E Embedded Service Error

CIP_GSR_CONN_RELATED_FAILURE 0x1F Vendor-specific error, currently unused in this protocol
stack

CIP_GSR_INVALID_PARAMETER 0x20 Invalid parameter

CIP_GSR_WRITE_ONCE_FAILURE 0x21 Write-once value or medium already written

CIP_GSR_INVALID_REPLY 0x22 Invalid Reply received

CIP_GSR_BAD_KEY_IN_PATH 0x25 Key failure in path

CIP_GSR_BAD_PATH_SIZE 0x26 Path size invalid

CIP_GSR_UNEXPECTED_ATTR 0x27 Unexpected attribute in list

CIP_GSR_INVALID_MEMBER 0x28 Invalid Member ID

CIP_GSR_MEMBER_NOT_SETTABLE 0x29 Member not settable

CIP_GSR_GROUP2_ONLY_S_GENERAL_FAIL 0x2A Group 2 only server general failure

CIP_GSR_UNKNOWN_MODBUS_ERROR 0x2B Unknown Modbus Error

CIP_GSR_ATTRIBUTE_NOT_GET 0x2C Attribute not gettable

CIP_GSR_INSTANCE_NOT_DELETE 0x2D Instance cannot be deleted

CIP_GSR_SERVICE_NOT_SUPPORT_PATH 0x2E Service not supported for specified path

Table 93. CIP Generic Status Codes Definitions (Variable ulGRC)

Extended Error Codes as denoted by member ulERC of the Service response

The EtherNet/IP protocol stack rarely uses Extended Error Codes and thus this manual does not cover their definitions.
Anyway, certain services of the Connection Manager object make use of extended error codes. For definitions and
descriptions of the CIP extended error codes, see section 3-5.5 of the CIP specification [5].

Request packet description

Variable Type Value/Range Description
ulDest uint32_t 0x20 Destination. Set to

0: Destination is operating system
32 (0x20): Destination is the protocol stack

ulLen uint32_t 20+n Packet data length in bytes
n = Length of service data in bytes (see field abData[])

ulSta uint32_t 0 See section Status/error codes

ulCmd uint32_t 0x1AF8 EIP_OBJECT_CIP_SERVICE_REQ

tData (EIP_OBJECT_CIP_SERVICE_REQ_T)

bService uint8_t Valid service
code

CIP service code (see also Table Service Codes for the Common
Services according to the CIP specification)

abPad0[3] uint8_t 0 Padding. Set to zero.

ulClass uint32_t Valid Class ID CIP Class ID (according to “The CIP Networks Library, volume 1

Common Industrial Protocol Specification, section 5, table 5-1.1”)
For available object classes see section Hilscher EtherNet/IP stack
capabilities.

ulInstance uint32_t Valid Instance
number

CIP Object Instance number.
For available object classes and instances, see section Hilscher
EtherNet/IP stack capabilities.

ulAttribute uint32_t Valid Attribute
number

CIP attribute number (required for get/set attribute only, otherwise

set it to 0).
For available object classes and attributes, see section Hilscher
EtherNet/IP stack capabilities.

ulMember uint32_t Valid member
number

CIP member number
Typically, this parameter can be set to 0 as most CIP attributes do
not have members.

Chapter 4 Application interface 91 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Variable Type Value/Range Description
abData[] uint8_t CIP service data

The number of bytes n provided in this byte array must be added

to the packet header length field ulLen.

Set the proper packet length as follows:

ptReq→tHead.ulLen = EIP_OBJECT_CIP_SERVICE_REQ_SIZE + n
Range of n: 0 - 1390

Table 94. EIP_OBJECT_PACKET_CIP_SERVICE_REQ_T – CIP Service request

Confirmation packet description

Variable Type Value/Range Description
ulDest uint32_t Destination

ulLen uint32_t 28+n

0

Packet data length in bytes

n = Length of service data in bytes
May return if ulSta != SUCCESS_HIL_OK

ulSta uint32_t See section Status/error codes

ulCmd uint32_t 0x1AF9 EIP_OBJECT_CIP_SERVICE_CNF

tData (EIP_OBJECT_CIP_SERVICE_CNF_T)

bService uint8_t Valid service
code

CIP service code

abPad0 uint8_t[3] 0 Padding. Set to zero.

ulClass uint32_t Valid Class ID CIP Class ID (according to “The CIP Networks Library, volume 1
Common Industrial Protocol Specification, section 5, table 5-1.1”

ulInstance uint32_t Valid Instance
number

CIP instance number

ulAttribute uint32_t Valid Attribute
number

CIP attribute number (for get/set attribute only)

ulMember uint32_t Valid Member
number

CIP member number

ulGRC uint32_t Generic error code according to “The CIP Networks Library,
volume 1 Common Industrial Protocol Specification, section 5,
appendix B-1.) (see also Table CIP Generic Status Codes
Definitions (Variable ulGRC))

ulERC uint32_t Additional error code.

abData[] uint8_t CIP service data
The number of bytes provided in this byte array must be calculated

using the packet header length field ulLen.

Proceed as follows to get the data size:

number of bytes provided in abData =
tHead.ulLen - EIP_OBJECT_CIP_SERVICE_REQ_SIZE

Table 95. EIP_OBJECT_PACKET_CIP_SERVICE_CNF_T – Confirmation to CIP Service request

Chapter 4 Application interface 92 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

4.1.9 Set Watchdog Time

The host application sends packet HIL_SET_WATCHDOG_TIME_REQ to enable the netX watchdog timer with the
specified timeout value. This is a generic packet, which is not specific to the EtherNet/IP protocol stack. Therefore, this
document does not cover this packet. For details, refer to reference [9].

4.1.10 Register/Unregister Application

The host application sends packets HIL_REGISTER_APP_REQ and HIL_UNREGISTER_APP_REQ, respectively, to
register or unregister the host application with the protocol stack. Unless an application has registered, the stack will not
generate any indications toward the host application. This is a generic packet, which is not specific to the EtherNet/IP
protocol stack. Therefore, this document does not cover this packet. For details, refer to reference [9].

4.1.11 Start/Stop Communication

The host application sends packet HIL_START_STOP_COMM_REQ to instruct the EtherNet/IP stack to start or stop
network communication, i.e. to set or clear the netX’s BUS_ON signal, according to the contained parameter.

This is a generic packet, which is not specific to the EtherNet/IP protocol stack. Therefore, this document does not cover
this packet. For details, refer to reference [9].

For a description of the BusOff and BusOn behavior, see section Bus State.

4.1.12 Channel Init

The host application sends packet HIL_CHANNEL_INIT_REQ to trigger a channel initialization at the protocol stack.
Channel Initialization causes the stack’s AP task to perform a reset and to reinitialize.

This is a generic packet, which is not specific to the EtherNet/IP protocol stack. For a comprehensive description, refer to
reference [9].

Anyway, the actions performed during a channel initialization are partly specific to the EtherNet/IP stack. At least, the
protocol stack will perform the following actions:

■ Bring the stack to a defined unconfigured state:
■ Clear READY and RUN bits
■ Set BUS_OFF and stop all communication
■ Call the object-specific reset functions of all CIP objects
■ Unregister all services previously registered with EIP_OBJECT_REGISTER_SERVICE_REQ
■ Remove assembly and connection configuration.

■ If applicable: apply configuration from database,
■ If applicable: apply configuration from Basic Configuration Packet Set (see section Basic configuration packet set),
■ Reply with HIL_CHANNEL_INIT_CNF

Chapter 4 Application interface 93 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

4.2 Acyclic events indicated by the stack

The protocol stack generates indication packets towards the host application to indicate certain acyclic events.
Depending on the stack’s configuration/parameters, it may generate the following indications:

Packet Command code (IND)
EIP_OBJECT_RESET_IND 0x00001A24

EIP_OBJECT_CONNECTION_IND 0x00001A2E

EIP_OBJECT_CL3_SERVICE_IND 0x00001A3E

EIP_OBJECT_CIP_OBJECT_CHANGE_IND 0x00001AFA

HIL_LINK_STATUS_CHANGE_IND 0x00002F8A

EIP_APS_MS_NS_CHANGE_IND 0x0000360C

EIP_OBJECT_LFWD_OPEN_FWD_IND 0x00001A60

EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND 0x00001A4C

EIP_OBJECT_FWD_CLOSE_FWD_IND 0x00001A4E

HIL_STORE_REMANENT_DATA_IND 0x00002F8E

Table 96. Overview: Indications of the EtherNet/IP Adapter

4.2.1 Application compliance

Indications generated by the protocol stack toward the host application, which processes these indications and replies,
are critical due to the following reasons:

■ A subset of the indications propagate in a synchronous manner, i.e. a particular service request issued by a remote host
triggers the indication and that service request cannot be processed any further until the host application has replied to
the indication. If the host application would reply with significant delay, it would cause a timeout condition on the
remote host.

■ The number of packets the stack uses to send indications, especially synchronous indications, are limited. If the host
application fails to reply to these indications in time, the protocol stack would run out of packets and consequently,
would fail to indicate further events to the host application. This scenario, depending on the particular use case, can be
considered a software failure.

To mitigate these effects, the protocol stack implements a three-second timeout on all synchronous indications. If the
host would fail to process an indication within this timeout interval, the protocol stack continues to process the causal
service. In these cases, the service request is rejected and replied to with an error status ‘Embedded service error’ (see
Table General Error Codes according to CIP Standard).

Thus, a compliant host application has to process indications without significant delay and must respond to all of them.
Long-running operations, which would delay or block replies to indication packets may cause blocking of the system and
data loss.

Chapter 4 Application interface 94 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

4.2.2 Indication of a reset request from the network

The indication EIP_OBJECT_RESET_IND notifies the host application about a reset service request from the network.
This means an EtherNet/IP device (could also be a tool) just sent a reset service (CIP service code 0x05) to the device
and waits for a response.

As soon as the host application sends the response to this service indication, the EtherNet/IP stack will send the
response to the reset service request on the network. Afterwards, the host performs the actual reset, which is described
in the sections Host application behavior and Reset).

The reset service indication is assigned an internal timeout of three seconds as described in section Application
compliance. If the host fails to reply to the indication within that timeout interval, the protocol stack will respond to the
service request on its own behalf, rejecting it with an error code.

The EtherNet/IP stack implements two different reset types that can be requested via the service’s parameter: A value of
0 specifies a simple power cycle request and a value of 1 specifies an additional “return to factory defaults” request. Table
Allowed Values of ulResetTyp reflects the reset service parameters as defined in the CIP specification.

When the host receives the indication EIP_OBJECT_RESET_IND with reset type 1, then it is also responsible to restore
the default configuration by sending the request HIL_DELETE_CONFIG_REQ.

Value Meaning as defined in the CIP Specification, Volume 1

0 Reset shall be done emulating power cycling of the device.

1 Return as closely as possible to the factory default configuration. Reset is then done emulating power cycling of the
device.

2 This type of reset is not supported.

3 - 99 Reserved by CIP

100 - 199 Vendor-specific

200 - 255 Reserved by CIP

Table 97. Allowed Values of ulResetTyp

The host application has the possibility to deny the reset request by setting a non-zero status code such as ERR_HIL_FAIL
in the ulSta member of the response packet EIP_OBJECT_RESET_RES. Two error conditions are defined:

■ The device does not support the requested CIP Reset type as denoted by member ulResetTyp of the indication packet.
In this case the host application shall reply with ERR_HIL_INVALID_PARAMETER in tHead.uSta in order for the device to
reply with CIP_GSR_INVALID_PARAMETER (0x20) on the network.

■ The device temporarily cannot serve the CIP reset due to its internal state, but will be able to handle it at a later point in
time. In this case the host application shall reply with any nonzero status code in tHead.uSta other than
ERR_HIL_INVALID_PARAMETER in order for the device to reply with CIP_GSR_DEV_IN_WRONG_STATE (0x10) on the
network.

Chapter 4 Application interface 95 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Indication packet description

Variable Type Value/Range Description
ulLen uint32_t 8 Packet data length in bytes

ulSta uint32_t 0 Status not in use for indication.

ulCmd uint32_t 0x00001A24 EIP_OBJECT_RESET_IND

tData (EIP_OBJECT_RESET_IND_T)

ulDataIdx uint32_t 0 Ignore (Deprecated)

ulResetTyp uint32_t 0..1, 100-199 Type of the reset

0: Reset is done emulating power cycling of the device(default)
1: Return as closely as possible to the factory default configuration.

Reset is then done emulating power cycling of the device.
100-199: Vendor-specific

Table 98. EIP_OBJECT_PACKET_RESET_IND_T – Reset Request from Bus indication

Response packet description

Variable Type Value/Range Description
ulDest uint32_t Destination. Use value from indication

ulLen uint32_t 0 Packet data length in bytes

ulSta uint32_t SUCCESS_HIL_
OK,
ERR_HIL_FAIL

See section Status/error codes

SUCCESS_HIL_OK – reset is accepted
ERR_HIL_FAIL – reset is denied

ulCmd uint32_t 0x00001A25 EIP_OBJECT_RESET_RES

Table 99. EIP_OBJECT_PACKET_RESET_RES_T – Response to Indication to Reset request

Chapter 4 Application interface 96 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

4.2.3 Connection State Change indication

The indication EIP_OBJECT_CONNECTION_IND indicates to the host application a change in the state of exactly one
connection, i.e. if that connection was established or closed. For the adapter role, this applies to all CIP connections, i.e.
CIP class 0,1 and 3 connections.

The indication specifies the new connection state via member ulConnectionState and the type of connection bConnType,
which is affected. Furthermore, all connection parameters are provided to uniquely identify the affected connection and
counts of established connections of the different types are provided.

Connection state - ulConnectionState

Member ulConnectionState indicates whether a connection has been established or closed.

ulConnectionState Numeric
Value

Meaning

EIP_UNCONNECT 0 Connection has been closed.
If connection timed out, the value of ulExtendedState will be
EIP_CONN_STATE_TIMEOUT, otherwise 0.

EIP_CONNECTED 1 Connection has been established

Table 100. Meaning of variable ulConnectionState

Number of exclusive owner connections – usNumExclusiveowner

The number of currently established implicit connections (CIP Class 1) of type “Exclusive Owner”.

Number of Input only connections – usNumInputOnly

The number of currently established implicit connections (CIP Class 1) of type “Input Only”.

Number of listen only connections – usNumListenOnly

The number of currently established implicit connections (CIP Class 1) of type “Listen Only”.

Number of explicit messaging connections – usNumExplicitMessaging

The number of currently established explicit messaging (CIP Class 3) connections.

Connection type - bConnType

Member bConnType specifies the type of the connection affected by the state change:

bConnType Numeric
Value

Meaning

EIP_CONN_TYPE_CLASS_0_1_EXCLUSIVE_OWNER 1 Implicit exclusive owner connection

Reserved 2 Reserved for future use

EIP_CONN_TYPE_CLASS_0_1_LISTEN_ONLY 3 Implicit listen only connection

EIP_CONN_TYPE_CLASS_0_1_INPUT_ONLY 4 Implicit input only connection

EIP_CONN_TYPE_CLASS_3 5 Explicit connection

EIP_CONN_TYPE_ORIGINATOR_CLASS_0_1 16 Implicit originator connection

EIP_CONN_TYPE_ORIGINATOR_CLASS_3 32 Explicit originator connection

Table 101. Meaning of variable bConnType

Class to which the connection was directed - ulClass

For implicit connections (class0/1, Exclusive Owner, Input Only), the ulClass field is normally 0x04, which is the assembly
object class ID.

For explicit connections, the ulClass field is 0x02, which is the Message Router object class ID.

Instance of the connection path - ulInstance

For implicit connections, it is the configuration connection point.

For explicit connections, ulInstance is always 1.

Input connection point - ulOTConnPoints

The assembly instance, i.e. the connection point, to which the connection was directed, in O→T direction.

Chapter 4 Application interface 97 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Output connection point – ulTOConnPoints

The assembly instance, i.e. the connection point, to which the connection was directed, in T→O direction.

Connection serial number – usConnSerialNum

The Serial Number of the connection affected by the state change, as specified by the Originator of the connection (and
accepted by the protocol stack) when the connection was established. This 16-bit value uniquely identifies the connection
amongst all connections with the device. For more details, see “The CIP Networks Library, volume 1”, section 3-5.5.1.5.

Originator vendor Id – usVendorId

The Vendor ID of the connection affected by the state change, as specified by the Originator of the connection (and
accepted by the protocol stack) when the connection was established.

Originator serial number – ulOSerialNum

The Serial Number of the Originator of the connection affected by the state change, as specified when the connection
was established.

Priority/tick time – bPriority

The Priority and Tick Time field of the connection affected by the state change, as specified in the Forward Open
message with which the connection was opened. The actual Time per Tick is calculated as 2^tick_time [ms]. Refer to
“The CIP Networks Library, volume 1”, section 3-5.4.1.2.1

Bits 5-7 Bit 4 Bits 3-0

Reserved Priority

0: Normal
1: reserved

Tick Time

Table 102. Meaning of Variable bPriority

Time Out Ticks Parameter – bTimeOutTicks

The Time Out Ticks (Transaction Timeout for Opening the Connection in multiples of Ticks) of the connection affected by
the state change, as specified in the Forward Open message which opened the connection.

Timeout multiplier - bTimeoutMultiple

The timeout multiplier of the connection affected by the state change, as specified in the Forward Open message with
which the connection was opened. The actual connection timeout value (Inactivity Timeout) is calculated by multiplying
the connection’s RPI value (requested packet interval) with the connection’s timeout multiplier. If no messages are
received over the connection for this interval, it is closed due to a timeout condition.

The multiplier is numerically encoded according to the following table:

Code Corresponding multiplier

0 x4

1 x8

2 x16

3 x32

4 x64

5 x128

6 x256

7 x512

8 - 255 Reserved

Table 103. Coding of timeout multiplier values

Transport/trigger – bTriggerType

The trigger type of the connection affected by the state change, as specified in the Forward Open message with which
the connection as opened. It encodes the trigger condition for transmissions in T→O connection and the connection’s
transport class.

Chapter 4 Application interface 98 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Bit 7 Bits 4-6 Bits 3-0

Direction

1 – server
0 – client

Trigger

0 – cyclic

1 – change of state
2 – application triggered

Connection class

0 – class 0

1 – class 1

2 – class 2
3 – class 3

Table 104. Meaning of variable bTriggerType

OT connection ID – ulOTConnID

The connection ID in O→T direction as selected by the originator of the connection.

TO connection ID – ulTOConnID

The connection ID in T→O direction as selected by the protocol stack when processing the Forward Open request of the
connection whose state changed.

OT requested packet Interval- ulOTRpi

The requested packet interval (RPI) of the connection affected by the state change in O→T direction, as specified in the
Forward Open message with which the connection was opened, in units of microseconds.

OT connection parameter - usOTConnParam

The O→T (consumer) connection parameters field of the connection affected by the state change in O→T direction, as
specified in the Forward Open message with which the connection was opened. Table Meaning of variable
usOTConnParam shows the structure and contents of this bit field.

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bits 8-0

Redundant
owner

Connection type Reserved Priority Fixed/variabl
e

Reserved

Table 105. Meaning of variable usOTConnParam

The values have the following meaning

■ Fixed/Variable
This bit indicates whether the connection, in this direction, will accept frames with a variable size or requires all frames

to have the fixed connection’s size.
If the bit is set, I/O frames may be smaller than the connection size. Otherwise, the protocol stack will ignore I/O
frames with smaller size than the connection size.

■ Priority

Table Priority specifies the connection’s priority encoding within bits 11-10 of the connection parameters:

Bit 11 Bit 10 Priority

0 0 Low priority

0 1 High priority

1 0 Scheduled

1 1 Urgent

Table 106. Priority

■ Connection type

Table Connection type specifies the connection type encoding within bits 14-13 of the connection parameters:

Bit 14 Bit 13 Connection type

0 0 Null – connection may be reconfigured

0 1 Multicast

1 0 Point-to-point connection

1 1 Reserved

Table 107. Connection type

Chapter 4 Application interface 99 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

NOTE Connection type „Multicast” is only supported for connections with CIP transport class 0 and class 1

and in T→O direction
Connection type „Null” is not supported. The stack will reject all such connections right anyway and
thus, no Connection State Change indication will ever be generated for that connection type. We
mention it for convenience and for the future extendibility of the implementation.

■ Redundant owner
The redundant owner bit will be set if more than one owner of the connection is allowed (Bit 15 = 1). If bit 15 is equal to
zero, then the connection is an exclusive owner connection.

NOTE The EtherNet/IP stack does not support redundant owner connections.

OT connection size - usOTConnSize

The O→T Connection Size of the connection affected by the state change, as specified (in number of bytes) in the
“Forward Open message” which opened the connection.

This size may be smaller or equal to the size of the consuming connection point at which the connection directs.

TO requested packet interval - ulTORpi

The requested packet interval (RPI) of the connection affected by the state change in T→O direction, as specified (in units
of microseconds) in the “Forward Open message” which opened the connection.

TO connection parameter - usTOConnParam

Similarly to usOTConnParam, the producer connection parameters for the connection (T→O direction).

TO connection size - usTOConnSize

The O→T connection size of the connection affected by the state change, as specified (in number of bytes) in the
“Forward Open message” which opened the connection.

This size may be smaller than or equal to the size of the producing connection point at which the connection directs.

Production inhibit time - ulProInhib

The production inhibit time of the connection affected by the state change, as specified (in units of milliseconds) in the
“Forward Open message” which opened the connection. A value of zero disables the production inhibit timer.

Extended state – ulExtendedState

The extended state provides additional information on the cause of the connection state change. This value is significant
only if ulConnectionState equals EIP_UNCONNECT. Table Extended State specifies the possible values of this field.

Value of ulExtendedState Numerical
value

Meaning

If (ulConnectionState == EIP_UNCONNECT)

EIP_CONN_STATE_UNDEFINED 0 No extended state available

EIP_CONN_STATE_TIMEOUT 1 Connection closed due to timeout condition

If (ulConnectionState == EIP_CONNECT)

EIP_CONN_STATE_UNDEFINED 0 No extended state available

Table 108. Extended State

Indication packet description

Variable Type Value/Range Description
ulLen uint32_t 124 EIP_OBJECT_CONNECTION_IND – Packet data length in

bytes

ulSta uint32_t 0 Status not in used for indication.

ulCmd uint32_t 0x1A2E EIP_OBJECT_CONNECTION_IND

tData (EIP_OBJECT_CONNECTION_IND_T)

ulConnectionState uint32_t 0, 1 Reason of changing the connection state

Connection established (1)
Connection disconnected (0)

Chapter 4 Application interface 100 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Variable Type Value/Range Description
usNumExclusiveOwner uint16_t Number of established exclusive owner connections

(adapter role)

usNumInputOnly uint16_t Number of established input only connections (adapter
role)

usNumListenOnly uint16_t Number of established listen only connections (adapter
role)

usNumExplicitMessaging uint16_t Number of established explicit connections (adapter role)

usNumImplicitMessagingOriginator uint16_t Number of class 0/1 connections currently opened by us
(scanner role)

usNumExplicitMessagingOriginator uint16_t Number of class 3 connections currently opened by us
(scanner role). This field is currently unused and always set
to zero.

bConnType uint8_t 1-16 Connection type

abReserved[3] uint8_t 0 Reserved. Always set to 0.

tConfigPath.ulClass uint32_t Connection configuration path: Class ID

If no configuration path is addressed or the addressed
configuration path is to be ignored because no
configuration data was given, this field is set to zero.

tConfigPath.ulInstance uint32_t Connection configuration path: Instance ID

If no configuration path is addressed or the addressed
configuration path is to be ignored because no
configuration data was given, this field is set to zero.

tConfigPath.ulConnPoint uint32_t Connection configuration path: Connection Point ID

If no configuration path is addressed or the addressed
configuration path is to be ignored because no
configuration data was given, this field is set to zero. For
the assembly object, instance IDs and connection points
are used synonymously.

tConfigPath.ulAttribute uint32_t Connection configuration path: Attribute ID

If no configuration path is addressed or the addressed
configuration path is to be ignored because no
configuration data was given, this field is set to zero. For
the configuration paths towards the assembly assembly
object, always three.

tConfigPath.ulMember uint32_t 0 Connection configuration path: Member ID
Always zero

tConsumptionPath.ulClass uint32_t Connection consumption path: Class ID

tConsumptionPath.ulInstance uint32_t Connection consumption path: Instance ID

tConsumptionPath.ulConnPoint uint32_t Connection consumption path: Connection Point ID
For the assembly object, instance IDs and connection
points are used synonymously.

tConsumptionPath.ulAttribute uint32_t Connection consumption path: Attribute ID

tConsumptionPath.ulMember uint32_t 0 Connection consumption path: Member ID
Always zero

tProductionPath.ulClass uint32_t Connection production path: Class ID

tProductionPath.ulInstance uint32_t Connection production path: Instance ID

Chapter 4 Application interface 101 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Variable Type Value/Range Description
tProductionPath.ulConnPoint uint32_t Connection production path: Connection Point ID

For the assembly object, instance IDs and connection
points are used synonymously.

tProductionPath.ulAttribute uint32_t Connection production path: Attribute ID

tProductionPath.ulMember uint32_t 0 Connection production path: Member ID
Always zero

usConnSerialNum uint16_t Serial number of the connection

usVendorId uint16_t Originator vendor id

ulOSerialNum uint32_t Originator serial number

bPriority uint8_t Priority/Tick Time

bTimeOutTicks uint8_t Message timeout

bTimeoutMultiple uint8_t Time out multiplier

bTriggerType uint8_t Class/Trigger type

ulOTConnID uint32_t O→T Connection ID

ulTOConnID uint32_t T→O ConnectionID

ulOTRpi uint32_t O→T requested packet interval

usOTConnParam uint16_t O→T Connection parameter

usOTConnSize uint16_t O→T data size

ulTORpi uint32_t T→O requested packet interval

usTOConnParam uint16_t T→O Connection parameter

usTOConnSize uint16_t T→O data size

ulProInhib uint32_t Production inhibit time

ulExtendedState uint32_t 0: No extended status
1: Connection timeout

Table 109. EIP_OBJECT_PACKET_CONNECTION_IND_T – Indication of connection

Response packet description

Variable Type Value/Range Description
ulDest uint32_t Destination. Use value from indication

ulLen uint32_t 0 Packet data length in bytes

ulSta uint32_t 0 Status not used for response

ulCmd uint32_t 0x00001A2F command / response

Table 110. EIP_OBJECT_PACKET_CONNECTION_RES_T – Response to indication of connection

4.2.4 Configuration Assemblies

Configuration assemblies (EIP_AS_TYPE_CONFIG) hold a fixed or variable size configuration data byte sequence of given
size. The configuration data structure and content is specific to the application. For instance, it could be used for
calibrating sensors or actors prior to actual data transfer.

Therefore, the host application has to set the initial default configuration data into the config assembly after creation.
When a new connection is opened towards a configuration assembly and that connection request contains correct length
configuration data, then the firmware will compare this new data against the currently active configuration data. It will
generate an EIP_OBJECT_CL3_SERVICE_IND, if an actual change in configuration data took place, thus presenting that
new configuration data to the host application.

If the host replies to the EIP_OBJECT_CL3_SERVICE_IND with a success status, the firmware will copy-in the new data
into the config assembly without any further action required by the host application. The I/O connection eventually will be
opened and will bind the particular configuration assembly.

Note that the assembly flag EIP_AS_OPTION_FIXED_SIZE can be set on configuration assemblies so that the new data
needs to match the exact length of the configuration assembly. Otherwise, also smaller sizes are accepted.

Chapter 4 Application interface 102 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

4.2.5 NULL ForwardOpen

A NULL ForwardOpen is a ForwardOpen request received on the network which has the TransportType NULL in both
directions, O2T and T20. A NULL ForwardOpen will thus not open an actual I/O connection for data transport. Instead, it
serves one of the three following purposes:

■ Ping a Device: A NULL ForwardOpen addressing the Identity Object instance 1, e.g. a request path of {0x20, 0x01,
0x24 0x01}, implements a ping mechanism at the CIP protocol level. The request is replied to with a ForwardOpen
response without any further effect in the device. Thus, we will not describe this any further in this manual.

■ Set initial configuration data for the application: A NULL ForwardOpen which specifies a connection serial number not
matching any existing I/O connection provides initial configuration data for a config assembly, i.e. whilst this
configuration assembly is not yet addressed by any other I/O connection. A data segment and a valid configuration
application path must be contained. We further refer to this as a non-matching NULL ForwardOpen.

■ Set (re)configuration data for the application on-the-fly: A NULL ForwardOpen which specifies a connection serial
number matching an existing I/O connection provides configuration data for a config assembly on-the-fly, i.e. whilst
this configuration assembly is already addressed by this particular I/O connection. A data segment and a valid
configuration application path must be contained. We further refer to this as a matching NULL ForwardOpen.

Per default, NULL ForwardOpen support in the firmware is disabled. It has to be enabled explictly by the host application
if there is a demand for the described features. Refer to service EIP_OBJECT_SET_PARAMETER_REQ for details.

NOTE If a firmware is configured for NULL ForwardOpen support, the EDS File and the Conformance Test
Configuration File have to be adapted accordingly.

NOTE NULL ForwardOpen requests will also be subject to ForwardOpen forwarding, if enabled, as described
in section EIP_OBJECT_LFWD_OPEN_FWD_IND.

4.2.5.1 Non-matching NULL ForwardOpen

A non-matching NULL ForwardOpen allows a CIP client to provide initial configuration data towards the application, i.e.
before the addressed configuration assembly is bound to any I/O connection. The configuration data contained in the
request, addressing an existing configuration assembly, is presented to the host application by means of the indication
EIP_OBJECT_CL3_SERVICE_IND, command code Set_Attribute_Single, and, if accepted, will be stored into the
configuration assembly. This configuration data then overwrites any configuration data previously set into the
configuration assembly. The NULL ForwardOpen request will be replied to with an appropriate status code.

If the addressed configuration assembly is already bound by any I/O connection, the NULL ForwardOpen request will be
rejected.

4.2.5.2 Matching NULL ForwardOpen

A matching NULL ForwardOpen allows the originator of a particular existing I/O connection to provide (re)configuration
data towards the application, i.e. whilst the addressed configuration assembly may already be bound by that connection.
This allows on-the-fly reconfiguration of the application by the originator of that connection. The configuration data
contained in the request, addressing an existing configuration assembly, is presented to the host application by means of
the indication EIP_OBJECT_CL3_SERVICE_IND, command code Set_Attribute_Single, and, if accepted, will be stored
into the configuration assembly. This configuration data then overwrites any configuration data previously set into the
configuration assembly. The NULL ForwardOpen request will be replied to with an appropriate status code.

If the addressed configuration assembly is already bound in another I/O connection but the matching connection, the
NULL ForwardOpen request will be rejected. If the addressed configuration assembly is not bound yet, it will be bound by
the matching connection.

NOTE If the configuration data to be set due to a NULL ForwardOpen, no matter if it is matching or non-
matching, is not effective, i.e. equals the already contained data of the configuration assembly, no
indication will be generated and the request will be replied to with success status right away.

Chapter 4 Application interface 103 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

4.2.6 Acyclic Data Transfer indication

The indication EIP_OBJECT_CL3_SERVICE_IND indicates an acyclic service request from the network. Typical
situations in which the EtherNet/IP stack generates that indication are:

■ An additional object class has been registered using the command EIP_OBJECT_MR_REGISTER_REQ and an Explicit
Request is issued toward that object.

■ An additional service has been registered for an existing object using EIP_OBJECT_REGISTER_SERVICE_REQ and
that service is issued toward that object.

■ Configuration data is set into a config assembly due to an opening I/O connection

The following parameters are provided with the indication:

■ If the service was issued over a class 3 connection (connected explicit), the O→T connection ID of that connection
■ The CIP service code bService
■ The CIP object class ID ulObject, Instance ID ulInstance, Attribute ID ulAttribute and Member ID ulMember addressed

by the service

NOTE Typically, CIP services received from the network rarely include the member ID just because most of
the existing CIP attributes do not have members. In that case, the parameter ulMember is set to 0.

■ A byte array containing the request data received with the service request, which the host application has to interpret,
verify and process.

■ The sequence count field of the frame which contained the service request, in case it was received over a class 3
connection (connected explicit)

The parameters Service Code, Class ID, Instance ID, Attribute ID and Member ID corresponds to the normal CIP
Addressing. These fields are used for the most common services that use the addressing format “Service → Class →
Instance → Attribute → Member”.

In case the service uses another format, the path information is put into the data part (abData[]) of this packet.

The data segment abData[] is only present for service requests which contained request data (e.g. the
Set_Attribute_Single service). The ulLen field of the packet header can be evaluated to determine the request data size in
number of bytes contained in abData[]:

`service_data_size = tHead.ulLen - EIP_OBJECT_CL3_SERVICE_IND_SIZE`

CIP services are divided into different address ranges. The subsequent Table Specified ranges of numeric values of
service codes (variable bService) gives an overview. This table is taken from the CIP specification (“Common Industrial
Protocol specification, volume 1, section 4, table 4-9.6”, see reference [5]).

Range of numeric value of
service code (variable
bService)

Meaning

0x00-0x31 Open. The services associated with this range of service codes are referred to as Common Services.
These are defined in Appendix A of the CIP Networks Library, volume 1 (reference [5]).

0x32-0x4A Range for service codes for vendor specific services

0x4B-0x63 Range for service codes for object class specific services

0x64-0x7F Reserved by ODVA for future use

0x80-0xFF Reserved for use as reply service code (see message router response format in section 2 of reference
[6])

Table 111. Specified ranges of numeric values of service codes (variable bService)

NOTE It is specific to each object which services it implements. For object class IDs in the open range, refer to

the CIP specification about the requirements to be fulfilled.
If you use object class IDs from the vendor-specific range, it is in your own responsibility to define and
implement the set of available services.

Table Service Codes for the Common Services according to the CIP specification lists the service codes for the common
services. This table is taken from the CIP specification (“Volume 1 Common Industrial Protocol Specification, section 5,
table 5-1.1”, see reference [5]).

Chapter 4 Application interface 104 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Service code (numeric value of
bService)

Service to be executed

00 Reserved

01 Get_Attributes_All

02 Set_Attributes_All

03 Get_Attribute_List

04 Set_Attribute_List

05 Reset

06 Start

07 Stop

08 Create

09 Delete

0A Multiple_Service_Packet

0B Reserved for future use

0D Apply_Attributes

0E Get_Attribute_Single

0F Reserved for future use

10 Set_Attribute_Single

11 Find_Next_Object_Instance

12 -13 Reserved for future use

14 Error Response (used by DevNet only)

15 Restore

16 Save

17 No Operation (NOP)

18 Get_Member

19 Set_Member

1A Insert_Member

1B Remove_Member

1C GroupSync

1D-31 Reserved for additional Common Services

Table 112. Service Codes for the Common Services according to the CIP specification

After the host application has verified all provided parameters and the request data; it processes the service and finally,
sends the response to this indication back to protocol stack.

Therefore, it sets the General Status code ulGRC and optionally also the Extended Status Code ulERC to an appropriate
CIP status code.

The Generic Error Code indicates whether the service was successful in the first place, whereas the Extended Status
Code may be set to provide additional diagnostic information. For the stack definitions of generic status codes, see Table
CIP Generic Status Codes Definitions (Variable ulGRC).

If processing the service succeeded, additional reply data can be sent in the abData field of the response message. The
response data size in number of bytes must be set in addition to the basic packet length
(EIP_OBJECT_CL3_SERVICE_RES_SIZE) in the ulLen field of the response packet’s header.

Figure Sequence Diagram for the EIP_OBJECT_CL3_SERVICE_IND/RES Packet for the Extended Packet Set displays a
sequence diagram for the EIP_OBJECT_CL3_SERVICE_IND packet (see Configuration using the packet API).

Chapter 4 Application interface 105 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Figure 15. Sequence Diagram for the EIP_OBJECT_CL3_SERVICE_IND/RES Packet for the Extended Packet Set

Chapter 4 Application interface 106 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Indication packet description

Variable Type Value/Range Description
ulLen uint32_t 24 + n Packet data length in bytes

n = Length of service data area abData

ulSta uint32_t 0 Status not in use for indication.

ulCmd uint32_t 0x1A3E EIP_OBJECT_CL3_SERVICE_IND

tData (EIP_OBJECT_CL3_SERVICE_IND_T)

ulConnectionId uint32_t 0 … 232-1 Unique Id (ignore)

bService uint8_t 1-0xFF CIP service code

abPad0[3] uint8_t 0 Padding. Set to zero.

ulObject uint32_t 1-0xFFFFFFFF CIP Class ID

ulInstance uint32_t 0-0xFFFFFFFF CIP Instance Number

ulAttribute uint32_t 0-0xFFFFFFFF CIP Attribute Number
The attribute number is 0, if the service does not address a
specific attribute but the whole instance.

ulMember uint32 0-0x7FFFFFFF CIP member number
This parameter contains the member number of the object class

instance attribute specified in ulAttribute.
Note: Typically, CIP services received from the network rarely
include the member ID just because most of the existing CIP
attributes do not have members. In that case, the parameter
ulMember is set to 0.

abData[] uint8_t n bytes of service data (depending on service)
This may also contain path information for instance in case that the
service does not address an object with the format Class /
Instance / Attribute.

Table 113. EIP_OBJECT_PACKET_CL3_SERVICE_IND_T - Indication of acyclic data transfer

Response packet description

Variable Type Value/Range Description
ulDest uint32_t Destination. Use value from indication

ulLen uint32_t 32 + n Packet data length in bytes
where n = Length of service data area

ulSta uint32_t 0 Status not used for response. Error code can be set using
.tData.ulGRC and .tData.ulERC (see below)

ulCmd uint32_t 0x00001A3F EIP_OBJECT_CL3_SERVICE_RES

tData (EIP_OBJECT_CL3_SERVICE_RES_T)

ulConnectionId uint32_t 0 … 232-1 Unique Id from the indication packet

bService uint8_t 1-0xFF CIP service code from the indication packet

abPad0[3] uint8_t 0 Padding. Set to zero.

ulObject uint32_t 1-0xFFFFFFFF CIP Object from the indication packet

ulInstance uint32_t 0-0xFFFFFFFF CIP Instance from the indication packet

ulAttribute uint32_t 0-0xFFFFFFFF CIP Attribute from the indication packet

ulMember uint32 0-0x7FFFFFFF CIP Member from the indication packet

ulGRC uint32_t Generic Error Code

ulERC uint32_t Extended Error Code

abData[] uint8_t n bytes of service data (depending on service)

Table 114. EIP_OBJECT_PACKET_CL3_SERVICE_RES_T – Response to indication of acyclic data transfer

Chapter 4 Application interface 107 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

4.2.7 CIP Object Change indication

The indication EIP_OBJECT_CIP_OBJECT_CHANGE_IND indicates a change of an attribute value of a CIP object class
or instance of one of the built-in CIP objects. Change indications are generated when the change in the attribute’s value
happened due to a Set-Attribute Service from the network or another external trigger. Only attributes that have the
attribute option flag CIP_FLG_TREAT_NOTIFY set, generate change indications (compare to section
EIP_OBJECT_ENABLE_ATTRIBUTE_NOTIFICATION_REQ).

The purpose of this indication is to inform the host application about the change in the attribute’s value. With Object
Change indications, the host application is given the possibility to validate the value, which has been requested as the
new attribute’s value over the network. If the host application decides to reject the value, it replies to the change
indication with a non-zero General Status Code in the ulSta field of the response packet’s header. This reply will trigger
the service response including an appropriate CIP error code on the network. In case the host application accepts the
attribute change, it replies to the change indication with ulSta set to zero. This will trigger the response service on the
network and additionally will take over the new attribute value into the object.

NOTE Accepting a new attribute value might trigger a store remanent data indication being sent to the host
application in case the attribute is part of the protocol stack’s remanent data. In that scenario the
response service on the network will be sent not before the store remanent data indication is replied to.

The timeout restriction for synchronous indications applies to the Object Change indication. For a description of this
mechanism, see section Application compliance.

As an example, Figure Exemplary sequence diagram for the EIP_OBJECT_CIP_OBJECT_CHANGE_IND/RES packet
sequence displays a sequence diagram for the EIP_OBJECT_CIP_OBJECT_CHANGE_IND packet in case the host
application stores remanent data.

Chapter 4 Application interface 108 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Figure 16. Exemplary sequence diagram for the EIP_OBJECT_CIP_OBJECT_CHANGE_IND/RES packet sequence

Chapter 4 Application interface 109 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Indication packet description

Variable Type Value/Range Description
ulLen uint32_t 24+n Packet data length in bytes

n = Number of bytes in abData[]

ulSta uint32_t 0 Status not in use for indication.

ulCmd uint32_t 0x1AFA EIP_OBJECT_CIP_OBJECT_CHANGE_IND

tData (EIP_OBJECT_CIP_OBJECT_CHANGE_IND_T)

ulInfoFlags uint32_t 0x10 or 0x20 Flags specifying the type of change indication. This, for instance,
informs the host whether or not it can reject the attribute change.
Refer to the section Definition and purpose of parameter
ulInfoFlags below for a comprehensive description.

bService uint8_t 0x10 CIP service code
Currently only the SetAttributeSingle service is used in this
indication.

abPad0[3] uint8_t 0 Padding. Set to zero

ulClass uint32_t CIP class ID

ulInstance uint32_t CIP instance number

ulAttribute uint32_t CIP attribute number

ulMember uint32_t CIP member number

abData[] uint8_t Attribute Data

The number of bytes n provided in abData =
tHead.ulLen - EIP_OBJECT_CIP_OBJECT_CHANGE_IND_SIZE

Table 115. EIP_OBJECT_PACKET_CIP_OBJECT_CHANGE_IND_T – CIP Object Change indication

Response packet description

Variable Type Value/Range Description
ulDest uint32_t Destination. Use value from indication

ulLen uint32_t EIP_OBJECT_
CIP_OBJECT_
CHANGE_RES
_SIZE plus the
size of the
payload data

Packet data length in bytes. Typically, the host application will not
change this value, but pass it back as received with the object
change indication.

ulSta uint32_t See section Status/error codes
All status code other than SUCCESS_HIL_OK (0) will be treated
equally (error reply on the network and value not taken over). Note
that this is only effective for changes of the type
EIP_OBJECT_CIP_OBJECT_CHANGE_IND_PROPOSE.

ulCmd uint32_t 0x1AFB EIP_OBJECT_CIP_OBJECT_CHANGE_RES

tData (EIP_OBJECT_CIP_OBJECT_CHANGE_IND_T)

ulInfoFlags uint32_t 0x10 or 0x20 Flags specifying the type of change indication (from the indication
packet)

bService uint8_t 0x10 CIP service code (from the indication packet)

abPad0[3] uint8_t 0 Padding (from the indication packet)

ulClass uint32_t CIP class ID (from the indication packet)

ulInstance uint32_t CIP instance number (from the indication packet)

ulAttribute uint32_t CIP attribute number (from the indication packet)

ulMember uint32_t CIP member number (from the indication packet)

abData[] uint8_t Attribute Data (from the indication packet)

Table 116. EIP_OBJECT_PACKET_CIP_OBJECT_CHANGE_RES_T – Response to CIP Object Change indication

4.2.7.1 Definition and purpose of parameter ulInfoFlags

Three values for the field ulInfoFlags in EIP_OBJECT_CIP_OBJECT_CHANGE_IND_T are defined, which may be binary OR’d

Chapter 4 Application interface 110 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

together:

Definition Value Description

EIP_OBJECT_CIP_OBJECT_C
HANGE_IND_PROPOSE

0x10 The conditional change is proposed towards the host application, giving it the
chance to reject the change.

EIP_OBJECT_CIP_OBJECT_C
HANGE_IND_INFORM

0x20 The host application is informed that an unconditional change of the attribute value
took place or is about to take place. The host application does not have any means
to reject the change.

EIP_OBJECT_CIP_OBJECT_C
HANGE_NV_STORING_BYPAS
SED

0x40 The changed attribute value normally is subject to remanent data storing, but the
particular change has been omitted from the remanent storing. The prime example
for this is the case where the device yields it’s IP address due to a fresh DHCP
cycle being started or the DHCP lease expiring. The IP address attribute (class
0xF5, instance 1, attribute 5) will then be set to zero until a new valid IP address has
been obtained from the server. Since it is undesirable to have an (intermediate) IP
of 0.0.0.0 in the remanent data, the storing is bypassed in such cases. See section
DHCP/BOOTP Client for further information. Other situations where the IP
configuration (temporarily) is set to 0.0.0.0, so that such an indication may be
generated, are:

1. Link loss: The network cable is unplugged or the Ethernet Link is disabled

2. Network Interface reconfiguration due to changes in attribute 3 of the TCP/IP
Interface object

3. A CIP Identity reset, when DHCP/ACD is freshly performed

4. A passive change by an external source, e.g. the Hilscher Ethernet Device
Configuration Tool

Table 117. EIP_OBJECT_CIP_OBJECT_CHANGE_IND_T - ulInfoFlags

Chapter 4 Application interface 111 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

4.2.8 Link Status Change

The indication HIL_LINK_STATUS_CHANGE_IND indicates a change in the Ethernet Link Status. This is informative for
the application and has only to be evaluated if the host application implements a certain behavior on, e.g., link losses.

NOTE This indication is also sent directly after the host application has registered at the EtherNet/IP Stack
(HIL_REGISTER_APP_REQ).

Indication packet description

Variable Type Value/Range Description
ulLen uint32_t 32 Packet data length in bytes

ulSta uint32_t 0 Status not in use for indication.

ulCmd uint32_t 0x2F8A HIL_LINK_STATUS_CHANGE_IND

tData (HIL_LINK_STATUS_CHANGE_IND_DATA_T)

atLinkData[2] HIL_LINK_STAT
US_T

Link status information for two ports.
If only one port is available, ignore second entry.

Table 118. HIL_LINK_STATUS_CHANGE_IND_T - Link Status Change indication

HIL_LINK_STATUS_T is structured like this:

Variable Type Value/Range Description
ulPort uint32_t 0, 1 The port-number this information belongs to.

fIsFullDuplex uint32_t FALSE (0)
TRUE

Is the established link full Duplex? Only valid if fIsLinkUp is TRUE.

fIsLinkUp uint32_t FALSE (0)
TRUE

Is the link up for this port?

ulSpeed uint32_t 0, 10 or 100 If the link is up, this field contains the speed of the established link.
Possible values are 10 (10 MBit/s), 100 (100MBit/s) and 0 (no link).

Table 119. Structure HIL_LINK_STATUS_T

Response packet description

Variable Type Value/Range Description
ulDest uint32_t Destination. Use value from indication

ulLen uint32_t 0 Packet data length in bytes. Depends on number of parameters

ulSta uint32_t 0 Status not used for response.

ulCmd uint32_t 0x2F8B HIL_LINK_STATUS_CHANGE_RES

Table 120. HIL_LINK_STATUS_CHANGE_RES_T - Link Status Change response

Chapter 4 Application interface 112 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

4.2.9 Module Network Status Change

This packet indicates a change in either the module or network status. The LEDs of the device display the module status
and the network status.

NOTE The change indication can be enabled by setting the flag EIP_APS_PRM_SIGNAL_MS_NS_CHANGE using
the packet EIP_APS_SET_PARAMETER_REQ.

Indication packet description

Variable Type Value/Range Description
ulLen uint32_t 8 Packet data length in bytes

ulSta uint32_t 0 Status not in use for indication.

ulCmd uint32_t 0x360C EIP_APS_MS_NS_CHANGE_IND

Data (EIP_APS_MS_NS_CHANGE_IND_T)

ulModuleStatus uint32_t 0 - 5 The module status describes the current state of the
corresponding MS-LED (if it is connected). For details, see Module
status.

ulNetworkStatus uint32_t 0 - 5 The network status describes the current state of the
corresponding NS-LED (if it is connected). For details, see
Network status.

Table 121. EIP_APS_PACKET_MS_NS_CHANGE_IND_T – Module/Network Status Change indication

Response packet description

Variable Type Value/Range Description
ulLen uint32_t 0 Packet data length in bytes

ulSta uint32_t 0 Status not in use for response.

ulCmd uint32_t 0x360D EIP_APS_MS_NS_CHANGE_RES

Table 122. EIP_APS_PACKET_MS_NS_CHANGE_RES_T - Link Status Change response

Chapter 4 Application interface 113 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

4.2.10 Forward_Open indication

NOTE The Forward Open Forwarding functionality can be enabled by setting the Parameter flag
EIP_OBJECT_PRM_FWRD_OPEN_CLOSE_FORWARDING using command
EIP_OBJECT_SET_PARAMETER_REQ.

The indication EIP_OBJECT_LFWD_OPEN_FWD_IND indicates reception of a Forward_Open request on the
EtherNet/IP network. A host application will only use the Forward Open Forwarding feature when it requires full control
over those frames, i.e. adding application-specific behavior that the protocol stack does not implement. In the vast
majority of EtherNet/IP applications, there is no need for the host application to implement costly direct handling of
Forward Open frames. You are encouraged to consider carefully, whether you have a demand for this feature.

When Forward Open Forwarding is enabled, it is mandatory for the host application to correctly handle and reply to the
indications:

■ EIP_OBJECT_LFWD_OPEN_FWD_IND (Section EIP_APS_SET_PARAMETER_REQ)
■ EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND
■ EIP_OBJECT_FWD_CLOSE_FWD_IND

When Forward Open Forwarding is used, the protocol stack will pass every Forward Open Frame it receives on to the
application without any previous processing. The host application has the possibility to modify the received Forward
Open frame, return it in the response to the indication, EIP_OBJECT_FWD_OPEN_FWD_RES, and let the protocol stack
continue its regular Forward Open processing on that modified frame just as if was received over the network. In their
most basic variant, the Forward Open handlers would just return the received packet data for the protocol stack to
process.

Typically, the host application would validate and/or modify the forward open request and let the stack continue
processing that validated or modified request.

Furthermore, the application can attach “Application Reply Data” to the EIP_OBJECT_LFWD_OPEN_FWD_RES response
message, which will be sent back to the originator on success. By setting a nonzero CIP status code in the response
packet, the host application can effectively reject the opening or closing of a connection. As well, a non-zero 16-Bit
extended status code can be set in the lower bits of ulERC in the response packet to provide further diagnostic
information to the originator.

There are no restrictions regarding modification of the forward open, except for the maximum packet size and maximum
path length.

When the protocol stack receives the host application’s response, EIP_OBJECT_LFWD_OPEN_FWD_RES, it will validate and
process the Forward Open and then send the indication EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND to
indicate the result of the Forward Open to the host application.

For an overview of the possible packet sequences, see following figure.

To attach “Application Reply Data”, add this data at the end of the connection path (abConnPath) field of the indication’s
response and set ulAppReplySize and ulAppReplyOffset accordingly, as well as the packet’s data length tHead.ulLen.
ulAppReplySize specifies the size of the application reply data in bytes and ulAppReplyOffset specifies the byte-offset of
the application reply data within the data part of the EIP_OBJECT_LFWD_OPEN_FWD_RES packet.

Chapter 4 Application interface 114 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Chapter 4 Application interface 115 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Indication packet description

Variable Type Value/Range Description
ulLen uint32_t 60 + n EIP_OBJECT_LFWD_OPEN_FWD_IND_SIZE + n - Packet data length

in bytes
n: Length of connection path (abConnPath) in bytes

ulSta uint32_t 0 Status not in use for indication.

ulCmd uint32_t 0x1A60 EIP_OBJECT_LFWD_OPEN_FWD_IND

Data (EIP_OBJECT_LFWD_OPEN_FWD_IND_T)

pRouteMsg uint32_t Pointer to remember the underlying encapsulation request
(must not be modified by app)

aulReserved[4] uint32_t Placeholder to be filled by response parameters, see
EIP_OBJECT_LFWD_OPEN_FWD_RES_T

tFwdOpenData EIP_LFWD_OP
EN_DATA_T

Forward Open data (See Table EIP_LFWD_OPEN_DATA_T -
Forward_Open request data)

Table 123. EIP_OBJECT_PACKET_LFWD_OPEN_FWD_IND_T – Forward_Open indication

The following Table EIP_LFWD_OPEN_DATA_T - Forward_Open request data explains the structure
EIP_LFWD_OPEN_DATA_T:

Variable Type Description
Structure EIP_LFWD_OPEN_DATA_T

bPriority uint8_t Used to calculate request timeout information

bTimeOutTicks uint8_t Used to calculate request timeout information

ulOTConnID uint32_t Network connection ID originator to target

ulTOConnID uint32_t Network connection ID target to originator

usConnSerialNum uint16_t Connection serial number

usVendorId uint16_t Originator Vendor ID

ulOSerialNum uint32_t Originator serial number

bTimeoutMultiple uint8_t Connection timeout multiplier

abReserved1[3] uint8_t Reserved

ulOTRpi uint32_t Originator to target requested packet rate in microseconds

ulOTConnParam uint32_t Originator to target connection parameter

ulTORpi uint32_t Target to originator requested packet rate in microseconds

ulTOConnParam uint32_t Target to originator connection parameter

bTriggerType uint8_t Transport type/trigger

bConnPathSize uint8_t Connection path size in 16 bit words

abConnPath[] uint8_t Connection path

Table 124. EIP_LFWD_OPEN_DATA_T - Forward_Open request data

For a detailed description on these parameters, see section EIP_OBJECT_CONNECTION_IND.

Chapter 4 Application interface 116 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Response packet description

Variable Type Value/Range Description
ulDest uint32_t Destination. Use value from indication

ulLen uint32_t 60 + n EIP_OBJECT_FWD_OPEN_FWD_RES_SIZE + n - Packet data length in

bytes
n: Length of connection path (abConnPath) in bytes + Length of
“Application Reply” data in abConnPath

ulSta uint32_t 0 Status not in use for response. Error code can be set using
.tData.ulGRC and .tData.ulERC (see below)

ulCmd uint32_t 0x1A61 EIP_OBJECT_LFWD_OPEN_FWD_RES

tData (EIP_OBJECT_LFWD_OPEN_FWD_RES_T)

pRouteMsg void* Pointer to underlying Encapsulation request

ulGRC uint32_t General Error Code, see Table CIP Generic Status Codes
Definitions (Variable ulGRC)

ulERC uint32_t Extended Error Code

ulAppReplyOffset uint32_t Offset of “Application Reply” data.

ulAppReplySize uint32_t Length of “Application Reply” data in bytes.
The “Application Reply” data can be attached by copying it right

behind the connection path in
tFwdOpenData.abConnPath[]

tFwdOpenData EIP_LFWD_OP
EN_DATA_T

Forward Open data (See Table EIP_LFWD_OPEN_DATA_T -
Forward_Open request data)

Table 125. EIP_OBJECT_PACKET_LFWD_OPEN_FWD_RES_T – Response of Forward_Open indication

Chapter 4 Application interface 117 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

4.2.11 Forward_Open_Completion indication

NOTE This functionality must be enabled by setting the Parameter flag
EIP_OBJECT_PRM_FWRD_OPEN_CLOSE_FORWARDING using command
EIP_OBJECT_SET_PARAMETER_REQ.

The indication EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND indicates to the host application the completion of
a Forward Open request.

As stated in the preceding section, after reception of EIP_OBJECT_FWD_OPEN_FWD_RES and checking parameters and
initializing corresponding resources, the protocol stack sends the indication
EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND to give feedback to the host application whether the connection
could be established or not.

For an overview of the possible packet sequences, see this figure.

Indication packet description

Variable Type Value/Range Description
ulLen uint32_t 18 Packet data length in bytes

ulSta uint32_t 0 Status not in use for indication.

ulCmd uint32_t 0x1A4C EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND

tData (EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_IND_T)

usCmInstance uint16_t 0 - 64 Connection Manager Instance.
Value 0 is not a valid instance number. It will be present if the
connection was not established (ulGRC != 0).

usConnSerialNum uint16_t 0 - 255 Connection serial number

usVendorId uint16_t Originator Vendor ID

ulOSerialNum uint32_t Originator serial number

ulGRC uint32_t General Error Code, see Table CIP Generic Status Codes
Definitions (Variable ulGRC)

ulERC uint32_t Extended Error Code

Table 126. EIP_OBJECT_PACKET_FWD_OPEN_FWD_COMPLETION_IND_T – Forward_Open Completion indication

For more information on the parameters usConnSerialNum, usVendorId and ulOSerialNum, see section
EIP_OBJECT_CONNECTION_IND.

Response packet description

Variable Type Value/Range Description
ulDest uint32_t Destination. Use value from indication

ulLen uint32_t 0 EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_RES_SIZE - Packet
data length in bytes

ulSta uint32_t 0 Status not in use for response.

ulCmd uint32_t 0x1A4D EIP_OBJECT_FWD_OPEN_FWD_COMPLETION_RES

Table 127. EIP_OBJECT_PACKET_FWD_OPEN_FWD_COMPLETION_RES_T – Response of Forward_Open Completion indication

Chapter 4 Application interface 118 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

4.2.12 Forward_Close indication

NOTE To enable this functionality, set the Parameter flag EIP_OBJECT_PRM_FWRD_OPEN_CLOSE_FORWARDING
using command EIP_OBJECT_SET_PARAMETER_REQ.

The indication EIP_OBJECT_FWD_CLOSE_FWD_IND indicates reception of a Forward_Close request on the network.
The protocol stack forwards the Forward_Close request without doing any processing on it. Only the parameters
“Connection Serial Number”, “Originator Vendor ID” and “Originator Serial number” will be checked in advance. The host
application now has the possibility to check/modify parameters within the Forward_Close request data. The host
application also has the possibility to reject the Forward_Close request right away by setting the corresponding status
field in the EIP_OBJECT_FWD_CLOSE_FWD_RES packet.

When the protocol stack receives the host application’s response, EIP_OBJECT_FWD_CLOSE_FWD_RES, it will validate and
process the Forward Close just as if it came directly from the network. For an overview of the possible packet sequences,
see following figure.

Chapter 4 Application interface 119 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Figure 17. Packet sequence for Forward_Close forwarding functionality

Chapter 4 Application interface 120 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Indication packet description

Variable Type Value/Range Description
ulDest uint32_t 0x20 Destination

ulLen uint32_t 24 + n EIP_OBJECT_FWD_CLOSE_FWD_IND_SIZE + n - Packet data length

in bytes
n: Length of connection path (abConnPath) in bytes

ulSta uint32_t 0 Status not in use for indication.

ulCmd uint32_t 0x1A4E EIP_OBJECT_FWD_CLOSE_FWD_IND

tData (EIP_OBJECT_FWD_CLOSE_FWD_IND_T)

ulRouteMsg uint32_t Pointer to remember underlying Encapsulation request
(must not be modified by app)

aulReserved[2] uint32_t Place holder to be filled by response parameters, see
EIP_OBJECT_FWD_CLOSE_FWD_RES_T

tFwdCloseData EIP_CM_APP_
FWCLOSE_IN
D_T

Forward Close data (See Table EIP_CM_APP_FWCLOSE_IND_T
- Forward_Close request data)

Table 128. EIP_OBJECT_PACKET_FWD_CLOSE_FWD_IND_T – Forward_Close request indication

Variable Type Description
bPriority uint8_t Used to calculate request timeout information

bTimeOutTicks uint8_t Used to calculate request timeout information

usConnSerialNum uint16_t Connection serial number

usVendorId uint16_t Originator Vendor ID

ulOSerialNum uint32_t Originator serial number

bConnPathSize uint8_t Connection path size in 16 bit words

bReserved1 uint8_t Reserved

abConnPath[] uint8_t Connection path

Table 129. EIP_CM_APP_FWCLOSE_IND_T - Forward_Close request data

Response packet description

Variable Type Value/Range Description
ulDest uint32_t Destination. Use value from indication

ulLen uint32_t 24 + n EIP_OBJECT_FWD_CLOSE_FWD_RES_SIZE + n - Packet data length

in bytes
n: Length of connection path (abConnPath) in bytes

ulSta uint32_t 0 Status not used for response

ulCmd uint32_t 0x1A4F EIP_OBJECT_FWD_CLOSE_FWD_RES

Data (EIP_OBJECT_FWD_CLOSE_FWD_RES_T)

ulRouteMsg uint32_t Pointer to underlying Encapsulation request

ulGRC uint32_t General Error Code, see Table CIP Generic Status Codes
Definitions (Variable ulGRC).

ulERC uint32_t Extended Error Code

tFwdCloseData EIP_CM_APP_
FWCLOSE_IN
D_T

Forward Close data (See Table EIP_CM_APP_FWCLOSE_IND_T
- Forward_Close request data)

Table 130. EIP_OBJECT_PACKET_FWD_CLOSE_FWD_RES_T – Response of Forward_Close indication

Chapter 4 Application interface 121 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

4.2.13 Store Remanent Data indication

In case the application is responsible to store remanent data (section Remanent data), the application must handle this
service. For a description of this service and the indication and response packet, see reference [9].

Value for ulComponentID

#define HIL_COMPONENT_ID_EIP_APS ((uint32_t)0x00590000L)

Chapter 4 Application interface 122 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

4.3 Additional services requested by the application

In this section, we describe the following set of additional services that the host application can use:

Packet Command code (REQ/CNF or
IND/RES)

EIP_APS_GET_MS_NS_REQ 0x0000360E

HIL_SET_WATCHDOG_TIME_REQ 0x00002F04

HIL_GET_WATCHDOG_TIME_REQ 0x00002F02

HIL_GET_DPM_IO_INFO_REQ 0x00002F0C

HIL_UNREGISTER_APP_REQ 0x00002F12

HIL_DELETE_CONFIG_REQ 0x00002F14

HIL_LOCK_UNLOCK_CONFIG_REQ 0x00002F32

HIL_FIRMWARE_IDENTIFY_REQ 0x00001EB6

GENAP_GET_COMPONENT_IDS_REQ 0x0000AD00

HIL_SET_REMANENT_DATA_REQ 0x00002F8C

HIL_SET_TRIGGER_TYPE_REQ 0x00002F90

HIL_GET_TRIGGER_TYPE_REQ 0x00002F92

EIP_OBJECT_FORCE_LED_STATE_REQ 0x00001A40

EIP_OBJECT_ENABLE_ATTRIBUTE_REQ 0x00001A10

EIP_OBJECT_SET_ATTRIBUTE_PERMISSION_REQ 0x00001A12

EIP_OBJECT_ENABLE_ATTRIBUTE_NOTIFICATION_REQ 0x00001A14

EIP_OBJECT_ENABLE_DISABLE_ATTRIBUTE_PROTECTION_REQ 0x00001A16

Table 131. Overview: Additional services of the EtherNet/IP Adapter

Chapter 4 Application interface 123 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

4.3.1 Get Module Status/ Network Status

The host application sends EIP_APS_GET_MS_NS_REQ to retrieve the current Module and Network Status of the netX
device.

Table Possible values of the module status lists all possible values of the Module Status (Parameter ulModuleStatus of the
confirmation packet) and their meaning.

Table Possible values of the network status lists all possible values of the Network Status (Parameter ulNetworkStatus of
the confirmation packet) and their meaning.

Request packet description

Variable Type Value/Range Description
ulDest uint32_t 0x20 Destination

ulLen uint32_t 0 Packet data length in bytes

ulSta uint32_t 0 -

ulCmd uint32_t 0x360E EIP_APS_GET_MS_NS_REQ

Table 132. EIP_APS_PACKET_GET_MS_NS_REQ_T – Get Module Status/ Network Status Request

Confirmation packet description

Variable Type Value/Range Description
ulLen uint32_t EIP_APS_GET_

MS_NS_CNF_
SIZE

Packet data length in bytes

ulSta uint32_t See section Status/error codes

ulCmd uint32_t 0x360F EIP_APS_GET_MS_NS_CNF

tData (EIP_APS_GET_MS_NS_CNF_T)

ulModuleStatus uint32_t 0..5 Module Status
The module status describes the current state of the

corresponding MS-LED (if it is connected).
See Table Possible values of the module status for more
information.

ulNetworkStatus uint32_t 0..5 Network Status
The network status describes the current state of the

corresponding NS-LED (if it is connected).
See Table Possible values of the network status for more
information.

Table 133. EIP_APS_PACKET_GET_MS_NS_CNF_T – Confirmation of Get Module Status / Network Status request

Chapter 4 Application interface 124 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

4.3.2 Set Watchdog Time

The host application sends HIL_SET_WATCHDOG_TIME_REQ to set the interval of the watchdog timer, in units of
milliseconds.

This is a generic packet, which is not specific to the EtherNet/IP protocol stack. Therefore, this document does not cover
this packet. For details, refer to reference [9].

4.3.3 Get Watchdog Time

The host application sends HIL_GET_WATCHDOG_TIME_REQ to retrieve the currently configured interval of the
watchdog timer, in units of milliseconds.

This is a generic packet, which is not specific to the EtherNet/IP protocol stack. Therefore, this document does not cover
this packet. For details, refer to reference [10].

4.3.4 Get DPM I/O Information

The host application sends HIL_GET_DPM_IO_INFO_REQ to obtain the offsets and lengths of the areas used within the
DPM I/O blocks.

This is a generic packet, which is not specific to the EtherNet/IP protocol stack. Therefore, this document does not cover
this packet. For details, refer to reference [9].

4.3.5 Delete Configuration

The host application sends HIL_DELETE_CONFIG_REQ to delete the internally stored configuration from RAM or
FLASH. For the EtherNet/IP stack, this will remove all stored remanent data. Database files on the filesystem are not
deleted.

This is a generic packet, which is not specific to the EtherNet/IP protocol stack. Therefore, this document does not cover
this packet. For details, refer to reference [9].

NOTE In case the host application stores remanent data, the sending of HIL_DELETE_CONFIG_REQ
generates the indication packet HIL_STORE_REMANENT_DATA_IND. In this case, the
HIL_DELETE_CONFIG_REQ will not be confirmed until that indication is replied to by the host
application.

4.3.6 Lock/Unlock Configuration

The host application sends HIL_LOCK_UNLOCK_CONFIG_REQ to lock or unlock configuration data, respectively. A
locked configuration cannot be altered.

This is a generic packet, which is not specific to the EtherNet/IP protocol stack. Therefore, this document does not cover
this packet. For details, refer to reference [9].

4.3.7 Get Firmware Identification

The host application sends HIL_FIRMWARE_IDENTIFY_REQ to retrieve version information of the protocol stack
firmware running on the netX, i.e. its name, version and date.

This is a generic packet, which is not specific to the EtherNet/IP protocol stack. Therefore, this document does not cover
this packet. For details, refer to reference [9].

4.3.8 Get Component Information

The host application sends GENAP_GET_COMPONENT_IDS_REQ to retrieve information of the EtherNet/IP protocol
stack, i.e. the component id, the remanent data size and version.

This is a generic packet, which is not specific to the EtherNet/IP protocol stack. Therefore, this document does not cover
this packet. For details, refer to reference [9].

Chapter 4 Application interface 125 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

4.3.9 Set Remanent Data request

In case the application is responsible to store remanent data (section Remanent data), the application must use this
service during startup to provide the remenent data to the firmware. For a description of this service and the indication
and respone packet, see reference [9]. For a state diagram, see section Host application behavior.

Value for ulComponentID

#define HIL_COMPONENT_ID_EIP_APS ((uint32_t)0x00590000L)

4.3.10 Set Trigger Type

The host application sends packet HIL_SET_TRIGGER_TYPE_REQ to the stack to configure the data exchange trigger
mode for the IO handshakes and Sync handshake.

The trigger mode defines the network-specific event for the protocol stack to finish the synchronization of the
provider/consumer data update cycle or a pending synchronization request.

Consumer data (DPM input)

The protocol stack finishes the consumer data update cycle:

■ Instantly (best-effort) in free-run mode: HIL_TRIGGER_TYPE_*_NONE

■ In case eligible new input data is received: HIL_TRIGGER_TYPE_*_RX_DATA_RECEIVED

Provider data (DPM output)

The protocol stack finishes the provider data update cycle:

■ Instantly (best-effort) in free-run mode: HIL_TRIGGER_TYPE_*_NONE

Synchronization

The protocol stack finishes the synchronization cycle:

■ When a certain point in time is reached: HIL_TRIGGER_TYPE_*_TIMED_ACTIVATION

All trigger modes are functionally independent and can be used individually or combined. We recommend using a time-
triggered or an event-triggered interface design, but not a combination of both.

The default trigger modes is free-run mode for consumer and provider data and disabled for the synchronization trigger
mode.

Note that HIL_TRIGGER_TYPE_*_RX_DATA_RECEIVED is not meant to implement bus-cycle synchronous operation, but to
provide input data with lower latency and application overhead (due to true event-based operation instead of polling).

For a more specific description of the handshake modes supported by the EtherNet/IP stack, see section Handshake
modes.

Notes

■ In case the protocol stack is configured with a trigger mode unequal to free-run, it is protocol-stack-specific at which
point of time the synchronization or provider/consumer data update is finished. E.g. the protocol stack will wait for a
network connection to be established.

■ If supported, the protocol stack accepts the service in bus off mode. It is protocol-stack-specific if the service is
accepted in bus on mode.

■ On channel initialization, the protocol stack keeps the previously configured trigger mode until active change or device
reset.

■ The protocol stack monitors (for the configured data exchange mode) whether the host application handles the
handshake as expected. Every time an error symptom occurs, the respective handshake error counter is incremented.
The error counter counts up to the maximal possible value and saturates.

■ In case the trigger mode is configured in default mode, the handshake error counters are set to 0 and do not count.
■ The protocol stack resets the handshake error counter to the initial value (zero) after each channel init.

The application uses this request packet to modify the trigger mode of the protocol stack.

Chapter 4 Application interface 126 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Request packet description

Variable Type Value/Range Description
ulDest uint32_t 0x00000020 HIL_PACKET_DEST_DEFAULT_CHANNEL

ulLen uint32_t 6 Packet data length in bytes

ulCmd uint32_t 0x00002F90 HIL_SET_TRIGGER_TYPE_REQ

tData (HIL_SET_TRIGGER_TYPE_REQ_DATA_T)

usPdInHskTriggerType uint16_t 0x0010, 0x0011 The Input Handshake Trigger mode to be used.

usPdOutHskTriggerType uint16_t 0x0010 The Output Handshake Trigger mode to be used.

usSyncHskTriggerType uint16_t 0x0010, 0x0014 The Sync Handshake Trigger mode to be used.

Table 134. HIL_SET_TRIGGER_TYPE_REQ_T – Set Trigger Type request

The protocol stack will respond to the request with the following confirmation.

Confirmation packet description

Variable Type Value/Range Description
ulLen uint32_t 0 Packet data length in bytes

ulSta uint32_t See section Status/error codes

ulCmd uint32_t 0x00002F91 HIL_SET_TRIGGER_TYPE_CNF

Table 135. HIL_SET_TRIGGER_TYPE_CNF_T – Set Trigger Type confirmation

Chapter 4 Application interface 127 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

4.3.11 Get Trigger type

The application can use this service to read the handshake trigger type currently configured in the protocol stack.

To do so, the host application sends the HIL_GET_TRIGGER_TYPE_REQ packet to retrieve

■ the trigger mode (handshake behavior) for IO handshake and Sync handshake
■ the fastest allowed DPM update time

of the protocol stack related to a specific DPM Communication Channel.

The protocol stack will respond to the request with the HIL_GET_TRIGGER_TYPE_CNF confirmation. The following table
explains the variables returned within the confirmation packet.

Variable Remarks

usPdInHskTriggerType Input process data trigger type.
Value is a type of HIL_TRIGGER_TYPE_PDIN_*. HIL_TRIGGER_TYPE_PDIN_NONE (0x0010) means

no input data synchronization (free-run)
HIL_TRIGGER_TYPE_PDIN_RX_DATA_RECEIVED (0x0011) means input data will be updated when
new data is received. (bus cycle synchronous)

usPdOutHskTriggerType Output process data trigger type.

Value is a type of HIL_TRIGGER_TYPE_PDOUT_*.
HIL_TRIGGER_TYPE_PDIN_NONE (0x0010) means no output data synchronization (free-run)

usSyncHskTriggerType Synchronization trigger type

Value is a type of HIL_TRIGGER_TYPE_SYNC_*.

HIL_TRIGGER_TYPE_PDIN_NONE (0x0010) means no sync signal generation (free-run)
HIL_TRIGGER_TYPE_SYNC_TIMED_ACTIVATION (0x0014) means generate Sync event when data
shall be applied

usMinFreeRunUpdateInterval Minimal provide/consumer data update interval in free-run mode.
In free-run mode, the application has to ensure to request provider/consumer data updates not

faster (i.e. more frequently) than this interval.
The value is specified in units of microseconds, the default value is 500 μs, values between 0
and 31 are not valid.

Request packet description

Variable Type Value/Range Description
ulDest uint32_t 0x00000020 HIL_PACKET_DEST_DEFAULT_CHANNEL

ulLen uint32_t 0 Packet data length in bytes

ulSta uint32_t 0 See section Status/error codes

ulCmd uint32_t 0x00002F92 HIL_GET_TRIGGER_TYPE_REQ

Table 136. HIL_GET_TRIGGER_TYPE_REQ_T – Get Trigger Type request

Confirmation packet description

Variable Type Value/Range Description
ulLen uint32_t 8 Packet data length in bytes

ulSta uint32_t See section Status/error codes

ulCmd uint32_t 0x00002F93 HIL_GET_TRIGGER_TYPE_CNF

tData (HIL_GET_TRIGGER_TYPE_CNF_DATA_T)

usPdInHskTriggerType uint16_t 0x0010, 0x0011 The Input Handshake Trigger mode currently used.

usPdOutHskTriggerType uint16_t 0x0010 The Output Handshake Trigger mode currently used.

usSyncHskTriggerType uint16_t 0x0010, 0x0014 The Sync Handshake Trigger mode currently used.

usMinFreeRunUpdateInterval uint16_t >=32 The fastest possible update time in case FreeRun mode is active
(in microseconds).

Table 137. HIL_GET_TRIGGER_TYPE_CNF_T – Get Trigger Type confirmation

Chapter 4 Application interface 128 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

4.3.12 Force LED State service

The host application can send the EIP_OBJECT_FORCE_LED_STATE_REQ packet to force the COM0 (CIP Module
Status) and/or COM1 (CIP Network Status) LEDs to a specific state.

NOTE If this service is used the protocol stack no longer can control the Module and Network Status LEDs.
Thus, the host application additionally must disable the “Flash LED” service of the Identity object which

will not be functional while the LEDs are forced.
This host application can enable/disable this service by using the packet
EIP_OBJECT_SET_PARAMETER_REQ with flag EIP_OBJECT_PRM_DISABLE_FLASH_LEDS_SERVICE
(see EIP_OBJECT_SET_PARAMETER_REQ).

Request packet description

Variable Type Value/Range Description
ulDest uint32_t 0x20 Destination

ulLen uint32_t 8 Packet data length in bytes

ulSta uint32_t 0 See section Status/error codes

ulCmd uint32_t 0x1A40 EIP_OBJECT_FORCE_LED_STATE_REQ

tData (EIP_OBJECT_FORCE_LED_STATE_REQ_T)

ulLedType uint32_t 0 - 1 Defines the LED that is affected

0: CIP_LED_TYPE_MODULE_STATUS, Module Status LED (COM0)
1: CIP_LED_TYPE_NETWORK_STATUS, Network Status LED (COM1)

ulLedState uint32_t 0 - 7 0: CIP_LED_STATE_NO_FORCING
stack will derive the LED state from the current device state

(disable previous forcing of selected LED)

1: CIP_LED_STATE_FORCE_OFF, force selected LED off

2: CIP_LED_STATE_FORCE_RED, force selected LED red

3: CIP_LED_STATE_FORCE_GREEN, force selected LED green
4: CIP_LED_STATE_FORCE_RED_FLASH_1HZ, force selected LED

red flashing with 1Hz interval
5: CIP_LED_STATE_FORCE_GREEN_FLASH_1HZ, force selected LED

green flashing 1Hz interval
6: CIP_LED_STATE_FORCE_RED_GREEN_FLASH_1HZ, force selected

LED red-green flashing with 1Hz (new for CIPSafety)
7: CIP_LED_STATE_FORCE_RED_GREEN_FLASH_2HZ, force selected
LED red-green flashing with 2Hz (new for CIPSafety)

Table 138. EIP_OBJECT_PACKET_FORCE_LED_STATE_REQ_T – Force LED State request

Confirmation packet description

Variable Type Value/Range Description
ulLen uint32_t 0 Packet data length in bytes

ulSta uint32_t See section Status/error codes

ulCmd uint32_t 0x1A41 EIP_OBJECT_FORCE_LED_STATE_CNF

Table 139. EIP_OBJECT_PACKET_FORCE_LED_STATE_CNF_T – Confirmation to Force LED State request

Chapter 4 Application interface 129 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

4.3.13 Enable Attribute service

Per default, certain attributes of particular built-in CIP objects are disabled and appear as if they are not implemented to
both external CIP clients and the host application. However, the host application can enable these attributes at any time,
typically during configuration of the EtherNet/IP stack. After a reset or power cycle, the attributes return to their default,
i.e. disabled state. Explicitly disabling an attribute is not possible.

See section Available object classes to find out which attributes can be enabled.

The host application sends the following command to enable one of these attributes.

Request packet description

Variable Type Value/Range Description
ulDest uint32_t 0x20 Destination

ulLen uint32_t 12 Packet data length in bytes

ulSta uint32_t 0 See section Status/error codes

ulCmd uint32_t 0x1A10 EIP_OBJECT_ENABLE_ATTRIBUTE_REQ

tData (EIP_OBJECT_ENABLE_ATTRIBUTE_REQ_T)

ulClass uint32_t Class ID of the disabled attribute which shall be enabled

ulInstance uint32_t Instance ID of the disabled attribute which shall be enabled

ulAttribute uint32_t Attribute ID of the disabled attribute which shall be enabled

Table 140. EIP_OBJECT_PACKET_ENABLE_ATTRIBUTE_REQ_T – Enable attribute

Confirmation packet description

Variable Type Value/Range Description
ulLen uint32_t 1 Packet data length in bytes

ulSta uint32_t See section Status/error codes

ulCmd uint32_t 0x1A11 EIP_OBJECT_ENABLE_ATTRIBUTE_CNF

tData (EIP_OBJECT_ENABLE_ATTRIBUTE_CNF_T)

bGrc uint8_t CIP status code

Table 141. EIP_OBJECT_PACKET_ENABLE_ATTRIBUTE_CNF_T – Enable attribute confirmation

Chapter 4 Application interface 130 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

4.3.14 Set Attribute Permission service

Per default, some attributes of built-in CIP objects can be fully accessed only from the host application, but accessing
them from the CIP network may be restricted to either get-access, i.e. read-only access, or to no access permission at all.

The host application can however grant the CIP network additional access rights or revoke (default) access rights for
particular attributes by means of the following service.

Request packet description

Variable Type Value/Range Description
ulDest uint32_t 0x20 Destination

ulLen uint32_t 14 Packet data length in bytes

ulSta uint32_t 0 See section Status/error codes

ulCmd uint32_t 0x1A12 EIP_OBJECT_SET_ATTRIBUTE_PERMISSION_REQ

tData (EIP_OBJECT_SET_ATTRIBUTE_PERMISSION_REQ_T)

ulClass uint32_t Class ID of the attribute whose permission shall be modified

ulInstance uint32_t Instance ID of the attribute whose permission shall be modified

ulAttribute uint32_t Attribute ID of the attribute whose permission shall be modified

fAllowBusSetAccess uint8_t Grant the CIP network set access for the addressed attribute

fAllowBusGetAccess uint8_t Grant the CIP network get access for the addressed attribute

Table 142. EIP_OBJECT_PACKET_SET_ATTRIBUTE_PERMISSION_REQ_T – Set attribute permission

Confirmation packet description

Variable Type Value/Range Description
ulLen uint32_t 1 Packet data length in bytes

ulSta uint32_t See section Status/error codes

ulCmd uint32_t 0x1A13 EIP_OBJECT_SET_ATTRIBUTE_PERMISSION_CNF

tData (EIP_OBJECT_SET_ATTRIBUTE_PERMISSION_CNF_T)

bGrc uint8_t CIP status code

Table 143. EIP_OBJECT_PACKET_SET_ATTRIBUTE_PERMISSION_CNF_T – Set attribute permission confirmation

Chapter 4 Application interface 131 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

4.3.15 Enable Attribute Notification service

The attribute notification mechanism will cause the protocol stack to generate an indication packet
EIP_OBJECT_CIP_OBJECT_CHANGE_IND to the host application with each attribute change for a defined set of CIP
object attributes. If a particular attribute is flagged for notification, each modification of its value due to CIP network
access will present such an indication packet to the host application, so that it can either verify and reject the new
attribute value or at least take notice of the changed value, depending on the semantics of the particular attribute (inform
vs. propose semantics).

Currently, the following attributes are subject to notification:

1. All attributes that are remanently stored as listed in section Remanent data content.
2. All attributes which have been enabled for notification by the host application by means of this service.

There is no means to explicitly disable attribute notifications once enabled except for resetting the protocol stack.
Subsequent to this command, changes of the addressed attribute will be notified by means of
EIP_OBJECT_CIP_OBJECT_CHANGE_IND.

Request packet description

Variable Type Value/Range Description
ulDest uint32_t 0x20 Destination

ulLen uint32_t 12 Packet data length in bytes

ulSta uint32_t 0 See section Status/error codes

ulCmd uint32_t 0x1A14 EIP_OBJECT_ENABLE_ATTRIBUTE_NOTIFICATION_REQ

tData (EIP_OBJECT_ENABLE_ATTRIBUTE_NOTIFICATION_REQ_T)

ulClass uint32_t Class ID of the attribute for which to enable notification

ulInstance uint32_t Instance ID of the attribute for which to enable notification

ulAttribute uint32_t Attribute ID of the attribute for which to enable notification

Table 144. EIP_OBJECT_PACKET_ENABLE_ATTRIBUTE_NOTIFICATION_REQ_T – Enable attribute notification

Confirmation packet description

Variable Type Value/Range Description
ulLen uint32_t 1 Packet data length in bytes

ulSta uint32_t See section Status/error codes

ulCmd uint32_t 0x1A15 EIP_OBJECT_ENABLE_ATTRIBUTE_NOTIFICATION_CNF

tData (EIP_OBJECT_ENABLE_ATTRIBUTE_NOTIFICATION_CNF_T)

bGrc uint8_t CIP status code

Table 145. EIP_OBJECT_PACKET_ENABLE_ATTRIBUTE_NOTIFICATION_CNF_T– Enable attribute notification confirmation

Chapter 4 Application interface 132 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

4.3.16 Enable/Disable Attribute Protection service

As described in section CIP device protection, the default protection policy comprises a certain set of attributes. This set
can be modified by enabling attribute protection for further attributes. Also, attributes can dynamically be removed from
the protection policy. Therefore, the host application sends the following service.

Request packet description

Variable Type Value/Range Description
ulDest uint32_t 0x20 Destination

ulLen uint32_t 13 Packet data length in bytes

ulSta uint32_t 0 See section Status/error codes

ulCmd uint32_t 0x1A16 EIP_OBJECT_ENABLE_DISABLE_ATTRIBUTE_PROTECTION_R
EQ

tData (EIP_OBJECT_ENABLE_DISABLE_ATTRIBUTE_PROTECTION_REQ_T)

ulClass uint32_t Class ID of the attribute for which to enable/disable protection

ulInstance uint32_t Instance ID of the attribute for which to enable/disable protection

ulAttribute uint32_t Attribute ID of the attribute for which to enable/disable protection

fProtected uint8_t Set attribute protected/unprotected

Table 146. EIP_OBJECT_PACKET_ENABLE_DISABLE_ATTRIBUTE_PROTECTION_REQ_T – Enable/Disable attribute protection

Confirmation packet description

Variable Type Value/Range Description
ulLen uint32_t 1 Packet data length in bytes

ulSta uint32_t See section Status/error codes

ulCmd uint32_t 0x1A17 EIP_OBJECT_ENABLE_DISABLE_ATTRIBUTE_PROTECTION_CNF

tData (EIP_OBJECT_ENABLE_DISABLE_ATTRIBUTE_PROTECTION_CNF_T)

bGrc uint8_t CIP status code

Table 147. EIP_OBJECT_PACKET_ENABLE_DISABLE_ATTRIBUTE_PROTECTION_CNF_T – Enable/Disable attribute protection confirmation

Chapter 4 Application interface 133 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Chapter 5 Resource and feature configuration via tag list
Modification of the firmware’s taglist allows controlling of certain behavior, features and resource limits. The Hilscher Tag
List Editor software should be used for modifiying the firmware’s taglist.

Please find the supported firmware tags in the corresponding firmware datasheet [11].

Chapter 5 Resource and feature configuration via tag list 134 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Chapter 6 Status/error codes

6.1 Stack-specific error codes

Hexadecimal Value Definition Description

0x00000000 SUCCESS_HIL_OK
Status ok

0xC01F0001 ERR_EIP_OBJECT_COMMAND_INVALID
Invalid command received.

0xC01F0002 ERR_EIP_OBJECT_OUT_OF_MEMORY
System is out of memory

0xC01F0003 ERR_EIP_OBJECT_OUT_OF_PACKETS
Task runs out of empty packets at the local packet pool

0xC01F0004 ERR_EIP_OBJECT_SEND_PACKET
Sending a packet failed

0xC01F0010 ERR_EIP_OBJECT_AS_ALLREADY_EXIST
Assembly instance already exists

0xC01F0011 ERR_EIP_OBJECT_AS_INVALID_INST
Invalid assembly instance

0xC01F0012 ERR_EIP_OBJECT_AS_INVALID_LEN
Invalid assembly length

0xC01F0020 ERR_EIP_OBJECT_CONN_OVERRUN
No free connection buffer available

0xC01F0021 ERR_EIP_OBJECT_INVALID_CLASS
Object class is invalid

0xC01F0022 ERR_EIP_OBJECT_SEGMENT_FAULT
Segment of the path is invalid

0xC01F0023 ERR_EIP_OBJECT_CLASS_ALLREADY_EXIST
Object class is already used

0xC01F0024 ERR_EIP_OBJECT_CONNECTION_FAIL
Connection failed.

0xC01F0025 ERR_EIP_OBJECT_CONNECTION_PARAM
Unknown format of connection parameter

0xC01F0026 ERR_EIP_OBJECT_UNKNOWN_CONNECTION
Invalid connection ID

0xC01F0027 ERR_EIP_OBJECT_NO_OBJ_RESSOURCE
No resource for creating a new class object available

0xC01F0028 ERR_EIP_OBJECT_ID_INVALID_PARAMETER
Invalid request parameter

0xC01F0029 ERR_EIP_OBJECT_CONNECTION_FAILED
General connection failure. For details, see General Error Code and Extended Error Code.

0xC01F0031 ERR_EIP_OBJECT_READONLY_INST
Access denied. Instance is read only

0xC01F0032 ERR_EIP_OBJECT_DPM_USED
DPM address is already used by another instance.

0xC01F0033 ERR_EIP_OBJECT_SET_OUTPUT_RUNNING
Set Output command is already running

0xC01F0034 ERR_EIP_OBJECT_TASK_RESETING
EtherNet/IP Object Task is running a reset.

0xC01F0035 ERR_EIP_OBJECT_SERVICE_ALLREADY_EXIST
Object Service already exists

Chapter 6 Status/error codes 135 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Hexadecimal Value Definition Description

0xC01F0036 ERR_EIP_OBJECT_DUPLICATE_SERVICE
The service is rejected by the application due to a duplicate sequence count.

0xC01F0037 ERR_EIP_TIMER_INVALID_HANDLE
Timer function is called with invalid timer handle.

0xC01F0038 ERR_EIP_INVALID_STACK_MODE
Setting the operation mode is called with an undefined mode value.

0xC01F0039 ERR_EIP_OUT_OF_ASSEMBLIES
No assembly instances free to open a connection.

0xC01F003A ERR_EIP_CALLBACK_REQUIERED
Function needs callback to provide result data.

0xC01F003B ERR_EIP_SERVICE_NOT_SUPPORTED
This service is at the actual configuration not supported.

0xC01F003C ERR_EIP_SERVICE_RUNNING
This service is running and cannot be started twice.

0xC01F003D EIP_ERR_CC_DATA_IMAGE_ERROR
The address of the data is not at the range of the data image.

0xC01F003E EIP_ERR_CC_UNKNOWN_FORMAT
The format of the data mapping is unknown.

0xC01F003F ERR_EIP_CONNECTION_POINT_CREATE
Creating the connection point failed.

Table 148. Status/Error Codes of EtherNet/IP objects

Chapter 6 Status/error codes 136 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Hexadecimal Value Definition Description

0xC0590001 ERR_EIP_APS_COMMAND_INVALID
Invalid command received.

0xC0590002 ERR_EIP_APS_PACKET_LENGTH_INVALID
Invalid packet length.

0xC0590003 ERR_EIP_APS_PACKET_PARAMETER_INVALID
Parameter of the packet are invalid.

0xC0590004 ERR_EIP_APS_TCP_CONFIG_FAIL
Configuration of TCP/IP failed.

0xC0590005 ERR_EIP_APS_CONNECTION_CLOSED
Existing connection is closed.

0xC0590006 ERR_EIP_APS_ALREADY_REGISTERED
An application is already registered.

0xC0590007 ERR_EIP_APS_ACCESS_FAIL
Command is not allowed.

0xC0590008 ERR_EIP_APS_STATE_FAIL
Command not allowed at this state.

0xC0590009 ERR_EIP_APS_IO_OFFSET_INVALID
Invalid offset for I/O data.

0xC059000A ERR_EIP_APS_FOLDER_NOT_FOUND
Folder for database not found.

0xC059000B ERR_EIP_APS_CONFIG_DBM_INVALID
Configuration database invalid.

0xC059000C ERR_EIP_APS_NO_CONFIG_DBM
Configuration database not found.

0xC059000D ERR_EIP_APS_NWID_DBM_INVALID
Network database invalid.

0xC059000E ERR_EIP_APS_NO_NWID_DBM
Network database not found.

0xC059000F ERR_EIP_APS_NO_DBM
No database found.

0xC0590010 ERR_EIP_APS_NO_MAC_ADDRESS_AVAILABLE
No MAC address available.

0xC0590011 ERR_EIP_APS_INVALID_FILESYSTEM
Access to file system failed.

0xC0590012 ERR_EIP_APS_NUM_AS_INSTANCE_EXCEEDS
Maximum number of assembly instances exceeds.

0xC0590013 ERR_EIP_APS_CONFIGBYDATABASE
Stack is already configured via database.

Table 149. Status/Error Codes of EtherNet/IP application task

Chapter 6 Status/error codes 137 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Hexadecimal Value Definition Description

0xC0950001 ERR_EIP_DLR_COMMAND_INVALID
Invalid command received.

0xC0950002 ERR_EIP_DLR_NOT_INITIALIZED
DLR task is not initialized.

0xC0950003 ERR_EIP_DLR_FNC_API_INVALID_HANDLE
Invalid DLR handle at API function call.

0xC0950004 ERR_EIP_DLR_INVALID_ATTRIBUTE
Invalid DLR object attribute.

0xC0950005 ERR_EIP_DLR_INVALID_PORT
Invalid port.

0xC0950006 ERR_EIP_DLR_LINK_DOWN
Port link is down.

0xC0950007 ERR_EIP_DLR_MAX_NUM_OF_TASK_INST_EXCEEDED
Maximum number of EthernetIP task instances exceeded.

0xC0950008 ERR_EIP_DLR_INVALID_TASK_INST
Invalid task instance.

0xC0950009 ERR_EIP_DLR_CALLBACK_NOT_REGISTERED
Callback function is not registered.

0xC095000A ERR_EIP_DLR_WRONG_DLR_STATE
Wrong DLR state.

0xC095000B ERR_EIP_DLR_NOT_CONFIGURED_AS_SUPERVISOR
Not configured as supervisor.

0xC095000C ERR_EIP_DLR_INVALID_CONFIG_PARAM
Configuration parameter is invalid.

0xC095000D ERR_EIP_DLR_NO_STARTUP_PARAM_AVAIL
No startup parameters available.

Table 150. Status/Error Codes of EtherNet/IP DLR task

Chapter 6 Status/error codes 138 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

6.2 General EtherNet/IP error codes

The following table contains the possible General Error Codes defined within the CIP specification [1], Appendix B.

General Status Code (specified
hexadecimally)

Status Name Description

00 Success The service has successfully been performed by the specified object.

01 Connection failure A connection-elated service failed. This happened at any location along
the connection path.

02 Resource unavailable Some resources which were required for the object to perform the
requested service were not available.

03 Invalid parameter value See status code 0x20, which is usually applied in this situation.

04 Path segment error A path segment error has been encountered. Evaluation of the supplied
path information failed.

05 Path destination
unknown

The path references an unknown object class, instance or structure
element causing the abort of path processing.

06 Partial transfer Only a part of the expected data could be transferred.

07 Connection lost The connection for messaging has been lost.

08 Service not supported The requested service has not been implemented or has not been
defined for this object class or instance.

09 Invalid attribute value Detection of invalid attribute data

0A Attribute list error An attribute in the Get_Attribute_List or Set_Attribute_List response has
a status not equal to 0.

0B Already in requested
mode/state

The object is already in the mode or state which has been requested by
the service

0C Object state conflict The object is not able to perform the requested service in the current
mode or state

0D Object already exists It has been tried to create an instance of an object which already exists.

0E Attribute not settable It has been tried to change a non-modifiable attribute.

0F Privilege violation A check of permissions or privileges failed.

10 Device state conflict The current mode or state of the device prevents the execution of the
requested service.

11 Reply data too large The data to be transmitted in the response buffer requires more space
than the size of the allocated response buffer

12 Fragmentation of a
primitive value

The service specified an operation that is going to fragment a primitive
data value, i.e. half a REAL data type.

13 Not enough data The service did not supply all required data to perform the specified
operation.

14 Attribute not supported An unsupported attribute has been specified in the request

15 Too much data More data than was expected were supplied by the service.

16 Object does not exist The specified object does not exist in the device.

17 Service fragmentation
sequence not in
progress

Fragmentation sequence for this service is not currently active for this
data.

18 No stored attribute
data

The attribute data of this object has not been saved prior to the
requested service.

19 Store operation failure The attribute data of this object could not be saved due to a failure
during the storage attempt.

1A Routing failure, request
packet too large

The service request packet was too large for transmission on a network
in the path to the destination. The routing device was forced to abort the
service.

1B Routing failure,
response packet too
large

The service response packet was too large for transmission on a network
in the path from the destination. The routing device was forced to abort
the service.

1C Missing attribute list
entry data

The service did not supply an attribute in a list of attributes that was
needed by the service to perform the requested behavior.

Chapter 6 Status/error codes 139 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

General Status Code (specified
hexadecimally)

Status Name Description

1D Invalid attribute value
list

The service returns the list of attributes containing status information for
invalid attributes.

1E Embedded service
error

An embedded service caused an error.

1F Vendor-specific error A vendor specific error has occurred. This error should only occur when
none of the other general error codes can correctly be applied.

20 Invalid parameter A parameter which was associated with the request was invalid. The
parameter does not meet the requirements of the CIP specification
and/or the requirements defined in the specification of an application
object.

21 Write-once value or
medium already written

An attempt was made to write to a write-once medium for the second
time, or to modify a value that cannot be changed after being established
once.

22 Invalid reply received An invalid reply is received. Possible causes can for instance be among
others a reply service code not matching the request service code or a
reply message shorter than the expectable minimum size.

23-24 Reserved Reserved for future extension of CIP standard

25 Key failure in path The key segment (i.e. the first segment in the path) does not match the
destination module. More information about which part of the key check
failed can be derived from the object specific status.

26 Path size Invalid Path cannot be routed to an object due to lacking information or too
much routing data have been included.

27 Unexpected attribute in
list

It has been attempted to set an attribute which may not be set in the
current situation.

28 Invalid member ID The Member ID specified in the request is not available within the
specified class/ instance or attribute

29 Member cannot be set A request to modify a member which cannot be modified has occurred

2A Group 2 only server
general failure

This DeviceNet-specific error cannot occur in EtherNet/IP

2B-CF Reserved Reserved for future extension of CIP standard

D0-FF Reserved for object
class and service errors

An object class specific error has occurred.

Table 151. General Error Codes according to CIP Standard

Chapter 6 Status/error codes 140 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Chapter 7 Appendix

7.1 Legal notes

Copyright

© Hilscher Gesellschaft für Systemautomation mbH

All rights reserved.

The images, photographs and texts in the accompanying materials (in the form of a user’s manual, operator’s manual,
Statement of Work document and all other document types, support texts, documentation, etc.) are protected by German
and international copyright and by international trade and protective provisions. Without the prior written consent, you do
not have permission to duplicate them either in full or in part using technical or mechanical methods (print, photocopy or
any other method), to edit them using electronic systems or to transfer them. You are not permitted to make changes to
copyright notices, markings, trademarks or ownership declarations. Illustrations are provided without taking the patent
situation into account. Any company names and product designations provided in this document may be brands or
trademarks by the corresponding owner and may be protected under trademark, brand or patent law. Any form of further
use shall require the express consent from the relevant owner of the rights.

Important notes

Utmost care was/is given in the preparation of the documentation at hand consisting of a user’s manual, operating manual
and any other document type and accompanying texts. However, errors cannot be ruled out. Therefore, we cannot
assume any guarantee or legal responsibility for erroneous information or liability of any kind. You are hereby made aware
that descriptions found in the user’s manual, the accompanying texts and the documentation neither represent a
guarantee nor any indication on proper use as stipulated in the agreement or a promised attribute. It cannot be ruled out
that the user’s manual, the accompanying texts and the documentation do not completely match the described attributes,
standards or any other data for the delivered product. A warranty or guarantee with respect to the correctness or
accuracy of the information is not assumed.

We reserve the right to modify our products and the specifications for such as well as the corresponding documentation
in the form of a user’s manual, operating manual and/or any other document types and accompanying texts at any time
and without notice without being required to notify of said modification. Changes shall be taken into account in future
manuals and do not represent an obligation of any kind, in particular there shall be no right to have delivered documents
revised. The manual delivered with the product shall apply.

Under no circumstances shall Hilscher Gesellschaft für Systemautomation mbH be liable for direct, indirect, ancillary or
subsequent damage, or for any loss of income, which may arise after use of the information contained herein.

Chapter 7 Appendix 141 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Liability disclaimer

The hardware and/or software was created and tested by Hilscher Gesellschaft für Systemautomation mbH with utmost
care and is made available as is. No warranty can be assumed for the performance or flawlessness of the hardware and/or
software under all application conditions and scenarios and the work results achieved by the user when using the
hardware and/or software. Liability for any damage that may have occurred as a result of using the hardware and/or
software or the corresponding documents shall be limited to an event involving willful intent or a grossly negligent
violation of a fundamental contractual obligation. However, the right to assert damages due to a violation of a fundamental
contractual obligation shall be limited to contract-typical foreseeable damage.

It is hereby expressly agreed upon in particular that any use or utilization of the hardware and/or software in connection
with

■ Flight control systems in aviation and aerospace;
■ Nuclear fission processes in nuclear power plants;
■ Medical devices used for life support and
■ Vehicle control systems used in passenger transport

shall be excluded. Use of the hardware and/or software in any of the following areas is strictly prohibited:

■ For military purposes or in weaponry;
■ For designing, engineering, maintaining or operating nuclear systems;
■ In flight safety systems, aviation and flight telecommunications systems;
■ In life-support systems;
■ In systems in which any malfunction in the hardware and/or software may result in physical injuries or fatalities.

You are hereby made aware that the hardware and/or software was not created for use in hazardous environments, which
require fail-safe control mechanisms. Use of the hardware and/or software in this kind of environment shall be at your own
risk; any liability for damage or loss due to impermissible use shall be excluded.

Chapter 7 Appendix 142 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Warranty

Hilscher Gesellschaft für Systemautomation mbH hereby guarantees that the software shall run without errors in
accordance with the requirements listed in the specifications and that there were no defects on the date of acceptance.
The warranty period shall be 12 months commencing as of the date of acceptance or purchase (with express declaration
or implied, by customer’s conclusive behavior, e.g. putting into operation permanently).

The warranty obligation for equipment (hardware) we produce is 36 months, calculated as of the date of delivery ex
works. The aforementioned provisions shall not apply if longer warranty periods are mandatory by law pursuant to Section
438 (1.2) BGB, Section 479 (1) BGB and Section 634a (1) BGB [Bürgerliches Gesetzbuch; German Civil Code] If, despite of
all due care taken, the delivered product should have a defect, which already existed at the time of the transfer of risk, it
shall be at our discretion to either repair the product or to deliver a replacement product, subject to timely notification of
defect.

The warranty obligation shall not apply if the notification of defect is not asserted promptly, if the purchaser or third party
has tampered with the products, if the defect is the result of natural wear, was caused by unfavorable operating
conditions or is due to violations against our operating regulations or against rules of good electrical engineering practice,
or if our request to return the defective object is not promptly complied with.

Costs of support, maintenance, customization and product care

Please be advised that any subsequent improvement shall only be free of charge if a defect is found. Any form of technical
support, maintenance and customization is not a warranty service, but instead shall be charged extra.

Additional guarantees

Although the hardware and software was developed and tested in-depth with greatest care, Hilscher Gesellschaft für
Systemautomation mbH shall not assume any guarantee for the suitability thereof for any purpose that was not confirmed
in writing. No guarantee can be granted whereby the hardware and software satisfies your requirements, or the use of the
hardware and/or software is uninterruptable or the hardware and/or software is fault-free.

It cannot be guaranteed that patents and/or ownership privileges have not been infringed upon or violated or that the
products are free from third-party influence. No additional guarantees or promises shall be made as to whether the
product is market current, free from deficiency in title, or can be integrated or is usable for specific purposes, unless such
guarantees or promises are required under existing law and cannot be restricted.

Chapter 7 Appendix 143 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

Confidentiality

The customer hereby expressly acknowledges that this document contains trade secrets, information protected by
copyright and other patent and ownership privileges as well as any related rights of Hilscher Gesellschaft für
Systemautomation mbH. The customer agrees to treat as confidential all of the information made available to customer by
Hilscher Gesellschaft für Systemautomation mbH and rights, which were disclosed by Hilscher Gesellschaft für
Systemautomation mbH and that were made accessible as well as the terms and conditions of this agreement itself.

The parties hereby agree to one another that the information that each party receives from the other party respectively is
and shall remain the intellectual property of said other party, unless provided for otherwise in a contractual agreement.

The customer must not allow any third party to become knowledgeable of this expertise and shall only provide knowledge
thereof to authorized users as appropriate and necessary. Companies associated with the customer shall not be deemed
third parties. The customer must obligate authorized users to confidentiality. The customer should only use the
confidential information in connection with the performances specified in this agreement.

The customer must not use this confidential information to his own advantage or for his own purposes or rather to the
advantage or for the purpose of a third party, nor must it be used for commercial purposes and this confidential
information must only be used to the extent provided for in this agreement or otherwise to the extent as expressly
authorized by the disclosing party in written form. The customer has the right, subject to the obligation to confidentiality,
to disclose the terms and conditions of this agreement directly to his legal and financial consultants as would be required
for the customer’s normal business operation.

Export provisions

The delivered product (including technical data) is subject to the legal export and/or import laws as well as any associated
regulations of various countries, especially such laws applicable in Germany and in the United States. The products /
hardware / software must not be exported into such countries for which export is prohibited under US American export
control laws and its supplementary provisions. You hereby agree to strictly follow the regulations and to yourself be
responsible for observing them. You are hereby made aware that you may be required to obtain governmental approval to
export, reexport or import the product.

Chapter 7 Appendix 144 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

7.2 Third party software license

lwIP IP stack

This software package uses the lwIP software for IP stack functionality. The following licensing conditions apply for this
component:

Copyright (c) 2001-2004 Swedish Institute of Computer Science.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

4. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

5. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

6. The name of the author may not be used to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Chapter 7 Appendix 145 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

7.3 Contacts

Headquarters

Germany
Hilscher Gesellschaft für Systemautomation mbH

Rheinstrasse 15

65795 Hattersheim

Phone: +49 (0) 6190 9907-0

Fax: +49 (0) 6190 9907-50

E-Mail: info@hilscher.com

Support
Phone: +49 (0) 6190 9907-99
E-Mail: de.support@hilscher.com

Subsidiaries

China
Hilscher Systemautomation (Shanghai) Co. Ltd.

200010 Shanghai

Phone: +86 (0) 21-6355-5161

E-Mail: info@hilscher.cn

Support
Phone: +86 (0) 21-6355-5161
E-Mail: cn.support@hilscher.com

Japan
Hilscher Japan KK

Tokyo, 160-0022

Phone: +81 (0) 3-5362-0521

E-Mail: info@hilscher.jp

Support
Phone: +81 (0) 3-5362-0521
E-Mail: jp.support@hilscher.com

France
Hilscher France S.a.r.l.

69800 Saint Priest

Phone: +33 (0) 4 72 37 98 40

E-Mail: info@hilscher.fr

Support
Phone: +33 (0) 4 72 37 98 40
E-Mail: fr.support@hilscher.com

Korea
Hilscher Korea Inc.

Seongnam, Gyeonggi, 463-400

Phone: +82 (0) 31-789-3715
E-Mail: info@hilscher.kr

India
Hilscher India Pvt. Ltd.

Pune, Delhi, Mumbai

Phone: +91 8888 750 777
E-Mail: info@hilscher.in

Switzerland
Hilscher Swiss GmbH

4500 Solothurn

Phone: +41 (0) 32 623 6633

E-Mail: info@hilscher.ch

Support
Phone: +49 (0) 6190 9907-99
E-Mail: ch.support@hilscher.com

Italy
Hilscher Italia S.r.l.

20090 Vimodrone (MI)

Phone: +39 02 25007068

E-Mail: info@hilscher.it

Support
Phone: +39 02 25007068
E-Mail: it.support@hilscher.com

USA
Hilscher North America, Inc.

Lisle, IL 60532

Phone: +1 630-505-5301

E-Mail: info@hilscher.us

Support
Phone: +1 630-505-5301
E-Mail: us.support@hilscher.com

Chapter 7 Appendix 146 / 146

Protocol API | EtherNet/IP Adapter
DOC150401APIV3.8.0.0EN | Revision V3.8.0.0 | English | Released | Public | 2023-02-24

www.hilscher.com
© Hilscher, 2014-2023

mailto:info@hilscher.com
mailto:de.support@hilscher.com
mailto:info@hilscher.cn
mailto:cn.support@hilscher.com
mailto:info@hilscher.jp
mailto:jp.support@hilscher.com
mailto:info@hilscher.fr
mailto:fr.support@hilscher.com
mailto:info@hilscher.kr
mailto:info@hilscher.in
mailto:info@hilscher.ch
mailto:ch.support@hilscher.com
mailto:info@hilscher.it
mailto:it.support@hilscher.com
mailto:info@hilscher.us
mailto:us.support@hilscher.com

	Protocol API: EtherNet/IP Adapter
	Table of Contents
	Chapter 1 Introduction
	1.1 About this document
	1.2 System requirements
	1.3 Target group
	1.4 Specifications
	1.5 Terms, abbreviations and definitions
	1.6 Input and output data conventions
	1.7 References to documents

	Chapter 2 Hilscher EtherNet/IP stack capabilities
	2.1 Loadable Firmware (LFW)
	2.2 Available object classes
	2.2.1 Introduction
	2.2.2 Class attributes
	2.2.3 Instance attributes
	2.2.4 Services
	2.2.5 Identity Object (class code: 0x01)
	2.2.5.1 Class attributes
	2.2.5.2 Instance attributes
	2.2.5.3 Common services

	2.2.6 Message Router Object (class code: 0x02)
	2.2.6.1 Class attributes
	2.2.6.2 Instance attributes
	2.2.6.3 Common services

	2.2.7 Assembly Object (class code: 0x04)
	2.2.7.1 Class attributes
	2.2.7.2 Instance attributes
	2.2.7.3 Common services

	2.2.8 Connection Manager Object (class code: 0x06)
	2.2.8.1 Class attributes
	2.2.8.2 Instance attributes
	2.2.8.3 Common services

	2.2.9 Time Sync Object (class code: 0x43)
	2.2.9.1 Class attributes
	2.2.9.2 Instance attributes
	2.2.9.3 Common services
	2.2.9.4 Instance attributes

	2.2.10 Device Level Ring Object (class code: 0x47)
	2.2.10.1 Class attributes
	2.2.10.2 Instance attributes
	2.2.10.3 Common services

	2.2.11 Quality of Service Object (class code: 0x48)
	2.2.11.1 Class attributes
	2.2.11.2 Instance attributes
	2.2.11.3 Common services

	2.2.12 TCP/IP Interface Object (class code: 0xF5)
	2.2.12.1 Class attributes
	2.2.12.2 Instance attributes
	2.2.12.3 Common services

	2.2.13 Ethernet Link Object (class code: 0xF6)
	2.2.13.1 Class attributes
	2.2.13.2 Instance attributes
	2.2.13.3 Common services
	2.2.13.4 Class-specific services

	2.2.14 LLDP Management Object (class code: 0x109)
	2.2.14.1 Class attributes
	2.2.14.2 Instance attributes
	2.2.14.3 Common services

	2.2.15 Predefined Connection Object (class code: 0x401)
	2.2.15.1 Class attributes
	2.2.15.2 Instance attributes
	2.2.15.3 Configuration - Attribute 3
	2.2.15.4 Common services
	2.2.15.5 Create (0x08)
	2.2.15.6 Delete (0x09)
	2.2.15.7 Supported Trigger Types

	2.2.16 Diagnosis Object (class code: 0x403)
	2.2.16.1 Class attributes
	2.2.16.2 Instance attributes
	2.2.16.3 Common services

	2.2.17 IO Mapping Object (class code: 0x402)
	2.2.17.1 Class attributes
	2.2.17.2 Instance attributes
	2.2.17.3 Common services

	2.3 Ethernet MAC address
	2.4 Device data
	2.4.1 Device serial number

	2.5 Status information
	2.5.1 DPM communication status
	2.5.2 DPM COS flags
	2.5.3 Other DPM status bits

	2.6 Module and network status
	2.6.1 Module status
	2.6.2 Network status

	2.7 Handshake modes
	2.7.1 Input handshake mode / output handshake mode
	2.7.2 Synchronization handshake mode
	2.7.3 Configuration

	2.8 Quality of Service
	2.8.1 Introduction
	2.8.2 DiffServ
	2.8.3 802.1D/Q Protocol
	2.8.4 The QoS Object
	2.8.4.1 Enable 802.1Q (VLAN tagging)

	2.9 Device Level Ring
	2.9.1 Ring supervisors
	2.9.2 Beacon and announce frames
	2.9.3 Ring nodes
	2.9.4 Normal network operation
	2.9.5 Rapid fault/restore cycles

	2.10 CIP device protection
	2.10.1 Introduction
	2.10.2 Protection modes
	2.10.3 Protection policy

	2.11 Module and Network Status LEDs
	2.12 DHCP/BOOTP Client
	2.12.1 DHCP Behavior
	2.12.2 DHCP Device Level Behavior
	2.12.3 Packet API
	2.12.4 DHCP Options

	2.13 QuickConnect

	Chapter 3 Getting started / configuration
	3.1 Configuration methods
	3.2 Host application behavior
	3.2.1 Startup
	3.2.2 Operational
	3.2.3 Configuration
	3.2.4 Reset

	3.3 Configuration using the packet API
	3.3.1 Basic configuration packet set
	3.3.1.1 Configuration packets
	3.3.1.2 Optional request packets
	3.3.1.3 Indication packets the host application has to handle
	3.3.1.4 Configuration sequence

	3.3.2 Extended configuration packet set
	3.3.2.1 Configuration packets
	3.3.2.2 Optional request packets
	3.3.2.3 Indication packets the host application has to handle
	3.3.2.4 Configuration sequence

	3.4 Configuraion using Sycon.net
	3.4.1 Configuration sequence

	3.5 Remanent data
	3.5.1 Remanent data purpose
	3.5.2 Remanent data responsibility
	3.5.3 Remanent data state
	3.5.4 Remanent data flow
	3.5.5 Remanent data content

	3.6 Bus State
	3.6.1 Purpose
	3.6.2 BusOn and BusOff States
	3.6.3 BusOn and Producing Assembly Run Status

	Chapter 4 Application interface
	4.1 Configuring the EtherNet/IP Adapter
	4.1.1 Set Configuration Parameters service
	4.1.2 Set Parameter Flags service
	4.1.3 Finish configuration of CIP objects
	4.1.4 Register an additional object class
	4.1.5 Register a new Assembly instance
	4.1.6 Register service
	4.1.7 Set Parameter
	4.1.8 CIP Service request
	4.1.9 Set Watchdog Time
	4.1.10 Register/Unregister Application
	4.1.11 Start/Stop Communication
	4.1.12 Channel Init

	4.2 Acyclic events indicated by the stack
	4.2.1 Application compliance
	4.2.2 Indication of a reset request from the network
	4.2.3 Connection State Change indication
	4.2.4 Configuration Assemblies
	4.2.5 NULL ForwardOpen
	4.2.5.1 Non-matching NULL ForwardOpen
	4.2.5.2 Matching NULL ForwardOpen

	4.2.6 Acyclic Data Transfer indication
	4.2.7 CIP Object Change indication
	4.2.7.1 Definition and purpose of parameter ulInfoFlags

	4.2.8 Link Status Change
	4.2.9 Module Network Status Change
	4.2.10 Forward_Open indication
	4.2.11 Forward_Open_Completion indication
	4.2.12 Forward_Close indication
	4.2.13 Store Remanent Data indication

	4.3 Additional services requested by the application
	4.3.1 Get Module Status/ Network Status
	4.3.2 Set Watchdog Time
	4.3.3 Get Watchdog Time
	4.3.4 Get DPM I/O Information
	4.3.5 Delete Configuration
	4.3.6 Lock/Unlock Configuration
	4.3.7 Get Firmware Identification
	4.3.8 Get Component Information
	4.3.9 Set Remanent Data request
	4.3.10 Set Trigger Type
	4.3.11 Get Trigger type
	4.3.12 Force LED State service
	4.3.13 Enable Attribute service
	4.3.14 Set Attribute Permission service
	4.3.15 Enable Attribute Notification service
	4.3.16 Enable/Disable Attribute Protection service

	Chapter 5 Resource and feature configuration via tag list
	Chapter 6 Status/error codes
	6.1 Stack-specific error codes
	6.2 General EtherNet/IP error codes

	Chapter 7 Appendix
	7.1 Legal notes
	7.2 Third party software license
	7.3 Contacts

