
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

User Manual 

netSCRIPT 
Programming Language for Serial Communication 

V1.3.x.x 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Hilscher Gesellschaft für Systemautomation mbH 
www.hilscher.com 

DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released 



Introduction 2/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

Table of Contents 

1 INTRODUCTION.........................................................................................................8 
1.1 About the User Manual ...............................................................................................8 

1.1.1 List of Revisions ...................................................................................................8 
1.1.2 Reference on netSCRIPT, Hardware, Software and Firmware ...........................9 
1.1.3 Conventions in this Manual ................................................................................10 

1.2 Legal Notes...............................................................................................................12 
1.2.1 Copyright ............................................................................................................12 
1.2.2 Important Notes ..................................................................................................12 
1.2.3 Exclusion of Liability ...........................................................................................13 
1.2.4 Warranty .............................................................................................................13 
1.2.5 Export Regulations .............................................................................................14 
1.2.6 Registered Trademarks......................................................................................14 

1.3 Licenses....................................................................................................................14 

2 DESCRIPTION AND REQUIREMENTS ...................................................................15 
2.1 Description................................................................................................................15 
2.2 System Preconditions ...............................................................................................15 

3 EDITOR FOR NETSCRIPT.......................................................................................16 
3.1 Invoke the Editor.......................................................................................................16 

3.1.1 Device Selection.................................................................................................16 
3.2 Program Editor..........................................................................................................18 

3.2.1 Script File Management .....................................................................................18 
3.2.2 Script File Editing................................................................................................19 

3.3 Configurable Variables (Parameters) .......................................................................21 
3.3.1 Definition of Configurable Variables (Variable Management) ............................21 
3.3.2 Structure of the XML File for Configurable Variables.........................................23 
3.3.3 Display of the Configurable netSCRIPT Variables.............................................29 

4 THE NETSCRIPT LANGUAGE.................................................................................30 
4.1 Syntax and Keywords ...............................................................................................32 

4.1.1 Comments ..........................................................................................................32 
4.1.2 Keywords............................................................................................................32 

4.2 Variables...................................................................................................................33 
4.2.1 Variable Names..................................................................................................33 
4.2.2 Assignments .......................................................................................................33 
4.2.3 Scope of Variables .............................................................................................34 
4.2.4 Types..................................................................................................................35 
4.2.5 Tables.................................................................................................................37 
4.2.6 Garbage Collector ..............................................................................................37 

4.3 Global System Variables ..........................................................................................38 
4.3.1 _G.......................................................................................................................38 



Introduction 3/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

4.3.2 _VERSION .........................................................................................................38 
4.3.3 _NETSCRIPT_VERSION...................................................................................38 
4.3.4 CYCLIC_FUNCTION..........................................................................................38 

4.4 Operations ................................................................................................................39 
4.4.1 Mathematic Operations ......................................................................................39 
4.4.2 Logic Operations ................................................................................................40 
4.4.3 Relational Operators ..........................................................................................40 
4.4.4 Control Structures...............................................................................................41 
4.4.5 Branch Statement if ...then.................................................................................42 

4.5 Functions ..................................................................................................................43 
4.5.1 Definition of a Function.......................................................................................43 
4.5.2 Function Calls.....................................................................................................44 

5 FUNCTIONS LIBRARY .............................................................................................45 
5.1 Base Functions .........................................................................................................45 

5.1.1 assert (v [, message]) .........................................................................................45 
5.1.2 collectgarbage (opt)............................................................................................45 
5.1.3 error (message [, level]) .....................................................................................45 
5.1.4 getfenv ([f]) .........................................................................................................46 
5.1.5 getmetatable (object)..........................................................................................46 
5.1.6 ipairs (t)...............................................................................................................46 
5.1.7 load (func [, blockname]) ....................................................................................46 
5.1.8 loadstring (string [, blockname]) .........................................................................47 
5.1.9 next (table, index) ...............................................................................................47 
5.1.10 pairs (t) ...............................................................................................................48 
5.1.11 pcall (f, arg1, ···)..................................................................................................48 
5.1.12 print (par1, par2, ···) ............................................................................................48 
5.1.13 rawequal (par1, par2) .........................................................................................48 
5.1.14 rawget (table, index)...........................................................................................49 
5.1.15 rawset (table, index, value) ................................................................................49 
5.1.16 select (index, par1, par2, par3, ···) ......................................................................50 
5.1.17 setfenv (f, table)..................................................................................................50 
5.1.18 setmetatable (table, metatable)..........................................................................51 
5.1.19 tonumber (e [, base]) ..........................................................................................53 
5.1.20 tostring (e) ..........................................................................................................53 
5.1.21 type (v)................................................................................................................53 
5.1.22 unpack (list [, i [, j]]).............................................................................................54 
5.1.23 xpcall (f, err)........................................................................................................54 

5.2 String Manipulation ...................................................................................................55 
5.2.1 string.byte (s [, i [, j]]) ..........................................................................................55 
5.2.2 string.char (...) ....................................................................................................55 
5.2.3 string.find (s, pattern [, init [, plain]]) ...................................................................55 
5.2.4 string.format (formatstring, ···) ............................................................................59 
5.2.5 string.gmatch (s, pattern) ...................................................................................62 
5.2.6 string.gsub (s, pattern, repl [, n]) ........................................................................63 
5.2.7 string.len (s)........................................................................................................64 
5.2.8 string.lower (s) ....................................................................................................64 
5.2.9 string.match (s, pattern [, init])............................................................................64 



Introduction 4/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

5.2.10 string.rep (s, n) ...................................................................................................65 
5.2.11 string.reverse (s).................................................................................................65 
5.2.12 string.sub (s, i [, j]) ..............................................................................................65 
5.2.13 string.upper (s) ...................................................................................................65 

5.3 Table Manipulation ...................................................................................................66 
5.3.1 table.concat (table [, sep [, i [, j]]]), .....................................................................66 
5.3.2 table.insert (table, [pos,] value) ..........................................................................66 
5.3.3 table.maxn (table)...............................................................................................66 
5.3.4 table.remove (table [, pos]).................................................................................66 
5.3.5 table.sort (table [, comp])....................................................................................67 

5.4 Mathematical Functions............................................................................................68 
5.4.1 math.abs (x)........................................................................................................68 
5.4.2 math.acos (x)......................................................................................................68 
5.4.3 math.asin (x).......................................................................................................68 
5.4.4 math.atan (x) ......................................................................................................68 
5.4.5 math.atan2 (y, x).................................................................................................68 
5.4.6 math.ceil (x) ........................................................................................................68 
5.4.7 math.cos (x)........................................................................................................68 
5.4.8 math.cosh (x)......................................................................................................68 
5.4.9 math.deg (x) .......................................................................................................68 
5.4.10 math.exp (x)........................................................................................................68 
5.4.11 math.floor (x) ......................................................................................................69 
5.4.12 math.fmod (x, y)..................................................................................................69 
5.4.13 math.frexp (x) .....................................................................................................69 
5.4.14 math.huge...........................................................................................................69 
5.4.15 math.ldexp (m, e)................................................................................................69 
5.4.16 math.log (x).........................................................................................................69 
5.4.17 math.log10 (x).....................................................................................................69 
5.4.18 math.max (x1, x2, ...,xn) .......................................................................................69 
5.4.19 math.modf (x) .....................................................................................................69 
5.4.20 math.pi................................................................................................................70 
5.4.21 math.pow (x, y) ...................................................................................................70 
5.4.22 math.rad (x) ........................................................................................................70 
5.4.23 math.sin (x).........................................................................................................70 
5.4.24 math.sinh (x).......................................................................................................70 
5.4.25 math.sqrt (x) .......................................................................................................70 
5.4.26 math.tan (x) ........................................................................................................70 
5.4.27 math.tanh (x) ......................................................................................................70 

6 SPECIAL FUNCTIONS FOR NETTAP......................................................................71 
6.1 Bit-Operations...........................................................................................................71 

6.1.1 bit.band...............................................................................................................71 
6.1.2 bit.bor..................................................................................................................71 
6.1.3 bit.bxor................................................................................................................71 
6.1.4 bit.bnot................................................................................................................72 
6.1.5 bit.lshift ...............................................................................................................72 
6.1.6 bit.rshift ...............................................................................................................72 

6.2 Conversions of Numbers ..........................................................................................73 



Introduction 5/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

6.2.1 util.NumToBin .....................................................................................................73 
6.2.2 util.BinToNum.....................................................................................................74 

6.3 LED – Control ...........................................................................................................75 
6.3.1 util.SetLed...........................................................................................................75 

6.4 Requesting the Cycle Time of the Script ..................................................................76 
6.4.1 util.GetCycleTime ...............................................................................................76 

6.5 CRC Checksum Functions .......................................................................................77 
6.5.1 Creation of Check Sum Object „HashCreate“ ....................................................77 
6.5.2 Functions for Check Sum Calculation ................................................................78 

7 SERIAL COMMUNICATION......................................................................................80 
7.1 Configuration Parameters for Data Transmission.....................................................80 

7.1.1 Functions for Initialization of the Serial Interface ...............................................82 
7.1.2 Example for Adjustment of Parameter Settings .................................................84 

8 SERIAL COMMUNICATION IN BLOCK MODE ........................................................85 
8.1 Block Processing without Identification Number.......................................................86 
8.2 Block Processing with Identification Number............................................................88 
8.3 Send / Receive Functions for the Block Mode..........................................................89 

8.3.1 :PortSend............................................................................................................89 
8.3.2 :PortReceive .......................................................................................................90 
8.3.3 :PortExchange....................................................................................................91 
8.3.4 :PortIsSendDone ................................................................................................92 
8.3.5 :PortIsReceiveDone............................................................................................93 
8.3.6 :PortIsExchangeDone ........................................................................................94 
8.3.7 :PortAbort ...........................................................................................................95 

9 SERIAL COMMUNICATION IN CHARACTER MODE ..............................................96 
9.1 Transmission- und Reception Functions ..................................................................97 

9.1.1 :PortGetChar ......................................................................................................97 
9.1.2 :PortPutChar.......................................................................................................98 

10 FUNCTIONS FOR THE COMMUNICATION WITH THE SUPERORDINATED I/O 
NETWORK................................................................................................................99 
10.1 Bus IO Communication – Start and End.................................................................100 

10.1.1 BusIOOpen.......................................................................................................100 
10.1.2 :BusIOClose .....................................................................................................101 

10.2 Read / Write Functions for Direct Mode..................................................................102 
10.2.1 :BusIOReadDirect() ..........................................................................................102 
10.2.2 :BusIOWriteDirect() ..........................................................................................103 

10.3 Data Header for Handshake Mode .........................................................................104 
10.4 Read/Write Functions for Handshake Mode...........................................................105 

10.4.1 :BusIORead......................................................................................................105 
10.4.2 :BusIOWrite ......................................................................................................105 

10.5 Reset Command in Handshake Mode....................................................................107 
10.5.1 :BusIOIsReset ..................................................................................................107 



Introduction 6/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

10.5.2 :BusIOResetDone.............................................................................................107 
10.6 Ready Signal to the Control Unit in Handshake Mode ...........................................108 

10.6.1 :BusIOSetRun...................................................................................................108 
10.7 Report an Error to the superordinated Control Unit in Handshake Mode ...............109 

10.7.1 :BusIOSetError()...............................................................................................109 
10.8 I/O Data Structure for the Transfer to and from the Control Unit in Handshake Mode

................................................................................................................................110 
10.8.1 Structure for Output - Data from the Control Unit to netSCRIPT .....................110 
10.8.2 Structure for Input - Data netSCRIPT to Control Unit ......................................110 

10.9 Handshake and Initialization of the I/O Communication in Handshake Mode ........111 
10.9.1 Structure of the Synchronization Register in the I/O Data ...............................112 
10.9.2 Initializing of the Communication......................................................................115 
10.9.3 Acknowledgment of the Processing between the Superordinated Control and 

netSCRIPT .......................................................................................................116 

11 ERROR-HANDLING................................................................................................119 
11.1 About “lasterror”......................................................................................................119 

11.1.1 Error Codes in “lasterror”..................................................................................120 
11.2 Return values for Status and Error of the Port Functions .......................................122 

11.2.1 Possible values of confirmation status: ............................................................122 
11.2.2 Possible values for receive error: .....................................................................122 

12 TROUBLESHOOTING ............................................................................................123 
12.1 Diagnostics in SYCON.net......................................................................................123 

12.1.1 Diagnostic.........................................................................................................123 
12.1.2 General Diagnostic - Stop Error in SYCON.net ...............................................124 
12.1.3 Firmware Diagnosis..........................................................................................127 
12.1.4 Task-Information...............................................................................................128 
12.1.5 Lua-Status ........................................................................................................129 

13 TROUBLESHOOTING NETSCRIPT .......................................................................130 
13.1 netSCRIPT Debugger.............................................................................................130 

13.1.1 Installation ........................................................................................................130 
13.1.2 Start the Debugger ...........................................................................................131 
13.1.3 Connection to the netTAP Device ....................................................................132 
13.1.4 Load Current Script from netTAP.....................................................................133 
13.1.5 Open a Project..................................................................................................133 
13.1.6 Load a Script into the netTAP Device ..............................................................135 
13.1.7 Script Debug.....................................................................................................135 
13.1.8 Script Edit .........................................................................................................138 
13.1.9 Exit the Debugger.............................................................................................139 

14 SIMPLE NETSCRIPT SAMPLE APPLICATION......................................................141 
14.1 Example Program: ECHO.......................................................................................141 
14.2 Example Program: Blockmode ...............................................................................141 
14.3 Example Program: Eliza .........................................................................................141 



Introduction 7/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

14.4 Example Program: BusIOCount .............................................................................141 
14.5 Example Program: hello_World ..............................................................................141 
14.6 Example Program: LedFlash ..................................................................................142 
14.7 Example Program: Time .........................................................................................142 

14.7.1 Installation ........................................................................................................143 
14.7.2 Explanations - Script Example Programs.........................................................144 
14.7.3 Use of the Program ..........................................................................................151 

15 LISTS ......................................................................................................................156 
15.1 List of Figures .........................................................................................................156 
15.2 List of Tables ..........................................................................................................157 

16 GLOSSAR...............................................................................................................158 

17 TECHNICAL DATA .................................................................................................159 

18 CONTACTS.............................................................................................................160 
 



Introduction 8/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

1 Introduction 
1.1 About the User Manual 

This user manual describes the programming language netSCRIPT. This is 
used to transfer data between different network protocols within Hilscher 
devices.  

netSCRIPT is based on the script language Lua and extended by special 
communication functions.  

netSCRIPT programs are created with the software SYCON.net and are 
transferred into the target device. In the target device these are processed 
cyclically with an interpreter.  

The debugging of the script file is possible with the additional software net-
SCRIPT_Debugger.exe and can be used on a standard PC. This program 
has to be installed separately to the configuration program SYCON.net.  

1.1.1 List of Revisions 
 

Index Date Chapter Revision 
4 2009-12-16 13.1.9 Section Exit the Debugger added  

Example Time adapted  

5 2010-05-21  
5.1.8  
6.2, 6.3, 
6.5 
7.1 
8.3 
8.3.5 
8.3.6 
9.1 
10 
10.9.3.1 
10.9.3.2 
11.1 
11.2 
12.1.2 
14.7 

netScript Version 1.2.x.x 
Comments to the example  
Error corrections  
 
Additions  
Additions 
port.STA_PATTERN_MATCHED  port.STA_PATTERN_MATCH 
 
Additions 
Corrections  
Sequence of sections exchanged 
 
Additions 
New 
Additions 
Additions 

6 2010-07-13  
10 

netScript Version 1.3.x.x 
Chapter Functions for the Communication with the superordinated I/O Network with 
new BusIO communication without handshake 

Table 1: List of Revisions 

 



Introduction 9/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

1.1.2 Reference on netSCRIPT, Hardware, Software and Firmware  
 

 

Note: The listed hardware revisions, firmware and driver versions or ver-
sions of the configuration software and SYCON.net configuration tool 
functionally belong together.   
For existing hardware installation updates the firmware, the driver and the 
configuration software. 

 

netSCRIPT runs on the following hardware 
 

Device Revision 
NT 100-RE-RS 1 

NT 100-DP-RS 1 

NT 100-CO-RS 1 

NT 100-DN-RS 1 

NT 100-DN-RS 1 

Table 2: Reference on Hardware 

netSCRIPT 
 

netSCRIPT Version 
Lua 5.1 

netSCRIPT 1.2.x.x 

Table 3: Reference on netSCRIPT  

Software 
 

Software Software Version 
SYCON.net 1.210.x.x 

netSCRIPT_Debugger.exe 1.0.xxxx 

Table 4: Reference on Software 

Firmware 
Firmware File Firmware Version 
NTxxxNSC.NXF 1.3.x.x 

Table 5: Reference on Firmware 

 
 



Introduction 10/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

1.1.3 Conventions in this Manual 
Operation instructions, a result of an operation step or notes are marked as 
follows: 

Operation Instructions: 
 < instruction > 

 

Or 
 

1. < instruction > 

2. < instruction > 

Results: 
 < result > 

 

Notes: 
 

 

Important: <important note> 

 
 

 

Note:  <note> 

 
 

 

<note, were to find further information> 

 
 

netSCRIPT notation in this manual: 

Syntax Meaning 
command netSCRIPT commands are written with small letters in general. 

Functions can contain capital letters or can be written completely 
in capital letters. netSCRIPT distinguishes between small and 
capital letters (case sensitive)  

var1 Variable name 

_par Parameter are shown with small letters 

_pari Parameter with subscripted index means that a list of operants 
can be specified  

Value The value of variables / parameter is shown in italic  

[ ] Alternatively commands are between simple square brackets 

Table 6: Script Description Syntax 

When in the text a bold text between quotation marks is written „command“, 
then this is a direct reference to the described function respectively its pa-
rameter.  

If a “:“ is at the beginning of the function name, then add the the prefix of 
the corresponding Open function in front of the “:“ of the call of this function.  



Introduction 11/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

1.1.3.1 Documentation  

The following documentation overview gives information, for which items 
you can find further information in which manual.  
 

 

All these documents are available on the CD delivered with the device un-
derneath the directory Documentation, in Adobe Acrobat® Reader format 
(PDF). 

 

 
Manual Content Document name 
User manual Configuration of NT 100 devices netTAP100_usermanual_en.pdf 

Table 7: Documentation 

 

Further information about the script language Lua can be found on the fol-
lowing Internet pages:  

http://www.lua.org 

and documentation:  

http://www.lua.org/manual/5.1/  

http://lua.gts-stolberg.de/ 

 

http://www.lua.org/
http://www.lua.org/manual/5.1/
http://lua.gts-stolberg.de/


Introduction 12/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

1.2 Legal Notes 

1.2.1 Copyright  
© 2008-2010 Hilscher Gesellschaft für Systemautomation mbH   

All rights reserved. 

The images, photographs and texts in the accompanying material (user 
manual, accompanying texts, documentation, etc.) are protected by Ger-
man and international copyright law as well as international trade and pro-
tection provisions. You are not authorized to duplicate these in whole or in 
part using technical or mechanical methods (printing, photocopying or other 
methods), to manipulate or transfer using electronic systems without prior 
written consent. You are not permitted to make changes to copyright no-
tices, markings, trademarks or ownership declarations. The included dia-
grams do not take the patent situation into account. The company names 
and product descriptions included in this document may be trademarks or 
brands of the respective owners and may be trademarked or patented. Any 
form of further use requires the explicit consent of the respective rights 
owner. 
 

 

1.2.2 Important Notes 
The user manual, accompanying texts and the documentation were created 
for the use of the products by qualified experts, however, errors cannot be 
ruled out. For this reason, no guarantee can be made and neither juristic 
responsibility for erroneous information nor any liability can be assumed. 
Descriptions, accompanying texts and documentation included in the user 
manual do not present a guarantee nor any information about proper use 
as stipulated in the contract or a warranted feature. It cannot be ruled out 
that the user manual, the accompanying texts and the documentation do 
not correspond exactly to the described features, standards or other data of 
the delivered product. No warranty or guarantee regarding the correctness 
or accuracy of the information is assumed.  

We reserve the right to change our products and their specification as well 
as related user manuals, accompanying texts and documentation at all 
times and without advance notice, without obligation to report the change. 
Changes will be included in future manuals and do not constitute any obli-
gations. There is no entitlement to revisions of delivered documents. The 
manual delivered with the product applies.  

Hilscher Gesellschaft für Systemautomation mbH is not liable under any 
circumstances for direct, indirect, incidental or follow-on damage or loss of 
earnings resulting from the use of the information contained in this publica-
tion. 

 

 



Introduction 13/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

1.2.3 Exclusion of Liability 
The software was produced and tested with utmost care by Hilscher Ge-
sellschaft für Systemautomation mbH and is made available as is. No war-
ranty can be assumed for the performance and flawlessness of the soft-
ware for all usage conditions and cases and for the results produced when 
utilized by the user. Liability for any damages that may result from the use 
of the hardware or software or related documents, is limited to cases of in-
tent or grossly negligent violation of significant contractual obligations. In-
demnity claims for the violation of significant contractual obligations are lim-
ited to damages that are foreseeable and typical for this type of contract. 

It is strictly prohibited to use the software in the following areas: 

• for military purposes or in weapon systems;  

• for the design, construction, maintenance or operation of nuclear facili-
ties; 

• in air traffic control systems, air traffic or air traffic communication sys-
tems;  

• in life support systems;  

• in systems in which failures in the software could lead to personal injury 
or injuries leading to death. 

We inform you that the software was not developed for use in dangerous 
environments requiring fail-proof control mechanisms. Use of the software 
in such an environment occurs at your own risk. No liability is assumed for 
damages or losses due to unauthorized use. 

 

1.2.4 Warranty 
Although the hardware and software was developed with utmost care and 
tested intensively, Hilscher Gesellschaft für Systemautomation mbH does 
not guarantee its suitability for any purpose not confirmed in writing. It can-
not be guaranteed that the hardware and software will meet your require-
ments, that the use of the software operates without interruption and that 
the software is free of errors. No guarantee is made regarding infringe-
ments, violations of patents, rights of ownership or the freedom from inter-
ference by third parties. No additional guarantees or assurances are made 
regarding marketability, freedom of defect of title, integration or usability for 
certain purposes unless they are required in accordance with the law and 
cannot be limited. Warranty claims are limited to the right to claim rectifica-
tion. 

 



Introduction 14/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

1.2.5 Export Regulations 
The delivered product (including the technical data) is subject to export or 
import laws as well as the associated regulations of different counters, in 
particular those of Germany and the USA. The software may not be ex-
ported to countries where this is prohibited by the United States Export 
Administration Act and its additional provisions. You are obligated to com-
ply with the regulations at your personal responsibility. We wish to inform 
you that you may require permission from state authorities to export, re-
export or import the product. 

 

1.2.6 Registered Trademarks 
Windows® 2000 and Windows® XP are registered trademarks of the Micro-
soft Corporation. 

Adobe-Acrobat® is an registered trademark of the Adobe Systems Incorpo-
rated. 

Rocksoft is an registered trademark of Rocksoft Pty Ltd. Australia.  

 

1.3 Licenses 
Lua is free software: it can be used for any purpose, including commercial 
purposes. 

 
http://www.lua.org 

Lua is a scripting language which is developed by  

Pontifícia Universidade Católica do Rio de Ja-
neiro- © PUC-RIO – 2009 Rua Marquês de São 
Vicente, 225, Gávea - Rio de Janeiro, RJ - Brasil - 
22453-900; Cx. Postal: 38097 - Telefone: (55 21) 
3527-1001 

 

Copyright © 1994-2008 Lua.org, PUC-Rio 

 

http://www.lua.org/


Description and Requirements 15/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

2 Description and Requirements 
2.1 Description 

netSCRIPT is a Lua based script programming language, which is used for 
creation and loading of the programs into the target hardware and requires 
the PC configuration and diagnostic program SYCON.net for it.  

Using the netSCRIPT language, it is possible to connect devices which 
have a serial RS232, RS422, RS485 communication interface (UART port) 
to a superior control unit via an additional bus system (Bus IO).  

netSCRIPT programs are managed with SYCON.net. Editing, syntax check 
and the storage are done with SYCON.net. The netSCRIPT program is 
transferred into the target device together with the complete network con-
figuration. The serial protocol and its sequence can be programmed as de-
sired. Functions for send and receive via UART are available. The transfer 
to the superior bus system is done via data buffers IN and OUT. Additional 
functions are available for this access. Furthermore status information can 
be transferred.  

 
Figure 1: netSCRIPT communication channels  

2.2 System Preconditions 
1. PC with COM and USB 1.1 interface and CD-ROM drive. 

2. Windows® 2000/Windows® XP  

3. SYCON.net and netSCRIPT Debugger (programming and debugging 
tools) 

4. A netSCRIPT capable device as target hardware of the netSCRIPT 
program, e. g. netTAP 100  

 



Editor for netSCRIPT 16/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

3 Editor for netSCRIPT 
The netSCRIPT editor is a component of the SYCON.net software. 

3.1 Invoke the Editor 
The script file management and edit function is available via the context 
menu of the netSCRIPT capable device. In this section this is explained 
with the NT 100.  

3.1.1 Device Selection  
The netSCRIPT editor is a component of the SYCON.net software. 

 Start the SYCON.net software on your PC. Select the project which 
contains the device which you want to program. 

 The following window opens: 

 
Figure 2: Select device which is script capable  

 Open the context menu with a right mouse click on the device symbol. 

 The following window opens: 

 
 

 Select Configuration > netSCRIPT.  

 This opens the configuration window of the UART interface parameter: 



Editor for netSCRIPT 17/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

 
Figure 3: SYCON, UART Configuration 

The settings made here in the window pane , become effective only for 
the UART interface, if in the script the function PortReadConfigDb() is 
called to read the settings (see section PortReadConfigDb on page 82). 
These settings have to be transfered when the interface is opened.  

 Select in the navigation area  netSCRIPT, to reach the script man-
agement.  

 



Editor for netSCRIPT 18/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

3.2 Program Editor 

3.2.1 Script File Management  

 
Figure 4: Script management 

 Select in the window pane  (navigation area) netScript, then File 
Management. This opens the configuration area shown. 

 In this window pane the script files available are listed. 

 With the button "Add New" you can create a new script file which gets a 
standard name "netscript.lua" (as in the window pane  displayed).  

 With this button, a script file can be imported in the SYCON project. It is 
also copied into the selected working directory . 

 With this button the selected file from window pane  is deleted in the 
window pane , and is deleted from working folder which is selected at 
. 

 With this button, the working directory  in which the script files are 
stored can be selected. 

 With this button, the entries of this window are saved. Afterwards the 
window is closed. 

 With this button you exit the window without saving.  

 With this button, the data are saved. The window remains open. 

 With this button, you reach the help topics pertaining to this window. 

 In this field, the cyclic time of the script is set for the device. 



Editor for netSCRIPT 19/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

 The directory in which the script file is saved is displayed. 

 With the checkbox "Startup", the script file is marked, which should be 
launched cyclically. 

3.2.2 Script File Editing 
In the following window, a script can be created or an existing script can be 
edited.  

 
Figure 5: Editor Windows 

 Select in the navigation area  "File Editing". With it the editable script 
file is displayed from line . 

 In this window pane, the selected script file is displayed. 

 In this line, tools for script editing are offered. 

 In this column, the line number of the script is displayed. 

 With this button, the actual script file in the editor window can be submit-
ted to a syntactic check.   
The additional window pane  opens (see Figure 6), where the result of 
the checking is displayed. 

 With this button, the entries of this window are saved. Afterwards the 
window is closed. 

 With this button, you exit the window without saving.  

 With this button, the data are saved. The window remains opened. 

 With this button, you reach the help topics pertaining to this window. 

 



Editor for netSCRIPT 20/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

 
Figure 6: Editor Window Syntax check 

In the figure above in window pane  the result of the compilation is dis-
played. If the last entry in this window pane is not ">Exit code: 0", then the 
previous lines display where the error can be searched in the Script. 

 



Editor for netSCRIPT 21/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

3.3 Configurable Variables (Parameters)  
netSCRIPT variables are created basically in the script programs either lo-
cally or globally and have initial values. Additional configurable variables 
(parameters) can be defined outside of the script program with SYCON.net 
and values assigned to them. These variables (parameters) can be evalu-
ated by the script. 

With the download of the configuration and the script these variables are 
transferred into the target device and are stored in the netSCRIPT table 
VAR. These additional variables offer a flexible control of the program with-
out changing the script code only by changing the value.  

The usage of these variables within netSCRIPT is described in section 
3.3.2.8 on page 28. 

 

3.3.1 Definition of Configurable Variables (Variable Management) 

 Choose in the navigation area  under „Configuration > netSCRIPT 
> Variable Management >Variable Editing“ . 

 This opens the following window. 

 
Figure 7: Configurable Variable Definition  

 In this window pane, an .xml file is displayed which is the base to create 
configurable variables for the netSCRIPT program. The syntax of the file is 
explained in section 3.2.2 on page 19. 

 In this line, the file name of the variable file is displayed which can be 
edited in the window pane . 



Editor for netSCRIPT 22/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

 In this line, tools are offered to edit the XML file. 

 With this button, a syntax check of the XML file can be started. If the 
syntax check is not successful, then in window pane  suitable error mes-
sages are displayed (see Figure 8). 

 With this button, the contents of the window pane  are compiled and 
the contents in the window pane  are updated. If the compilation is not 
successful, window pane  opens with suitable error messages (see 
Figure 8). 

 With this button, the entries of this window are saved. Afterwards, the 
window is closed. 

 With this button, you exit the window without saving. 

 With this button, the data are saved. The window remains open. 

 With this button, you reach the help to this window. 

 In this column, coherent blocks can be minimized or expanded, by a 
click on the "-" or "+" signs. 

 

 
Figure 8: Definition Configurable Variables compiled 

In the picture above, in window pane  the result of the compilation is dis-
played. If the last entry in this window pane is not ">Exit code: 0", then the 
previous lines give information, where the error is to be searched in the 
variable definition. 



Editor for netSCRIPT 23/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

3.3.2 Structure of the XML File for Configurable Variables 
For one netTAP, device only one variable list can exist. The variable list is 
built up similar to HTML. Each start tag "<aaa>" has an end tag "</aaa>" 
respectively a comment „<!--“ start and "-->" end. 

The XML file for the configurable netSCRIPT variable has basically 3 areas. 

1. A file header. 

2. The file body with the variables. 

3. The file end. 

It is possible to have several presentation languages (however, must not be 
defined) for a variable. These are independent from the netSCRIPT vari-
able to which the value is assigned. 

In the following three paragraphs, the details are described. 

3.3.2.1 The File Header 

In the file header, it is not permitted to change line 1...4.  

In lines 5 and 6, it is fixed which language (Installation language of 
SYCON) the variable naming should be displayed. The languages German 
and English are currently possible. 

 
Line-
Nr. 

xml-Code 

1 <?xml version="1.0" encoding="UTF-8" ?> 
2 <database xmlns="x-schema:xml2nxdSchema.xml" name="DatabaseName" min-

version=""> 
3 <!-- Tables --> 
4 <table id="1" VariableName="TableName" > 
5 <descr xml:lang="en-us">TableName</descr> 
6 <descr xml:lang="de-de">TableName</descr> 

Table 8: XML-Code – File Header 

Explanations to the lines: 

Line 1: 

Interpreter version number and character set information. This line 
may not be changed. 

Line 2: 

Contains processing-internal information. This line may not be 
changed. 

Line 3: 

This is a comment line and marks the beginning of the definition de-
scriptions. 



Editor for netSCRIPT 24/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

Line4 

Marks the beginning of the variable table with the id=“1“. For a ta-
ble beginning with <table id = "1"> a suitable end tag </table> al-
ways belongs to it. Between these two tags is the description of the 
variables of table „id="1"“. 

After the variable VariableName, and between the quotes which 
follow, a table name can be specified which can be used in net-
SCRIPT to address this table. 

In a variable description file, there can be more than one variable ta-
ble. These tables differ in their "id" numbers and the table name 
VariableName. 

Line 5 and 6 

In these lines the languages are specified into which the variable de-
scriptions (in dependence of the selected SYCON language) should 
be displayed. xml:lang="en-us" for English and xml:lang="de-
de" for German. With >TableName<, a naming text can be given 
between both carets for the table for the respective language. 

 

3.3.2.2 File Body 

In the file body, all variables with their display and data variables are de-
scribed. 

The single variables are marked with „<number id = "n">”. On this occa-
sion, "n" defines the number of the position in which the variable should be 
shown later in the variable list. Hence, this number must be unique in the 
whole file. 

In the following instructions, the possible single variables are listed and ex-
plained. 

 



Editor for netSCRIPT 25/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

3.3.2.3 Numeric Variables 

With a numerical variable it is not distinguished between an integer number 
and a decimal number.  

 
Line-
Nr. 

xml-Code; Numeric Variable 

7 <!-- number Entry --> 
8 <number id="1" VariableName="varNumber1"> 
9 <descr xml:lang="en-us">Description of a number</descr> 
10 <unit xml:lang="en-us">ms</unit> 
11 <descr xml:lang="de-de">Description of a number</descr> 
12 <unit xml:lang="de-de">ms</unit> 
13 <value val="5" min="0" max="50000" /> 
14 </number> 

Table 9: XML-Code - Numeric Variable 

Explanation of the Line: 

Line 7 

Comment of the beginning of the definition. 

Line 8 

Naming of the variable type "<number>" and the position „id = "1"“ in 
the display list. Every position number may be assigned for the table 
only once! 

Behind VariableName = is the variable name within quotation 
marks and is the name for the access within netSCRIPT. 

Line 9 

In this line, the describing naming of variable "Description of a 
number" is given for the display language "en-us". The name is 
user defined. 

Line 10 

In this line, a unit "ms" is given for the display language "en-us". 

Line 11 

Here, according to the line number 9 the naming of the variables oc-
curs for the German language "de-de".  

Line 12 

Here, accordingly to line 10, the output of the unit is fixed into lan-
guage German. 

Line 13 

In this line, the value range with a default value „val="5"” is set, and 
a minimum value „min="0"“ and a maximum value „max="50000"“ 
is defined. 

Line 14 

Contains the end tag "</number>" of the definition of the numerical 
variables. 



Editor for netSCRIPT 26/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

3.3.2.4 Bool Variables 

Example, the definition of a Boolean variable. 

 
Line-
Nr. 

xml-Code; Bool-Variable 

15 < <!-- bool Entry --> 
16 <bool id="2" VariableName="varBool1"> 
17 <descr xml:lang="en-us">Description of a bool</descr> 
18 <false xml:lang="en-us">off</false> 
19 <true xml:lang="en-us">on</true> 
20 <descr xml:lang="de-de">Beschreibung einer bool Variablen</descr> 
21 <false xml:lang="de-de">aus</false> 
22 <true xml:lang="de-de">ein</true> 
23 <value val="1" min="0" max="1" /> 
24 </bool> 

Table 10: XML-Code - Bool-Variable 

Explanations to the lines: 

Line 15 

Comment at the beginning of the variable definition. 

Line 16 

Naming of the variable type "<Bool>" and the position „id = "2"“ in 
the display list. Every position number may be assigned for the table 
only once! 

Behind VariableName = is the variable name within quotation 
marks and is the name for the access within netSCRIPT. 

Line 17 

In this line, the describing name of variable "Description of a 
bool" is given to the display language "en-us". The name is user de-
fined. 

Line 18 

In this line, it is defined how the state "false" should be displayed in 
language "en-us". Here "off". 

Line 19 

In this line, it is defined how the state "true" should be displayed into 
language "en-us". Here "on". 

Line 20 

In this line, the describing name of the variables „Beschreibung 
einer bool Variablen“ is given for the display language 
"de-de". The name is user defined. 

Line 21 

In this line, it is defined how the state “false” in the language "de-de" 
should be displayed. Here "aus". 

Line 22 

In this line, it is defined how the state "true" should be displayed in 
language "de-de". Here „ein". 



Editor for netSCRIPT 27/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

Line 23 

In this line, with „value val = "1"“, the default value of the vari-
able is given. With „min = "0" max. = "1"“, the possible mini-
mum value or maximum value is defined. For a bool variable this is 
always 0/1. 

Line 24 

Contains the end tag "</bool>" of the definition of the bool variables 
includes. 

3.3.2.5 String 

A string value can have a maximum length of 64 bytes. It should be defined 
as follows: 

Linen-
Nr. 

xml-Code;String-Variable 

25 <!-- string Entry --> 
26 <string id="6" VariableName="varString1"> 
27   <descr xml:lang="en-us">Description of a string</descr 
28   <descr xml:lang="de-de">Beschreibung der String-Variablen</descr 
29   <value val="Some string with max 64 length" min="0" max="64" /> 
30 </string> 

Table 11: XML-Code - String Variable 

Explanation to the lines: 

Line 25 

Comment at the beginning of the definition of the string. 

Line 26 

Start tag of the definition with the line position specification „id=“6““ 
in the variable list. 

Behind VariableName = is the variable name within quotation 
marks and is the name for the access within netSCRIPT. 

Line 27 

Start tag <descr xml:lang="en-us"> of the description text for the 
string at the configurable variable list here for the language "en-us". 
Following the start tag are the indication text and then the end tag 
</descr> of the description.  

Line 28 

Start tag <descr xml:lang="de-de"> of the description text for the 
string at the operable variable list here for the language "de-de". Fol-
lowing of the start tag is the indication text, followed by the end tag 
</descr> of the description. 

Line 29 

The value tag with the text between the quotation marks after 
val="...“ of the variable with the minimum length min="0" and maxi-
mum length of max="64" characters. 

Line 30 

End tag of the string variable. 



Editor for netSCRIPT 28/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

3.3.2.6 File End 

 
Line-
Nr. 

xml-Code; File End 

31 </table> 
32 </database> 

Table 12: XML-Code - File End 

Explanation to the Lines: 

 

Line 31 

End tag of the table definition. 

Line 32 

End tag of the file definition. 

 

3.3.2.7 Delete of a Table with Variable Definitions 

Should a table with variable definitions be deleted, the whole XML file may 
not be deleted. Only the part between the tag 
<database xmlns="x-schema:xml2nxdSchema.xml" 
name="DatabaseName" minversion=""> 

and the tag 
</database> 

is allowed to be deleted.  

3.3.2.8 Call of the Variables within netSCRIPT 

The variables described in this section are automatically transferred with 
the download in netTAP and are callable there as follows: 

1. VAR[“TableName“][“VariableName“]  

2. If the table name and/or the variable name are only numerical, then 
the following method can be used:   
VAR[1][2] 
"1" is used for the table number and "2" for the variable number. 

3. If a name is alphameric, the following method can be used: 
VAR.TableName. VariableName  

 



Editor for netSCRIPT 29/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

3.3.3 Display of the Configurable netSCRIPT Variables 
According to the definition of the configurable variables and their compila-
tion and update in Figure 7: Configurable Variable Definition in section 
3.3.1, the Navigation area (sub window  ) under the folder “Variable 
Management” gets a new line with the defined table name (see ).  

Here you can display the defined variable table  in window pane  and 
fill in values. 

 

 
Figure 9: Configurable Variable Display  

In the window pane  you see the column: 

 The variable name in the actual SYCON language, 

 The value set for the variables. This can be changed here after the se-
lection with the curser, 

 The name of the variables in netSCRIPT. 

With the button: 

 With this button the entries of this window are saved. Afterwards the 
window is closed.  

 With this button you exit the window without saving.  

 Save the actual variable values and return to the calling window.  

 With this button you reach the help topics pertaining to this window.  



The netSCRIPT Language 30/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

4 The netSCRIPT Language 
The script language netSCRIPT is based on the script language Lua. 

For the application within Hilscher communication devices and their special 
demands on the data transmission in networks and automation technology, 
the language was extended on a functional level. 

The program written in SYCON.net is transferred to the target device with 
the download of the entire configuration. Usually, there are no real-time 
processing demands for the functions processed by the script program 
compared to the network protocol on higher level. Therefore, netSCRIPT 
always has a relatively low priority within the priority distribution in the pre-
emptive operating system. Thus, interruptions of the running script program 
by the operating system may occur. Both the interruption and the return to 
program execution occur automatically and do not have any influence on 
the functional execution of the script program. Therefore, no special pre-
cautions are necessary within the program. As a general statement, please 
note that due to its low priority netSCRIPT cannot have any influence on 
the real-time properties of the other processes. 

The firmware of the target device makes use the program and cyclically 
calls it within the given time frame, beginning with the first line of code and 
ending with the last one. The program is interpreted line by line at runtime 
and not executed as a compiled code like in several other programming 
languages. For this purpose, at Lua the source code is translated into a 
compact code for a virtual machine. 

Usually, the provided functions do not have any suspending effect on the 
calling program code; instead, they always return to the calling program 
code immediately after execution. However, functions with a suspending 
behavior, for instance such functions which access special functions of the 
operation system, are specially marked with a corresponding note within 
the description. Please keep in mind that the time frame of cyclic calling 
cannot be maintained as soon as the script program does not return from a 
call within the cycle time. 

Due to the principle of cyclic calling, it is a proven approach to design a 
script program via a so-called ‘status machine’ or ‘chain of steps’ and to 
process only small selected parts of the program within one cycle. A global 
running variable is used as an indicator which part of the program is to be 
processed just within the next cycle. A test of the contents of this variable, 
for instance, by an ‘if’ statement at the entry point into the script code is put 
in front of the chain of steps in order to branch into the various parts of the 
program using the values. 

Of course, it is permitted to design extensively time consuming loops, even 
if they lead to violation of the cyclic time frame. As an extreme case, it is 
even possible that the program will not return from its call at all. This does 
not affect the system anyway, nor it will cause an error message or an 
abort of script processing. Instead of this, missed cycles are counted and 
caught up later on. For this purpose, the script program is called as often 
outside of the cyclic time frame without consuming cycle time, as it is nec-
essary according to the number of missed cycles. 

When using a script debugger, the script program loses its real time proper-
ties, and the cyclic execution is interrupted. The debugger is a so called 
soft debugger, i.e. when stopping the program it will neither stop the operat-
ing system, nor the CPU or the periphery. Only the script program and its 



The netSCRIPT Language 31/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

execution can be analyzed and controlled. During debugging, the rest of 
the system (such as the higher level communication network) continues 
working unaffectedly. 

 

Note: The script program is cyclically executed with the cycle time to be 
adjusted by SYCON.net. Adjustment of the cycle time is described in de-
tail within section 3.2.1 of this document. 

 

 

Important: Within netSCRIPT, redefinition of all initially preset variables, 
functions and tables within the current script is possible. Therefore, the 
choice of names, especially variable and function names, has to be done 
with special care. 

 

A line of code is finished by pressing the ENTER key. It is possible to put a 
semicolon in front of the ENTER. The semicolon, however, may also be 
used for the separation of two statements. 

 



The netSCRIPT Language 32/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

4.1 Syntax and Keywords 

 

Note: netSCRIPT is a case-sensitive language: and is a reserved word, 
but And and AND are two different, valid names, therefore it is recom-
mended always to write all variable names in minor letters. 

 

4.1.1 Comments 
A comment starts with a double hyphen (--) anywhere outside a string.  ––  

Everything following the two minus signs is not read by the interpreter. 

Comments extending over more than a single line are bound by two rec-
tangular parentheses: ––[[ for the beginning and ]] for the end. 

 

Note: Recommendation for the editor: 

If a part of the code is not to be executed for a limited time when testing 
the program, the following approach is recommended: 
1 CODEBLOCK1 Code will be executed. 
2 --[[ Start of a long comment. 
3 CODEBLOCK2 Code will not be executed. 
4 --]] End of a long comment. 
5 CODEBLOCK 3 Code will be executed. 

If a blank is added into the line of the beginning of the comment between 
the two minus signs „-- „ and  the two open parentheses, both lines 2 and 
4 are single comment lines on their own and CODEBLOCK2 will be exe-
cuted. 

 

4.1.2 Keywords 
Keywords are words which cannot be used for variable or functions names, 
because they will be interpreted as instruction. 

These are the words: 
    and     break   do    else       elseif     

    end     false   for   function   if     

    in      local   nil   not        or     

    repeat  return  then  true       until     while 



The netSCRIPT Language 33/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

4.2 Variables 
netSCRIPT is a dynamically typed language. This means that variables do 
not have types; only values do. 

4.2.1 Variable Names 
• The name of a variable has to begin with either a letter or an underscore. 

• It is not allowed to use other characters than numbers, letters or under-
scores in the name. 

• Use of large and small initial letters is distinguished in the name. 

4.2.2 Assignments 
An assignment always looks like: 
Name = Expression 

Values will be assigned to variables with the equal sign „=“. At the left side 
is the name of the variable and at the right side is the value to be assigned. 

It is also possible to define a list of variables on the left side with a list of 
expressions on the right side according to the following: 
Name1, Name2, Name3 =  

Expression 1, Expression2, Expression3 

Because global variables keep their values up to the next cycle program 
start, for the first start the following assignment is necessary:  
var1 = var1 OR 1 

In that case the value which the variable has had at the end of the last pro-
gram cycle is assigned to variable var1. However, at the first cycle the 
value 1 is assigned to variable var1. If the value at the end of the previ-
ous cycle was nil then also the value 1 is assigned to variable var1. 

For variables which have been defined outside of the cyclic program start, 
(for instance, if they have been predefined as shown above) assignment is 
not necessary. 



The netSCRIPT Language 34/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

4.2.3 Scope of Variables 
The area of validity of variables can be global or local. 

Global variables are valid for the whole script. 

They keep their value at the end of processing the script up to the 
next cyclic start of the script. 

Global variables are defined in the table _G. 

Local variables are only valid in that block where they are defined. They 
do not exist outside this block behind the command „end“. 

A local variable will be defined with the prefix „local„ in front of the 
name of the variable. 

Access to local variables is more efficient than for global variables. 
Choosing a local variable is recommended for all variables which are 
required locally, but often. 

You can also temporarily store global variables, which for instance 
are called n times, within a local variable. For instance: 
local getDataChar = xc_uart.getDataChar. 

Values of local variables can be written back to the global variable 
even in case of equal names, if you set the prefix of the environment 
table (usually „_G. “) in front of the name of the global variable. Then 
the variable within table _G is accessed. Also see section 4.3 Exam-
ple for the validity of a variable, here for example for the variable „a“. 

Code Output: 
x = 5 
print(x) 
do 
  local x = x  
  print x 
  local a=1 
  print(a) 
  do 
    local a=2 
    print(a) 
  end 
  print(a) 
  x = x + 3 
  print (x) 
  _G.x = x 
end 
print(x) 

 
5 
 
 
5 
 
1 
 
 
2 
 
1 
 
8 
 
 
8 

 

Without the assignment „_G.x = x“ at the end of the do loop in table 
13 „x“ would have the value „5“, after execution of  the „end“ state-
ment. 



The netSCRIPT Language 35/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

4.2.4 Types 
The following data types are available: 

Type Meaning / Usage 
nil Nothing, blank, not available. 

numbers Whole and broken figures, exponential figures. 

String Literal strings can be delimited by matching single or double quotes as 
follows::  “Text“ or ’Text’. In this context, the word „Text“ means the con-
tents of the string. 
Long strings over more than one row start with --[[ and end with --]] 

Conditions , true / false, yes/no, 1/0. 

Functions Are special cases of a block. 

Table The table which saves any value under an index (number, name, other 
object). 
e.g. t[1]=13 oder t[„surname“]=“Einstein“ 

Table 13: Overview Types 

The type of an expression v can be interrogated with the function „type (v)“ 
(see section 5.1.21 on page 53).  

4.2.4.1 Nil 

The value (and the type) nil reserves space for currently not present val-
ues or unused variables. Additionally, in logical expressions nil is usually 
equivalent to false. 

Accessing a variable to which no value has yet been assigned will cause 
the result to have the value nil. In this case, no error message will be is-
sued. 

If you assign the value nil to a certain index of a table (t[x]=nil), the 
table entry will be erased if any has already existed. 

If you assign the value nil to a global variable, this variable will no longer 
exist, i.e. the storage area occupied by the variable within the memory will 
be released by the garbage collector. To local variables, the value nil will 
be assigned. 
var1 = nil 

 

4.2.4.2 Numbers 

Numbers are represented as 64 bit floating point value. Double Float values 
are represented with a 52 Bit mantissa. 

Numbers may be entered as integer values, with or without sign, optionally 
with a decimal fraction, optionally with an exponential part, or as a whole 
number in hexadecimal representation. 

Integers, fractions and negative numbers may be assigned to variables. As 
decimal sign the „.“ (Point) is used! Negative values are preceded by the 
minus sign „-„ immediately preceding the numeric part. 



The netSCRIPT Language 36/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

The following assignments are equivalent. 
Assignment 1 Assignment 2 
_Zahl1 = 74 _Zahl1 = 0x4A 
Zahl_2 = 105 Zahl_2 = 1.05e2 
einHalbMalWurzel2 = 0.707107 einHalbMalWurzel2 = 0.5^0.5 

Table 14: Assingments 

 

If a string contains only digits, it will be interpreted as a number by net-
SCRIPT. But there is one exception: this is not valid within comparisons! 

4.2.4.3 Strings 

Strings are delimited by the characters  "Text" or 'Text' in the line. In 
this context, the word "Text" displays the contents of the string. 

Strings may contain arbitrary sequences of bytes (also 0x0). 

Strings extending over several lines will be enclosed with [[ at the begin-
ning and with ]] at the end. 

The following assignments are equivalent. 
    townname = " Hattersheim am Main " 
    street = ' Rheinstrasse 15' 
    varTyp1 = "function" 
    thestory = [[The history began sometime 
                          and also ends once]] 

 

4.2.4.4 Boolean Values 

Boolean Values are a variable type which only can have only two states:  

true  and false. 

Assignment: 
    sunshine = true 
    night = false 
    bright = true 

The assignment is done using the reserved words true and false. 

The value nil of a variable will be interpreted as false. All values besides 
nil and false will usually be interpreted as true. 

4.2.4.5 Functions 

Functions are encapsulated blocks of code which can be invoked more 
than once. Each call generates an own local parameter/variable block.  

Functions can be recognized by (), for instance function(). 

For the definition and the call of a function, please refer to section 
Functions at page 43 of this document. 



The netSCRIPT Language 37/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

4.2.5 Tables 
In Lua, tables are hash tables, which map arbitrary indices (keys) to values. 
Both the indices and the mapped values may be arbitrary Lua objects such 
as numbers, strings or even tables themselves. The type is table. 

Tables are defined at the allocation within curly brackets. 

Definition: 
    myTable = {} 

The assign statement to a table may look like: 
    myTable = { 1, 4, "Willi", true, function() 
                 dosomething end} 
    myTable2 = { X= 255 , Y =10, speed =88} 

These values can be read as follows: 
    meinTable[1] –> 1 
    meinTable[2] –> 4 
    meinTable[3] –> "Willi 
    meinTable[4] –> true 
    meinTable[5] –> function()dosomething end 
    meinTable2.X –> 255 
    meinTable2.Y –> 10 
    meinTable2.speed –> 88 

4.2.6 Garbage Collector 
For the release of previously reserved memory areas, netSCRIPT provides 
a garbage collector. The garbage collector releases physical memory which 
has been reserved and occupied by variables no longer used. There is no 
reference any longer to the memory areas to be released by the garbage 
collector. 

The functionality of the garbage collector can explicitly be invoked within 
the script if desired. The function to be invoked for this purpose is described 
in section collectgarbage (opt) on page 45 of this document.  



The netSCRIPT Language 38/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

4.3 Global System Variables 

4.3.1 _G 
_G is a global variable (table). All base functions are deposited within _G 
by Lua as are global variables with their corresponding memory pointers.  

If another environment should be used for the script, another environment 
can be set with the function „setfenv (f, table)“ using the statement 
FOR k,v IN pairs(_G) DO print(k,v) END 

 

4.3.2 _VERSION 
This is a global variable containing the version signification of Lua on which 
netSCRIPT is based. 

4.3.3 _NETSCRIPT_VERSION 
This is a global variable containing the version number of the netScript en-
vironment. 

4.3.4 CYCLIC_FUNCTION 
After loading the script, the compiled code of the script is bound to this 
variable. At every cyclic start, this variable is evaluated and the code en-
gaged in it is executed. This function is executed beginning from the sec-
ond cyclic start just by assigning a Lua function to this variable. 
CYCLIC_FUNCTION = Funktionsname 

 

Note:  
If a function is assigned to the variable CYCLIC_FUNCTION, this function 
will be executed in the debugger on level 0. Without this assignment, how-
ever, the main program will be executed on level 0 within the debugger. 

 



The netSCRIPT Language 39/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

4.4 Operations 
The following operations are integrated within netSCRIPT: The listing 
shows the operations with ascending priority: 

 
     or 
     and 
     <     >     <=    >=    ~=    == 
     .. 
     +     - 
     *     /     % 
     not   #     - (unary) 
     ^ 

4.4.1 Mathematic Operations 
 

Operator Description Example 1 Example 2 
+ Serves for the addition of values. c = a + b 1 + 3 = 4 

- Serves for the subtraction of values. c = a - b 5 - 3 = 2 

* Serves for the multiplication of val-
ues. 

c = a * b 2 * 3 = 6 

/ Serves for the division of values. c = a / b 8 / 2 = 4 

^ Serves for the determination of the 
power of values (power of a with ex-
ponent b). 

c = a ^ b 2 ^ 3 = 8 = (2 * 2 
* 2) 

- Serves for the negation of values, i.e. 
plus will become minus and vice 
versa. 

c = -a if   a == 2,  
then   c == -2 

% Mathematical function that indicates 
the rest of a division of interger num-
bers 

 7 mod 2 = 1 
because 7:2 = 3, 
rest 1 

Table 15: Overview of mathematical operations 

There is a specific feature in netScript. Within an expression such as  
 2 + "6" the second value will not be interpreted as a text, but as a num-
ber and 8 will be displayed as result. However, there may be no characters 
between the single or double hyphens as this would inhibit the evaluation. 
For instance, the interpreter would neither understand nor numerically 
evaluate an expression such as 2 + "6s". 



The netSCRIPT Language 40/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

4.4.2 Logic Operations 
There are three operands defined: 

    AND, OR and NOT   
Operator Description 
and Both condition 1 and condition 2 must be fulfilled:  

Result = Bedingung1 and Bedingung2. 
or Condition 1 or condition 2 must be fulfilled: 

Result = condition 1 or condition 2. 
not This is the negation of the former state 

Table 16: Overview of logical operations 

Examples of logical operations: 

Variable definitions: 
    sunshine = true 
    dark = false 
    lightoff = true 

 
Operator Example Result 

and sunshine and dark false 

or sunshine or lightof true 

not NOT sunshine false 

Table 17: Examples of Logical Operations  

For other logical operations on bit level see section 6.1 Bit-Operation. 

4.4.3 Relational Operators 
It is only permitted to compare identical types. If the types are different, 
then the result is false.  

The following relational operators are defined: 
Operator Description Example Result 
== Left side is equal the right side? "Willi" == "willi" false 

~= Left side is not equal the right side? "Willi" ~= "willi" true 

< Left side is smaller than the right 
side? 

2 < 3 true 

> Left side is greater than the right 
side? 

2 > 3 false 

<= Left side is less or equal the right 
side? 

2 <= 3 true 

>= Left side is greater or equal the right 
side? 

2 >= 3 false 

Table 18: Overview of the Relation Operators 

If the values at the left and the right side are not of the same type, an error 
will occur. 



The netSCRIPT Language 41/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

4.4.4 Control Structures 
For, while, repeat. 

4.4.4.1 FOR-Statement 

Example: 

1.  FOR var1 = start, stop, step DO 
       Block 
    END 

The Block represents a list of instructions. Initially, the value start will be 
assigned to the variable var1. 

During every cycle (between DO and END) the variable var1 will be in-
creased by the value of step. This will happen until var1 will be equal to 
the value of stop. Finally, the next statement behind END will be executed 
then. 

 

2.  FOR var1 IN table DO 
      Block 
   END 

The Block represents a list of instructions. The loop (between DO and END) 
will be repeated as long as the value of the variable var1 exists in the vari-
able table. If the value of var1 is not contained within the table, the 
statement behind  END will be executed. 

 

4.4.4.2 WHILE loop 
WHILE CONDITION DO 
  Block 
END 

The Block represents a list of instructions. As long as the CONDITION is 
evaluated as true, the statements between DO and END will be executed. 

 

4.4.4.3 REPEAT loop 
REPEAT 
  BLOCK 
UNTIL CONDITION 

The Block represents a list of instructions. As long as CONDITION is 
evaluated as true, the statements contained in the BLOCK will be executed. 
If the CONDITION will become false, the statement following UNTIL will be 
executed. 

Contrary to the for-loop, the BLOCK will at least be executed once. 



The netSCRIPT Language 42/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

4.4.4.4 BREAK 

The BREAK statement makes enables leaving a loop independent of the 
step-in condition or the step-out condition. 

The script will directly be continued following the END respectively UNTIL 
statement of the loop. 

 

4.4.5 Branch Statement if ...then 
blockA 
IF CONDITION 1 THEN block1  
 [ELSEIF CONDITION 2 THEN block2]  
  [else block3]  
END 
blockB 

If CONDITION1 is true, the block of statements block1 following the first 
THEN will be executed. 

If CONDITION1 is false, it will be checked whether CONDITION2 follow-
ing the  ELSEIF statement is true. In that case, the block of statements 
block2 will be executed. The line {ELSEIF CONDITION THEN block} 
can be repeated arbitrarily often between IF and END if necessary. 

If neither CONDITION1 nor CONDITION2 is true, the block of statements 
block3 will be executed. If the block of statements block3 does not ex-
ist, the program will be continued with blockB following the END statement. 

After the IF statement, processing will be continued with blockB, inde-
pendently from execution of the blocks block1, block2, or block3. 



The netSCRIPT Language 43/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

4.5 Functions 
Functions are encapsulated blocks of instructions which provide their own 
environment for variables, which will be initialized by every call. The com-
munication with other program statements will be accomplished by the use 
of transfer parameters. 

A function needs to be defined before it can be called. 

The variable environment of a function can be defined by the function 
„setfenv“ as described in chapter 5.1.17 setfenv (f, table) of this docu-
ment. 

4.5.1 Definition of a Function 
FUNCTION name (var1, var2, var3) 
  Block1 
 [RETURN var2, var3] 
END 

 

Statement Description 
function Starts a definition of a function. 

name The name of the function by which it may be called from an other 
statement. 

(var1, var2, 
var3) 

Transfer parameter list. The parameters will each be divided by a 
comma. The parameters are defined locally and not known within the 
other program parts. 

Block1 Processing block. All variables defined within this block are local vari-
ables, all others are global ones. 

return var2, 
vari 

The keyword „return“ will cause returning from processing a function. 
Following a „return“ statement on or more comma separated values 
may be specified, whose values will be returned to the statement 
which originally has called the function. 

END Marks the end of the definition of the function. 

Table 19: netSCRIPT - Function Definition 



The netSCRIPT Language 44/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

4.5.2 Function Calls 
As an example, the function defined in chapter 4.5.1 will be called. 
varD, varE = name(varA, varB, varC) 

 

varD The global variable varD will accept the value of the local 
return variable var2 from chapter 4.5.1. 

varE The global variable varE will accept the value of the local 
return varable var3. 

name Name of the function to be called under which it has been 
defined. 

(varA, 
varB, 
varC) 

Between the (round) parentheses there are arbitrary ex-
pressions whose values will be transferred to the function. 
The assignments is as follows: 

varA  var1 

varB  var2 

varC  var3 

Table 20: netSCRIPT - Function Call  

Practical example of the definition of a function and its call. 
Code Result: print (x). 
function add(a,b) 
    x=a+b 
return x 
end 
 
x = add(1,4) 
print(x) 
print(add(2,5)) 

 
 
 
 
 
 
5 
7 

Table 21: netSCRIPT - Example of Function Definition and Call 



Functions Library 45/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

5 Functions Library  
Not all functions of the OS-Library defined in the Lua standard are usable, 
because they are not sensible in this environment. 

5.1 Base Functions 
Following base functions are integrated: 

5.1.1 assert (v [, message]) 
Conditional error message transmission 

This function issues an error if the value of its argument v is false (i.e., nil 
or false); otherwise, it returns all of its arguments. message is an error 
message; when absent, it defaults to "assertion failed!" 

 

5.1.2 collectgarbage (opt) 
This function provides an interface to the garbage collector. According to its 
first argument, (opt), different functions will be performed: 

opt Function 

“stop” Stops the garbage collector. 

“restart” Restarts the garbage collector. 

“collect” Performs a full garbage-collection cycle 

"count" Returns the total amount of memory in use by netSCRIPT 
(specified in kBytes). 

Table 22: netSCRIPT – Garbage Collector 

Example: 
a = (collectgarbage ("count")) 

returns the total amount of memory in use by netSCRIPT (in kBytes). 

5.1.3 error (message [, level]) 
Absolute error message 

(conditional error message see section assert (v [, message])) 

This function aborts the execution of the script issuing an error message. 
Exception: If the call is located within a function having been called with 
„pcall“, execution will be continued after the invocation of  „pcall“. 
The last protected function call is finished (with „pcall“, see section pcall (f, 
arg1, ···)) and transfers the contents of variables „message“ and „level“ to 
the function „pcall“ 
A line number will precede the error message. The level parameter indi-
cates which line is mentioned. The value 1 indicates the current position 
within the script. Within the execution of a function call, if a value of 2 is in-
dicated for the level parameter, the position from where this function has 
been invoked is indicated. Within iterated function calls, even larger values 
are possible. 



Functions Library 46/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

5.1.4 getfenv ([f]) 
This functions returns the environment (table) currently used by the function 
for storage of the variables of the function “f”. Usually, this is the table _G. 
Also see section setfenv (f, table) on page 50 of this document. 

f“ can be a netSCRIPT function or a number of the stack level representing 
this function.  

If the given function is not a netSCRIPT function, or if „f“ is 0, getfenv re-
turns the table of global environment (_G). The default value for “f” is 1 

5.1.5 getmetatable (object) 
This function returns the metatable of the object specified within parameter 
“object”. 

• If “object” does not have a metatable, this  function will return “nil”. 

• Otherwise, if the object's metatable has a "__metatable" field, it will 
return the metatable of the given object. 

5.1.6 ipairs (t) 
This function returns an iterator function for the use in for loops, for in-
stance. It returns the value pairs of a table of all entries with an integer key 
until the first alpha key or missing entry of the index row. 

 
Code Result: print (k,v). 
t = {100,200,300,400, x="22"} 
t[10]=42 
for k, v in ipairs (t) do 
print (k,v) 
end 

 
1 100 
2 200 
3 300 
4 400 

 

5.1.7 load (func [, blockname]) 
This function loads a block using function „func“ until the value „nil“ is re-
turned. The respective result of „func“ is again stored within a function. 

Each call to „func“ must return a string that is concatenated with previous 
results. Returning an empty string or the value „nil“ indicates the end of the 
block. 

If no errors are discovered during compilation of the block, the code will be 
stored within a function, otherwise the value „nil“ will be returned and an 
according error message will be issued. „blockname“ is used in this con-
text for error messages and for debug information. 



Functions Library 47/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

 
Code Result 
n=0 
stuecke = {"pri", "nt(", "42", ")"} 
function gettext() 
    n=n+1 
    return stuecke[n] 
end 
a = (load(gettext, "test")) 
pcall(a) 

 
 
 
 
 
 
 
42 

 

In the example above, as an end result, the statement „print(42)“ will 
be executed. 

5.1.8 loadstring (string [, blockname]) 
Using this function, the contents of „string“ are transferred into a function 
call. 

In order to load and start a string, the following syntax has to be used: 
     assert(loadstring(s))() 

For indicating probable errors at run time, it is beneficial to provide a 
blockname, which will be output along with the error. 

 

If absent, blockname defaults to the given string. 

An example for building a function and the subsequent function call with pa-
rameter passing.  

Code Result 
fn = loadstring("return function (x) 
print(x) end", "testprog") 
a = fn() 
a(50) 

 
 
 
50 

 

5.1.9 next (table, index) 
This function returns the key and the value of the next entry of the table (in-
cremented by 1 compared to the current index of the table) from the mem-
ory for this table. 

table Table name 

index Index of the table, it is not necessary that this is 
numeric. 

 
Code Result 
t = {100,200,300,400,500} 
print (next (t,3)) 

 
4 400 

 



Functions Library 48/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

5.1.10 pairs (t) 
This function returns an iterator function for for loops returning the value 
pairs of a table one by one: 

Code Result: print (k,v). 
t = {100,200,300,x = "nix", 500} 
for k, v in pairs (t) do 
print (k,v) 
end 

1 100 
2 200 
3 300 
4 500 
x nix 

 

5.1.11 pcall (f, arg1, ···) 
This function calls function f with the given parameters “PAR1,    .”   

The call should look like 
OK, x1, x2, x3 = pcall (f, PAR1, PAR2, ....) 

If the execution of function “f” completes without any errors, the value „true“ 
is assigned to the return parameter OK and the following parameters x1, 
x2, x3 will contain the returned values of function “f”. 

If an error occurs during the execution of function “f” the return parameter 
OK will contain the value false and parameter x1 will contain such informa-
tion as: 

• Name of script 

• Line number at which the error occurred 

• A text describing the error 

5.1.12 print (par1, par2, ···) 
This function is a standard function of Lua which is designed as a 
standard output function but will be totally ineffective within a net-
SCRIPT enabled device due to the missing standard output facility.  
In this context, the function is only mentioned to enable reproduction of the 
examples of the basic function within a standard Lua environment (on the 
PC).  

The function puts out each of the listed parameters on the standard output 
channel. The function is not suited for formatted output. 

For formatted output, the function string.format() has to be applied prior to 
print(). 

5.1.13 rawequal (par1, par2) 
This function checks par1 for equality with par2without invoking any 
metamethod. The return value is true or false. 

The comparison is done without invoking any meta functions. 



Functions Library 49/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

5.1.14 rawget (table, index) 
This function delivers the table entry table[index] without execution of 
any meta functions. 

In the following example, a default value is set for the situation of an absent 
table entry to be returned at a normal table request. Function „rawget“ will 
return the actual entry. 

Code Result 
t={} 
function default(tab, key) 
    return 42 
end 
mt={__index=default} 
setmetatable(t, mt) 
t.a=1 
t.c=3 
print(t.a, t.b, t.c) 
print(rawget(t, "a"), rawget(t, 
"b"), rawget(t, "c")) 

 
 
 
 
 
 
 
 
1 42 3 
1 nil 3 

 

5.1.15 rawset (table, index, value) 
This function executes the assignment table[index]=value without ap-
plication of any meta functions. 

In the following example, a normal insertion into the table is performed us-
ing the „set“ function, and read access to table „t“ is performed using func-
tion „default“ 

Code Result  
t={} 
function default(tab, key) –[[ Default value 
if index not available]] 
    return 42 
end 
function set(table, key, value) –[[ new entry 
in the table]] 
    print(table, key, value) 
    rawset(table, key, value)   
end 
 
mt={__index=default, __newindex=set} -- 
setmetatable(t, mt) 
t.a=1 
t.c=3 
rawset(t, "d", 4) 
print("normal access: " 
          , t.a, t.b, t.c, t.d) 
print("with rawget: ", rawget(t, "a"), raw-
get(t, "b"), rawget(t, "c"), rawget(t, "d")) 

 
 
 
 
 
 
 
table: 01004A00 a
table: 01004A00 c
 
 
 
 
 
 
 
normal access: 
  1 42 3 4 
with rawget: 
  1 nil 3 4 

 



Functions Library 50/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

5.1.16 select (index, par1, par2, par3, ···) 
If “index” is a number, the parameter of the index number and all other pa-
rameters are returned. 

If “index” = „#“, the number of entries will be returned. 

Example: 
Code Result  
i = 2 
a = select(i, "anton", "berta", 
          "cesar", "delta") 
print ("Var1 =",a) 
print (select(i, "anton", 
      "bater", "cesar", 
      "delta")) 

 
 
 
Var1 = berta 
 
bater cesar
delta 

 

5.1.17 setfenv (f, table) 
This function sets the environment to be used for the given function „f“ to 
the table „table“. 

Instead of the also the level in which the function runs may be specified 
like: 

„f“ = n;  

n=1:  the current level;  

n= n+1  the next level above the current level 

n= 0  indicates a change of the environment of the currently used level 

Return values:  

The function in which this function is called. 

 
 

 

Note: This function may not be applied at level 0 as this would cause the 
loss of the references to all functions. 

 



Functions Library 51/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

5.1.18 setmetatable (table, metatable) 
Assigns a meta table „metatable” to a table „table“. If „metatable” = „nil“, 
an existing meta table will be removed from the table „table“.  

This function enables the definition of new operations for table values which 
would otherwise be forbidden. These functions need to be declared within 
the meta table accordingly. 

The following functions may be redefined: 

 
Function Application for the Standard call 
__add Addition (+) 
__sub Subtraction (-) 
__mul Multiplication (*) 
__div Division (/) 
__pow Calculation of the power of the arguments (e) 
__unm The unary minus („-„) operation applied to a table. 
__concat Concatenation of two tables using. 
__eq Check of two tables for equality using the relation operator ==. 
__lt Comparison of two tables using the relation operator <. 
__le Comparison of two tables using the relation operator <=  
__index Call of a not existing table index. 
__newindex Insertion of a new entry (index) to a table. 
__call Access to any value within the table 
__tostring Application of the function tostring onto a table 

Table 23: netSCRIPT - Function Replacements using Function setmetatable 

Further information can be found under the topic Metatable Lua documen-
tation available at http://www.lua.org/manual/5.1/ section 2.8. 

 

http://www.lua.org/manual/5.1/


Functions Library 52/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

The following example shows the generation and addition of new table en-
tries:  

Code Result  
-- carrier table for vector functions 
vector ={} 
 
-- constructor: generates a new vector object.  
-- packs the arguments in a new   
-- table and sets the meta table of this table. 
-- The arguments have to be numeric. 
function vector.new(...) 
    local v = {...} 
    setmetatable(v, vector.mt) 
    return v 
end 
 
-- generates a printable string from a 
-- vector. 
-- the function table.concat gives a string   
-- separated by commas with the content of the vector. 
function vector.toString(self) 
    return ("(" .. table.concat(self, ",") .. ")") 
end 
 
-- adds two vectors and gives the result 
-- in a vector  
function vector.add(v1, v2)  
    local v = {} 
    for i=1, math.min(#v1, #v2) do v[i]= v1[i]+v2[i] end 
    setmetatable(v, vector.mt) 
    return v 
end 
 
-- meta table 
-- the entry __add cause that the operator + applied to   
-- two vector objects calls the add function 
--  
-- the entry __index cause that the defined functions  
-- are directly callable to a vector object  
-- v:toString() 
vector.mt={__add=vector.add, __index=vector} 
 
-- Generates two vectors and adds them 
vec1 = vector.new(1,2,3) 
print("vec1 = ", vec1:toString()) 
 
vec2 = vector.new(10, 10, 10) 
print("vec2 = ", vec2:toString()) 
 
vec3 = vec1 + vec2 
print("VEC1 + VEC2 =", vec3:toString()) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
vec1 = 
(1,2,3) 
 
vec2 = 
(10,10,10) 
 
VEC1 + VEC2 
= (11,12,13) 

 



Functions Library 53/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

5.1.19 tonumber (e [, base]) 
This function tries to convert its argument “e” to a number in a representa-
tion to the base „base“ if the parameter is a number or strings that can be 
evaluated to a number. Otherwise, it will return nil. 
The optional parameter „base“ may range between 2 and 36 where the mi-
nor or major letter „A“ represents the number 10, whereas „Z“ represents 
the number 35.  

The default value of base is 10. 

Example: 
Code Result  
print(tonumber("55")) 
print(tonumber(55)) 
print(tonumber("55a")) 
print(tonumber(10101.1012e12)) 
print(tonumber("100110", 2)) 
print(tonumber("100112", 2)) 
print(tonumber(0xff)) 
print(tonumber("LUA",36)) 

55 
55 
Nil 
1.01011012e+16 
38 
nil 
255 
28306 

 
 

 

Note: The maximum possible numerical value for hexadecimal numbers 
to be applied here is 0xffffffff. Larger values, like for instance 
0x100000000 will be “rounded” to 0xffffffff without any error message be-
ing issued. 

 

5.1.20 tostring (e) 
Converts each data type into a string. Sometimes the function 
“string.format” may be suited better for this purpose. 

 
 

 

Note: If this function is applied to tables or functions, for instance, the type 
and the address of the table or function will be returned. 

 

 

5.1.21 type (v) 
This function returns the type of parameter “v“. Possible results of this func-
tion are: 
“nil”, "number", "string", "boolean", "table", "func-
tion", "thread", and "userdata". 



Functions Library 54/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

5.1.22 unpack (list [, i [, j]]) 
This function returns the elements of table list including all numeric key 
values starting from key number i up to last key number j. 
Example: 
t={[1]=“a“, [2]=“b“, [4]=“c“} 
unpack(t) = „a“, „b“, nil, „c“ 

If j has been specified, the corresponding part of the list will be returned. If j 
has not been specified, only the values beginning from position i until the 
first index for which no according value has been stored, will be returned. 
Thus, in the last example only the values „a“ und „b“ would have been re-
turned. 

5.1.23 xpcall (f, err) 
This function is quite similar to the function „pcall“, but contrary to that func-
tion it allows the invocation of a special error handler using the „err“ pa-
rameter. 

„xpcall“ calls function „f“ in protected mode and uses „err“ as error handler, 
which allows a reaction to the error message  

Return values in case of success 

1. „true“ 

2. All return parameters of function „f“ 
Return values in case of failure 

1. “false”  

2. The result of the evaluation of „err“ 



Functions Library 55/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

5.2 String Manipulation 
Besides the library „string“ there is also the concatenation operator „..“ for 
the concatenation of strings. This allows the concatenation of two strings. 

 
Code Result 
A = 1; B = 3; C="a"  
print(A..B..C) 

 
13a 

 

In the example above, it is mandatory that each variable to be concate-
nated must be formerly defined. This must be taken care of especially when 
something should be concatenated to an existing string, for instance, within 
the following statement:  

„ STR = STR..string.char(ICHAR) „ 

The library „string“ contains further common functions for STRING  manipu-
lation. All functions concerning strings are contained within the table 
„string“. 

If an index is set onto a string, take care of the first character really being at 
position one. 

The library „string“ is based on a one byte character coding. 

5.2.1 string.byte (s [, i [, j]]) 
This string manipulation function returns the internal numerical codes of the 
characters of string “s” beginning with position “i” up to position “j”. 
The default value for „i“ is 1; the default value for „j“ is i. 

Example: 
Code Result 
str = "abcdefghijklm" 
print(string.byte(str,3,7)) 

99 100 101 
102 103 

 

5.2.2 string.char (...) 
This string manipulation function generates a string out of a list of byte val-
ues in the range of 0 up to 255. This is the reverse functionality of 
„string.byte“ described just above. 

5.2.3 string.find (s, pattern [, init [, plain]]) 
This string manipulation function looks for the first match of “pattern” in the 
string “s” and returns the found range by the number of the start character 
and the number of the final character. If no match is found, „nil“ will be re-
turned. 

Init (numeric value) indicates the starting position from where to search. 
If the pattern contains a string which also can be interpreted as a class of 
characters, but this should not be interpreted in such a way, the last pa-
rameter „plain“ has to be set to the value „true“. However, for this purpose 
the parameter „init“ is required. 



Functions Library 56/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

5.2.3.1 Patterns 

Patterns are sequences of pattern items. Commonly, a pattern comparison 
is successful if any part of the examined string matches the pattern. 

The characters of the pattern are enclosed in anchors within substrings. 
These anchors can be represented by the characters „$“ (dollar sign) or „^“ 
(arrow up). Outside of substrings, however, these characters represent 
themselves. 

The character „^“ at the beginning of the pattern causes the comparison to 
succeed only in case of a match between the pattern and the first part of 
the string to be examined. The same holds true for „$“ and the end of the 
string. The combination of both means the whole string must match the pat-
tern. 

Detection or exchange of patterns are relevant topics when performing 
string manipulations. Therefore, some special options are provided for pat-
tern detection. 

5.2.3.2 Captures 

A sub-pattern (i.e. a partial pattern) can be marked by enclosure in paren-
theses for the definition of captures. A pattern comparison will then not only 
return the part of a string which is matched by the pattern itself, but also 
such parts, which are covered by the sub-patterns enclosed in brackets.  

The sub-patterns are numbered according to the position of the opening 
bracket. For example in the pattern „(a*(.)%w(%s*))“:  

The match with string „(a*(.)%w(%s*))“ receives number 1, the match with 
„.“ receives number 2 and the match with string „%s*“ receives number 3. 



Functions Library 57/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

5.2.3.3 Character Classes 

A character class (class of characters) is used to represent a specific set of 
characters. The following combinations allow the description of specific 
character classes: 

• .: (a dot) represents all characters besides the characters ^$()%.[]*+-? 
which have a special meaning and which represent themselves. 

• %a: represents all letters. 

• %c: represents all control characters. 

• %d: represents all digits. 

• %l: represents all lowercase letters. 

• %p: represents all punctuation characters. 

• %s: represents all kinds of space characters. 

• %u: represents all uppercase letters. 

• %w: represents all alphanumeric characters. 

• %x: represents all hexadecimal digits. 

• %z: represents the character with representation 0. 

• %*: (where “*” is any non-alphanumeric character) represents the char-
acter *. This is the standard way to mark a character which is also used 
as control character within the script language as a character to be 
searched within the string. This is also valid for the character % (per-
cent sign) itself. 

• [set]: represents a group of characters in „set ”. A range of charac-
ters can be specified by the end sign „-„. All classes „%*“ can be used 
within „set“ as described above. All other characters represent them-
selves. 

Example: 
[%w_] or [_%w] represent all alphanumeric characters plus the under-
score; [0-7] represents all numbers from 0 to 7 and [0-7%l%-] 
represents all numbers from 0 to 7, the minor letters and the sign „-„ 
(minus sign).  
Example: 

Code Result:  
s1 = "b1cad2aa bc" 
print(string.find(s1, "[2-6]")) 

 
6   6 

 

• [^set]: represents the complement of set, where set is interpreted 
as described above. 

• For all classes represented by single letters (%a, %c, etc.), the corre-
sponding uppercase letter represents the complement of the class. For 
instance, %S represents all non-space characters.  
E.g. %W represents all non-alphanumeric characters. 



Functions Library 58/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

5.2.3.4 Pattern item 

A pattern item can be:  

• a single character class, which exactly matches a single character in the 
class;  

• a single character class followed by „*“ matches the longest possible 
sequence of 0,1 or multiple characters of the class. 

• a single character class followed by „+“ matches the longest possible 
sequence of 1 or multiple characters of the class. 

• Example: 
Code Result  
s1 = "bc1caaaad2aa bcade" 
print(string.find(s1, "ca")) 
print(string.find(s1, "ca*")) 
print(string.find(s1, "ca+")) 
print(string.find(s1, "a+")) 

 
4 5 
2 2 
4 8 
5 8 

 

• a single character class followed by '-', which also matches 0 or more 
than one repetitions of characters in the class.  
 

Code Result  
s1 = "bc1caaaad2aa bcade" 
print(string.find(s1, "ca-",3)) 
print(string.find(s1, "a-",3)) 

 
4 4 
3 2 

 

• a single character class followed by '?', which matches 0 or 1 occur-
rences of a character in the class; 

Code Result 
s1 = "bc1caaaad2aa bcade" 
print(string.find(s1, "ca?")) 
print(string.find(s1, "ca?",3)) 

 
2 2 
4 5 

 

• %n, for n between 1 and 9; such item matches a substring equal to the n-
th string having been captured (see below);  

• %bxy, where x and y are two distinct characters; such item matches 
strings starting with x and ending with y, and where the x and y are bal-
anced. This means that, if one reads the string from left to right, count-
ing +1 for an x and -1 for a y, the ending y is the first y where the count 
reaches 0.  



Functions Library 59/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

5.2.4 string.format (formatstring, ···) 
This string manipulation function returns a formatted string consisting of a 
variable number of arguments according to the transformation description 
for formatting for the argument. A format instruction starts with a “%” char-
acter. 

 

A transformation specification consists of the following: 

% [F] [W] [G] U 
F, W and G are optional, U is mandatory. 

The meaning is: 

F = Formatting sign. 

W = Output distance „n“; n = Minimum number of the signs to be dis-
tributed. 

G = Precision; „.“ or „.*”  „.n” (n = integer) 

U = Transformation sign. 

Formatting characters: „[F]“ 
Formatting characters Meaning 
„-„ Flush left adjustment. 
„+“ With output of the algebraic sign „+“ or „-„ 
„ „ (space) If the first character of the argument is no algebraic sign, a 

blank will be displayed. 
„0“ On numerical output it is filling up with zeros will be done 

until the given width is reached. 
„#“ The effect of „"#" depends on the change character: 

With "0" or „x, X“ the value with leading "0" or "0x" will be 
displayed. 
In "e, E, f" the value is displayed with decimal dot is dis-
played, even if no post comma places exist. 
With „g, G“ the value with decimal dot and post comma ze-
ros is displayed. 

Table 24: netSCRIPT - Function string.format - Formatting Characters 

Distance: „[W]“ 
Output width Meaning 
„n„ At least n places are displayed. If necessary, places with 

leading zeros are filled in. 

An unavailable or too small width will never cause characters not to be dis-
played. If the result of a transformation contains more characters than the 
width provides, nevertheless all characters will be displayed then. 

 



Functions Library 60/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

Transformation characters: „U“ 
Transformation char-
acters 

Meaning 

„d“, „i“ As a signed whole decimal number. 
„o“ As an unsigned whole octal number 
„u“ As an unsigned whole decimal number. Attention, unex-

pected string output can be produced when putting out 
negative values. 

„x“, „X“ As an unsigned whole hexadecimal number 
With „x“  a, b, c, d, e, f 
With „X“  A,B,C,D,E,F 

„f“ Floating decimal point number using the format [-
]ddd.ddddd 

„e“, „E“ As a number in exponential representation with the base 
10. Thereby, the exponent includes at least 2 digits. 
With “e” [-]d.ddde±dd 
With “E” [-]d.dddE±dd 

„g“, „G“ According to "e" or "E" if the exponent is less than -4, oth-
erwise using the “f” format. 

„c“ As Character. 
„s“ As a character string. 
„%“ The character "%" is displayed and no argument is evalu-

ated. 
„q“ Special option for the output of control character. The In-

terpretation of the control characters depends on the con-
nected device. 

Table 25: netSCRIPT - Function string.format - Transformation Characters 

Precision: „[G]“ 
Output width With change character Meaning 

d, i, o, u, x, X Least number of characters to be 
displayed. 

e, E, f Number of the post comma places 
to be displayed. 

g, G Maximum number of characters to 
be displayed. 

„.n„ 
Where n is a 
whole number 
is. 

others Undefined behavior 
„.*”  The next argument must be inte-

ger. If the value of this argument is 
negative, this accuracy specifica-
tion will be ignored. 

Table 26: netSCRIPT - Function string.format - Accuracy entries 



Functions Library 61/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

Control characters within the string 
Control character Meaning on a terminal 
„\a“ Ringing tone (also feasible with "\007"). 

„\b“ Backspace (positioning one character position backwards). 
„\f“ Page feed. 
„\n“ New line. 
„\r“ Carriage return (to the beginning of the momentary line). 
„\v“ Vertical tab character. 
„\’“ Hyphen 
„\““ Quotation mark 
„\\“ Backslash 

Table 27: netSCRIPT - Function string.format - Control Characters 

The effect of the above control characters depends on the interpreting de-
vice in each case. 

Examples of a formatting: 
Code Result 
a = 3.1415926535 
print(string.format("pi = %.4f", a)) 

 
pi = 3.1416 

tag, title = "h1", "A title" 
print(string.format("<%s>%s</%s>", 
tag, title, tag)) 

 
<h1>A Title</h1> 

b = 56.3 
print(string.format("%.4f", b)) 
print(string.format("%10.4f", b)) 
print(string.format("%12.4f", b)) 

 
56.3000 
   56.3000 
     56.3000 

c = -112345.12345 
print(string.format("%d", c)) 
print(string.format("%e", c)) 
print(string.format("%g", c)) 

 
-112345 
-1.123451e+005 
-112345 

d = -123.4567e-3 
print(string.format("%G", d)) 
print(string.format("%%", d)) 

 
-0.123457 
% 

print(string.format('%q', ' a string 
"test" and \n a new line ')) 

"a string \"Test\" and \ 
a new line " 

print(string.format('%q', ' a string 
test and \n a \t new line ')) 

"a string test and \ 
 a   new line" 
 

 



Functions Library 62/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

5.2.5 string.gmatch (s, pattern) 
This string manipulation function returns a function looking for “pattern” 
within “s” and then returns them. The returned function will notice up to 
where it has already searched and will return the next occurrence at the 
next invocation until the string has been processed completely. 

Return parameter: 
The search function. 

Example: 

"%a" looks for letters. 

"%a+" looks for letters as long as there are letters available. 

1. A little application. 
Code Result 
S = "hello wor1ld from Lua" 
--[[note the number 1 in 
S = "hello wor1ld from Lua"]] 
MyFunc = string.gfind(S, "%a+") 
print( MyFunc() ) 
print( MyFunc() ) 
print( MyFunc() ) 
print( MyFunc() ) 
print( MyFunc() ) 
print( MyFunc() )  --[[The function    
                      has no return!]] 

 
 
 
 
Hello 
Wor 
ld 
from 
Lua 
 

 

2. Application using the generic for loop: 
Code Result 
S = "hello world from Lua" 
for wort in string.gfind(S, "%a+") do 
  print(wort) 
 
 
 
end 

 
 

hello 
world 
from 
Lua 
 

 

3. Application using the generic for loop in conjunction with a table: 
Code Result 
MYTABLE = {} 
S = "from=world, to=Lua" 
for K, V in string.gfind(s,  
     
 "(%w+)=(%w+)") do 
  print(k,v) 
 
 MYTABLE[K] = V 
end 

 
 
 
 
 
from world
to  Lua 

 



Functions Library 63/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

Here a search for a word is performed, which is followed by an equal sign, 
then again followed by a word. Word 1 is stored within the first variable (k), 
and then word 2 is stored within variable v.  

Then the table is allocated as follows 
        MYTABLE["from"] == "world" 
        MYTABLE ["to"]   == "Lua" 

Accordingly: 
        MYTABLE.from == "world" 
        MYTABLE.to   == "Lua" 

 

5.2.6 string.gsub (s, pattern, repl [, n]) 
This string manipulation function returns a copy of “s” in which all (or the 
first “n”, if specified) occurrences of “pattern” have been replaced by a re-
placement string specified by „repl“ 
The replacement string may be a string, a table, or a function. “gsub” also 
returns, as its second value, the total number of matches having occurred. 

If „repl“ is a string, then its value is used for replacement for the found pat-
tern. The character „%“ works as an escape character: any sequence in 
„repl“ of the form „%n“ with “n“ between 1 and 9 represents the value of the 
n-th captured substring (see below). The sequence %0 represents the whole 
match. The sequence „%% represents a single „%“ character. 

 
Code Result 
print(string.gsub("hello world", 
"(%w+)", "%1 %1")) 

hello hello 
world world

print(string.gsub("hello world anton", 
"(%w+)", "%1 %1",1)) 

hello hello 
world anton

print(string.gsub("hello world from 
Lua", "(%w+)%s*(%w+)", "%2 %1")) 

world hello 
Lua from 

 

If “repl” is a table, the value taken from the table will be replaced within „s“ 
which is found within the table at the key, which belongs to the correspond-
ing match of „pattern“. 
 

Code Result 
local t = {name="lua", version="5.1"} 
print (string.gsub("$name-
$version.tar.gz", "%$(%w+)", t)) 

 
lua-5.1.tar.gz

 

If “repl” is a function, then this function is called every time a match occurs, 
as long as there are matches with “pattern” in „s“.  



Functions Library 64/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

 
Code Result 
print(string.gsub("4+5 = $return 
       4+5$", "%$(.-)%$",  
    function (s) 
      return loadstring(s)() 
    end)) 

4+5 = 9 1 

To the explanation of the above call here a subdivision 
with her results:  

 

print(string.find ("4+5 = $return 4+5$",  
                   "%$(.-)%$")) 

7 18  
return 4+5 

 
s = "return 4+5" 
print(loadstring(s)()) 

 
9 

 

The character “$” in the above example is used as a delimiter. 

If the value returned by the table query or by the function call is a string or a 
number, then the return value will be used as replacement string; other-
wise, if it is false or nil, then no replacement will occur. 

5.2.7 string.len (s) 
This string manipulation function receives a string„s“ and returns its length 
(number of characters). The character “\” within the string is not counted as 
character. If the „\“ character is followed by a couple of zeroes (such as 
„\000“) only the first zero after the „\“ character will be counted in this con-
text. 

Code Result 
print(string.len ("a\000")) 
print(string.len ("a\bbbbb")) 
print(string.len ("a/bbbbb")) 

2 
6 
7 

 

5.2.8 string.lower (s) 
This string manipulation function receives a string and returns a copy of this 
string “s” with all uppercase letters transformed to lowercase (and all other 
characters will remain unchanged) 

5.2.9 string.match (s, pattern [, init]) 
This string manipulation function looks for the first match of “pattern” in the 
string “s”. If a match occurs, the matching part of „s“ will be returned, oth-
erwise the value „nil“ will be returned.  

With the parameter „init“, it can be specified at which position within the 
string to start the search 



Functions Library 65/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

5.2.10 string.rep (s, n) 
This string manipulation function reproduces the string „s“ exactly „n“ 
times. 

Code Result 
return = string.rep ("Lua ", 5) 
print( return ) 

 
Lua Lua Lua 
Lua Lua 

5.2.11 string.reverse (s) 
This string manipulation function returns a string containing the characters 
of “s” in reversed order. 

5.2.12 string.sub (s, i [, j]) 
This string manipulation returns the substring of string s beginning at “i” 
and continuing until “j” is reached. If j is not specified, it will be set to the 
value 1. I fit is negative, the until-position will be counted from the end of 
the string. 

5.2.13 string.upper (s) 
This string manipulation function receives a string and returns a copy of this 
string “s” with all lowercase letters transformed to uppercase (and all other 
characters will remain unchanged). 



Functions Library 66/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

5.3 Table Manipulation 
This library provides fundamental functions for table manipulation. 
 

 

Note: The result of functions concat, insert, remove und sort is not 
defined, if there are „holes“ within the indices of the tables, such as {„a“, 
„b“, „c“, [5]=“d“} 

 

 

5.3.1 table.concat (table [, sep [, i [, j]]]), 
This table manipulation function produces one string from the contents of a 
table containing elements/entries only consisting of numbers and strings. 
The separator „sep“ (default „nil“) indicates how the single variables have 
to be separated. „i“ (default = 1) indicates from which line of the table out-
put shall begin. „j“ (default = Table length) determines up to which line of 
the table the output shall be continued. In case of  i > j an empty string will 
be returned. 

 
Code Result 
t1 = {"a", "b", "c", "d", "e"} 
print(table.concat (t1, "; ",2,4)) 

 
b; c; d 

 

5.3.2 table.insert (table, [pos,] value) 
This table manipulation function inserts element „value“ at position „pos“ 
into the table. The default value for „pos“ is n+1, where n is the length of 
the table. If „pos“ > n+1, nothing at all will be inserted. 

Code Result 
t1 = {"a", "b", "c", "d", "e"} 
table.insert(t1,3,"10") 
print(table.concat (t1, "; ")) 

 
 
a; b; 10; 
c; d; e 

 

If the table contains integer indices with holes, the input position is unde-
fined. 

5.3.3 table.maxn (table) 
This table manipulation function returns the largest positive numerical index 
of the given table „table“, or zero if there is no numerical index in the table.  

5.3.4 table.remove (table [, pos]) 
This table manipulation function removes the entry at position „pos“ from 
„table“, shifting down all other elements in order to close the gap, if neces-
sary. The default value for „pos“ is n, so that a call “table.remove(t)” will 
remove the last element of table “t”. However, this is only valid if the table 
indices are a running sequence 1, …, n. commonly, an entry will be re-
moved at position n, for which the following is valid: 
t[n]!=nil, t[n+1]==nil 



Functions Library 67/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

5.3.5 table.sort (table [, comp]) 
This table manipulation function sorts “table” elements in ascending order, 
i(table[n] < table[n+1] in ASCII-Code from table[1] to table[n]  

If another sorting is desired, a parameter comp can be specified, which de-
livers two lines of the table and returns true, if the sorting of the lines corre-
sponds to the desired sorting. 

Without specification of „comp“ the table may contain only numbers or only 
strings. 



Functions Library 68/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

5.4 Mathematical Functions 
This library is an interface to the standard C math library. It provides all its 
functions inside the table “math”. 

5.4.1 math.abs (x) 
This mathematical function returns the absolute value of „x“ 

5.4.2 math.acos (x) 
This mathematical function returns the arc cosine of „x“ (in radians). 

5.4.3 math.asin (x) 
This mathematical function returns the arc sine of „x“ (in radians).. 

5.4.4 math.atan (x) 
This mathematical function returns the arc tangent of „x“ (in radians).. 

5.4.5 math.atan2 (y, x) 
This mathematical function returns the arc tangent of „y“/„x“  (in radians), 
but uses the signs of both parameters to find the quadrant of the result. (It 
also handles correctly the case of „x“ being zero.). 

5.4.6 math.ceil (x) 
This mathematical function returns the smallest integer larger than or equal 
to „x“. 

5.4.7 math.cos (x) 
This mathematical function returns the cosine of „x“ (assumed to be in radi-
ans). 

5.4.8 math.cosh (x) 
This mathematical function returns the cosine of “x” (assumed to be in radi-
ans). 

5.4.9 math.deg (x) 
This mathematical function returns the angle “x” (given in radians) in de-
grees. 

5.4.10 math.exp (x) 
This mathematical function returns the value ex (e^x). 



Functions Library 69/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

5.4.11 math.floor (x) 
This mathematical function returns the largest integer smaller than or equal 
to „x“. 

 

Important: When “x“ is already the result of former calculations, problems 
with rounding may occur and cause inaccuracies. 

5.4.12 math.fmod (x, y) 
This mathematical function returns the remainder of the division of “x” by  
“y”. 

5.4.13 math.frexp (x) 

This mathematical function returns m and e such that x = m*2e., e is an in-
teger and the absolute value of m is in the range [0.5, 1) (or zero when x is 
zero). 

5.4.14 math.huge 
The value HUGE_VAL is a constant representing positive infinity. 

5.4.15 math.ldexp (m, e) 

This mathematical function returns m*2e
 (where “e” is an integer). 

5.4.16 math.log (x) 
This mathematical function returns the natural logarithm of “x”. 

5.4.17 math.log10 (x) 
This mathematical function returns the base-10 logarithm of “x”. 

5.4.18 math.max (x1, x2, ...,xn) 
This mathematical function returns the maximum value among its argu-
ments. 

5.4.19 math.modf (x) 
This mathematical function returns two numbers, the integral part of “x” and 
the fractional part of “x”. 

Code Result 
Print(math.modf(5)) 
Print(math.modf(5.3) 
Print(math.modf(-5.3) 

5 0 
5 0.3 
-5 -0.3 

 



Functions Library 70/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

5.4.20 math.pi 
This mathematical function returns the value of pi (3.1415926535898). 

5.4.21 math.pow (x, y) 

This mathematical function returns xy
. (You can also use the expression 

x^y to compute this value.). 

5.4.22 math.rad (x) 
This mathematical function returns the angle “x” (given in degrees) in radi-
ans. 

5.4.23 math.sin (x) 
This mathematical function returns the sine of “x” (assumed to be in radi-
ans). 

5.4.24 math.sinh (x) 
This mathematical function returns the hyperbolic sine of “x”. 

5.4.25 math.sqrt (x) 
This mathematical function returns the square root of “x”. (You can also use 
the expression „x^0.5“ to compute this value.). 

5.4.26 math.tan (x) 
This mathematical function returns the tangent of “x” (assumed to be in ra-
dians). 

5.4.27 math.tanh (x) 
This mathematical function returns the hyperbolic tangent of “x”. 



Special Functions for netTAP 71/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

6 Special Functions for netTAP 
Additional libraries for netTAP are: "bit" for bit operations and "util" for spe-
cial utilities.  

The interfaces are accessed via instances. 

6.1 Bit-Operations 
These operations are located in the library "bit". Their names start with the 
letter ‘b’. 

This library enables performing bitwise relations between unsigned 32 bit 
integer variables. 

Numbers can be entered in hexadecimal notation in the range 0 - ffffffff. If 
larger values are assigned to the variables, these are delimited to 0xffffffff 
without any error message. 

6.1.1 bit.band 
bit.band(a,b) 
Bit-wise AND relation of the unsigned integer values a and b within the range 0 -  0xFFFFFFFF. 

Argument a numeric  First unsigned 32 bit number. 

Argument b  numeric Second unsigned 32 bit number. 

Unsigned 32 bit number with bit-wise AND relation Return value  
 numeric  

Status-/Error code Lua error, for instance: a number was expected 

State-/error numbers are saved in the variable lasterror. 

6.1.2 bit.bor 
bit.bor(a,b) 
Bit-wise OR relation of the unsigned integer values a and b within the range 0 -  0xFFFFFFFF. 

Argument a numeric  First unsigned 32 bit number. 

Argument b  numeric Second unsigned 32 bit number. 

Unsigned 32 bit number with bit-wise OR relation. Return value  
 numeric  

Status-/Error code Lua error, for instance: a number was expected 

State-/error numbers are saved in the variable lasterror.  

6.1.3 bit.bxor 
bit.bxor(a,b) 
Bit-wise XOR relation (exclusive OR relation) of the unsigned integer values a and b within the range 0 - 0xFFFFFFFF. 

Argument a numeric  First unsigned 32 bit number. 

Argument b  numeric Second unsigned 32 bit number. 

Unsigned 32 bit number with bit-wise XOR relation. Return value  
 numeric  

Status-/Error code Lua error, for instance: a number was expected 

State-/error numbers are saved in the variable lasterror. 



Special Functions for netTAP 72/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

6.1.4 bit.bnot 
bit.bnot(a) 
Bit-wise inverting of argument a 

Argument a numeric Unsigned 32 bit number to be negated. 

Unsigned 32 bit number having been inverted bit-wise  Return value  
 numeric  

Status-/Error code Lua error, for instance: a number was expected 

State-/error numbers are saved in the variable lasterror. 

6.1.5 bit.lshift 
bit.lshift(a, n) 
Shift bits to the left. 

Argument a numeric Unsigned 32 bit number to be shifted. 

Argument n  numeric The number of bit positions how far the bits should be shifted to the left. 

Unsigned 32 bit number bit-wise shifted to the left by n positions. The bit positions becom-
ing vacant on the right will be filled in with zeros. 

Return value  
 numeric 

 

Status-/Error code Lua error, for instance: a number was expected 

State-/error numbers are saved in the variable lasterror. 

6.1.6 bit.rshift 
bit.rshift(a, n) 
Shift bits to the right. 

Argument a numeric Unsigned 32 bit number to be shifted. 

Argument n  numeric The number of bit positions how far the bits should be shifted to the right. 

Unsigned 32 bit number bit-wise shifted to the left by n positions. The bit positions becom-
ing vacant on the left will be filled in with zeros. 

Return value  
 numeric 

 

Status-/Error code Lua error, for instance: a number was expected 

State-/error numbers are saved in the variable lasterror. 



Special Functions for netTAP 73/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

6.2 Conversions of Numbers 
The following conversions of numbers can be accomplished: 

• From Lua number (stored in any format) to binary format (stored within 
a string). 

• From binary format (stored within a string) to Lua number (stored in any 
format). 

 

Important note about range of allowed values and accuracy: Inter-
nally, Lua works with double floating point numbers with 52 Bit mantissa. 
This allows the representation of all signed or unsigned into values from 8 
to 32 bits width without any inaccuracies caused by truncation losses, 
however, this does not apply for 64-bit values. 

 

6.2.1 util.NumToBin 
util.numToBin(num,util.Type[,ENDIAN]) 
This conversion function converts a number into a binary representation, e.g. numToBin(0x12345678, util.UINT32) 
results in a string with the bytes 0x78 0x56 0x34 0x12. 

Argument 1 num  Number to be converted in any arbitrary Lua format. 

Argument 2 Type  The data type to be converted. The following types are possible: 
UNIT8, UNIT16, UNIT32, UNIT64; INT8, INT16, INT32, INT64; FLOAT, DOUBLE. 
The prefix "util." may never be omitted. It is used in conjunction with every data type. 

Argument 3  
 ENDIAN  

LITTLE_ENDIAN: The low byte comes first within the return string. 
BIG_ENDIAN: The high byte comes first within the return string. 
This argument is optional. The default value is LITTLE_ENDIAN. 

String with binary representation. Return value  
 String  Nil, on conversion error. 

ERR_INVALID_PARAMETER (0xc0800301) 
   Invalid value for destination type or argument ENDIAN. 

Status-/Error code 

ERR_OUT_OF_RANGE (0xc0800302) 
   The number violates the value range of the destination type. 

State-/error numbers are saved in the variable lasterror.  

 



Special Functions for netTAP 74/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

6.2.2 util.BinToNum 
util.binToNum(str,util.Type[,ENDIAN]) 
This conversion function converts the binary representation of a number into a Lua-Number. binToNum(str, 
util.UINT32), where  str is a String containing the Bytes 0x78 0x56 0x34 0x12, would return the number 0x12345678. 

Argument 1 str  String containing the sequence of binary characters. 

Argument 2 Type  The destination data type for the conversion. The following types are possible: 
UNIT8, UNIT16, UNIT32, UNIT64; INT8, INT16, INT32, INT64; FLOAT, DOUBLE. 
The prefix "util." may never be omitted. It is used in conjunction with every data type. 

Argument 3  
 ENDIAN  

LITTLE_ENDIAN: The low byte comes first within the return string. 
BIG_ENDIAN: The high byte comes first within the return string. 
This argument is optional. The default value is LITTLE_ENDIAN. 

Number in the Lua format. Return value  
 String  Nil, in case of conversion error. 

ERR_INVALID_PARAMETER (0xc0800301) 
   Invalid value for destination type or argument ENDIAN. 

Status-/Error code 

ERR_WRONG_SIZE (0xc0800303) 
   String has the wrong length for the given type. 

State-/error numbers are saved in the variable lasterror. 



Special Functions for netTAP 75/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

6.3 LED – Control 
This LED control function enables you to set or reset the Duo COM-LED 
status display in the secondary netTAP network module located at the right 
side of the device. Also see netTAP NT100 User Manual, section Serial 
Communication with netSCRIPT 

If the netSCRIPT program is not running, for instance, at debugging, or in 
case no netSCRIPT program has been loaded at all, the device will take 
over control of the LED. In this case, the LED will cyclically blink in red 
color. 

 

6.3.1 util.SetLed 
 

util.setLed(Name, [Condition]) 
Switches the Duo COM-LED on or off. 

run  the green COM-LED will be switched on. Argument 1 Name 

error  the red COM-LED will be switched on. 
true  LED on (default). Argument 2 Condition 

false  LED off. 

Return value none 

Status-/Error code UTIL_INVALID_PARAMETER (0x C0800401) 
   Unknown value for target type or ENDIAN. 

 



Special Functions for netTAP 76/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

6.4 Requesting the Cycle Time of the Script 
For some applications, it can be important which cycle time has been given 
to the script by SYCON. The cycle time can be requested with the following 
function: 

 

6.4.1 util.GetCycleTime 
 

util.GetCycleTime() 
This function returns the configured cycle time of the script, specified in units of milliseconds. The time is adjusted 
within the configuration tool SYCON.net and will be transferred to the destination device together with the script pro-
gram. 

Arguments none 

Return value Script cycle time during milliseconds 

Status-/Error code none 

 



Special Functions for netTAP 77/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

6.5 CRC Checksum Functions 
The check sum function has been implemented similarly to the Rocksoft 
CRC model. More information about the Rocksoft CRC model is available 
at http://www.ross.net/crc/download/crc_v3.txt. 

To calculate any checksums, at first a hash object needs to be created. Us-
ing this hash object, the CRC calculation is performed from the provided 
data by additional function calls. Also a check sum of multiple single data 
packets can be created using this object. 

 

6.5.1 Creation of Check Sum Object „HashCreate“ 
 

util.HashCreate (Type constant, [Parameter]) 
Creates a hash object, performs some precalculations which are done only once (at CRC a table is precalculated). 

Arguments:  Type con-
stant 

This item determines which kind of procedure is used for check sum calculation. For pos-
sible values see Table 28. 

 Parameter Are only possible if type constant „util.HASHTYPE_CRC“ is used. For possible values see 
Table 29. 

Return value Hash object: Object, which is used to perform check sum calculations 
 

Status-/ error code UTIL_INVALID_PARAMETER (C0800401)  
Invalid parameter value (e.g. target type, endianness, LED identifier). 

 

6.5.1.1 Variants of Check Sum Calculation 
 

Check Sum Type constant in function 
in util.HashCreate 

Parameter 

CRC util.HASHTYPE_CRC See below 
Byte wise XOR util.HASHTYPE_XOR - 
Byte wise sum mod 256 util.HASHTYPE_SUM - 

Table 28: netSCRIPT -  Variants of check sum calculation 

http://www.ross.net/crc/download/crc_v3.txt


Special Functions for netTAP 78/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

6.5.1.2 Parameter for Check Sum Calculation Variant CRC 

For a CRC check sum the hash object is created as follows: 

 
util.HashCreate(util.HASHTYPE_CRC, Width, Poly, Init, 
RefIn, RefOut, XorOut) 

 

In this context, the arguments have the following meaning 
Argument Meaning 
Width Degree of the polynomial, i.e. the largest exponent within the polynomial 

(8..32) 
Poly Polynomial as numerical value, e.g. the coefficients without the leading 

1. 
For the polynomial x16 + x15 + x2 + 1 the following is valid: Width = 16 
and Poly = (binary) 1000000000000101 = 0x8005; 
For the polynomial x15 + x2 + 1 the following is valid:  Width = 15 and 
Poly = (binary) = 0x5 

Init Initial value of the CRC register (0.. 2^width – 1) 
RefIn Indicates the order of bit processing within the data bytes 

false: most significant bit first 
true: least significant bit first 

RefOut If set to true, the return value of the CRC calculation is reversed (mir-
rored) such as 
10101111  11110101 

XorOut The return value  of the CRC calculation is finally (eventually after bit-
wise reversal (RefOut = true)) XOR-related with the value specified 
here. Allowed range: 0 ... 2^width – 1 

Table 29: netSCRIPT - CRC Parameters 

6.5.2 Functions for Check Sum Calculation 
The created hash object provides the following functions for check sum cal-
culation: 

6.5.2.1 Data Transfer to Hash Object  
:Hash (string) 
„Adds“ the calculation of the data of „string“ to the checksum.  

Arguments:  string byte wise addition onto the check sum of the specified object 

Parameter none 

Return value none 

If this function is called more than once (without having been reset mean-
while), the check sum will be collectively calculated over all strings having 
been transferred. 



Special Functions for netTAP 79/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

6.5.2.2 Check Sum Request 
:HashResult() 
Delivers the current check sum as numerical value of the specified object. 

Arguments:   none 

Parameter current check sum of specified object 

Return value none 

 

6.5.2.3 Reset of Hash Object 

Prior to a repeated calculation of the check sum for one or multiple data 
packets, the hash object needs to be reset to the initial state.  

:HashReset() 
Resets the hash object to the initial state. 

Arguments:   none 

Parameter none 

Return value none 

 

 

6.5.2.4 Example Script for the Usage of CRC Functions 

Creation of hash object „h“ (necessary only once): 
h = util.HashCreate(util.HASHTYPE_CRC, 16, 0x8005, 0, 
true, true, 0) 

 

Calculation of CRC value: 
h:Hash(„Halli“) 

Read out of CRC value: 
hcrc = h:HashResult() 

 

Using the string functions, the CRC value can be inserted or appended at 
an arbitrary position of the string to be sent. 

 

Prior to the next calculation, the hash object is required to be reset: 
h:HashReset() 

 

 



Serial Communication 80/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

7 Serial Communication 
The communication to the serial UART interface runs independently from 
the communication to the controller (also denominated as PLC or host). 

The entire send and receive processing of the serial communication inter-
face is automatically controlled by netSCRIPT functions. Only the levels 1 
and 2 of the OSI communication model are administered outside of and in-
dependently from netSCRIPT. Therefore, the handling of start and stop bits 
and parity bits is no task to be handled within the netSCRIPT program. For 
correct function of the serial UART they only need to be configured once at 
the initialization of the serial port. 

Other protocol requirements can be realized with netSCRIPT within the 
program parts for send and receive operations themselves, for instance 
CRC and check sum processing. 

The communication functions for block mode provided by netSCRIPT allow 
serial communication over the UART only in Half-Duplex transmission.  

The communication functions for character mode provided by netSCRIPT 
allow serial communication over the UART in Full-Duplex transmission. 

Verify in your script if the serial line is free for a send command for RS-422 
and RS-485 with multiple active participants.  

 

7.1 Configuration Parameters for Data Transmission 
The following configuration parameters have been defined for serial com-
munication: 

Parameter Table key Range  Default 
Baud rate baudrate 6 … 1000000 115200 
Number of data bits databits 1 … 8 8 
Parity mode paritymode See below None 
Number of stop bits stopbits 1 … 65535 1 
Shift direction shiftdirection See below LSB first 
Interface type  interfacetype See below RtsCts 
Handshake polarity handshakepolarity See below 0 
Bus idle symbol busIdlesymbol 0/1 1 
Invert data mode invertdatamode true/false false 
Transfer Mode charmode true/false 

See below 
false 



Serial Communication 81/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

 

Additional parameter for block mode: 
Parameter Table key Range  Default 
Acknowledge delay time: 
On reception, this timing pa-
rameter  is the maximum time 
to wait  until the first character 
is received (specified in units of 
10ns)  

ackdelaytime 0-2^32-1 0 repre-
senting 
∞ 

Character delay time: 
On reception, this timing pa-
rameter  is the maximum time 
between two characters until 
the end of the character se-
quence is detected (specified 
in units of 10ns) 

chardelaytime 0-2^32-1 0 repre-
senting 
∞ 

Character sequence for detec-
tion of end 

endpattern See below empty 

Mask for detection of end endmask See below empty 
Number of trailing bytes traillen 0 … 255 0 

Table 30: netSCRIPT - UART Parameters 

The parameters are saved in a netSCRIPT table. They are accessible in 
the netSCRIPT table via the "table key" given in the table above and they 
are also modifiable. 

The default value will become effective if no table is defined or no entry ex-
ists in the table for this key. 

The parameters of the table above, for which the entry: "See below" can be 
found in column "Range", can accept the following predefined values: 

 

paritymode: 
port.PARITY_EVEN 0 in the even number of ones 

in the transfer data string, otherwise 1 

port.PARITY_ODD 1 in an even number of ones  
in the transfer data string, therwise 0. 

port.PARITY_NONE (no Parity bit will be transmitted.) 

port.PARITY_MARK 1 Parity bit with the fixed value 1 will be 
transmitted.) 

port.PARITY_SPACE  (1 Parity bit with the fixed value 0 will be 
transmitted.) 

 

shiftdirection: 
port.SHIFT_DIRECTION_LSB_FIRST:   

(The lowest order byte will be transmit-
ted at first.) 

port.SHIFT_DIRECTION_MSB_FIRST:  
(The highest order byte will be transmit-
ted at first.) 

 



Serial Communication 82/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

handshakemode: 
port.HANDSHAKE_MODE_RS232 (without Hardware 

 Handshake) 

port.HANDSHAKE_MODE_RS232_RTS_CTS  
 (with Hardware Handshake) 

port.INTERFACE_TYPE_RS422 RS422 

port.HANDSHAKE_MODE_RS485  RS485 

 

handshakepolarity: 
This parameter determines for the RS232 interface type with hard-
ware handshake the current status of RTS signal. This parameter 
does not have any importance for all other types of interfaces. 

 

charmode: 
true: the data transfer is done in character mode. 

false: the data transfer is done in block mode. 

 

endpattern: 
This is a string of max. 8 bytes, and defines the character sequence 
by which the end of the telegram is recognized. 

 

endmask: 
This is a string of max. 8 bytes. If this parameter is specified, it de-
fines the bits, which have to be taken into account when recognizing 
the end of the telegram from endpattern. The following rules apply: 

0  The bit is not used for comparison  

1  The bit is used for comparison 

 

7.1.1 Functions for Initialization of the Serial Interface 

7.1.1.1 PortReadConfigDb 
PortReadConfigDb() 
This function reads configuration table of the UART interface saved by the SYCON.net (see section Device Selection) 
and transfers this table in a local table of the script in order to be able to modify the table there, if necessary. 

Arguments: none 

A Table is returned if the configuration file stored within the netTAP device by SYCON.net 
is present and can be interpreted. 

Return value  

Nil if no table could be generated. 

ERR.PORT_NO_UARTDB (0xC0800214) 
    There is no stored configuration table present. 

Status-/Error code within 
the variable „lasterror“ 

ERR.PORT_PARSING_UARTDB (0xC0800215) 
    The stored configuration table could not be read. 

 

 



Serial Communication 83/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

7.1.1.2 PortOpen 
PortOpen([port number],[configuration table]) 
Initializes and configures the UART interface 

Arguments: 
   port number 

 
Optionally, default value = 2, possible values: 0...3. netTAP100 only supports port 2 

   configuration table Optionally, if not available, the default parameter is used. The entries of the table overwrite 
the default parameters. 

Port instance if executed successfully Return value  

Nil if the port could not be opened. 

err.PORT_NO_SUCH_PORT (0x40800211) 
    The transferred port number does not exist or is not supported. 

err.PORT_ALREADY_OPEN (0x40800212) 
    The port has already been opened. 

err.PORT_INVALID_CONFIG (0xC0800201) 
    The transferred configuration table contains an invalid value. 

Status-/Error code within 
the variable „lasterror“ 

err.PORT_XC_INIT_FAILED  (0xC0800206) 
    The serial interface could not be initialized.  

 

 



Serial Communication 84/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

7.1.1.3 :PortClose 
:PortClose () 
This function rejects all data not yet sent and closes the port.  
 
The instance which was returned by the function "PortOpen" is to be inserted as a prefix immediately preceding the co-
lon. 

Arguments: none 

Return value: none 

err.PORT_NOT_OPEN (0xC0800213) 
   The used instance of the port has not been opened. 

Status-/Error code within 
the variable „lasterror“ 

err.PORT_XC_INIT_FAILED  (0xC0800206) 
   The port could not be closed. 

 

7.1.2 Example for Adjustment of Parameter Settings 
The performed functions must be executed in the given order. The single 
function calls are optional. However, the last function call is mandatory. 

7.1.2.1 Function Call including reading SYCON.net Settings 
conf = PortReadConfigDb() --[[read in SYCON.net  
                             configuration table]]-- 

conf.baudrate = 9600 – just modify baudrate  

xuart = PortOpen(conf) – open the interface with 
                         configuration table “conf” 
 

See also the example script on the DVD  
„Examples\netSCRIPT\Serial Port Blockmode\blkmode.lua 

7.1.2.2 Function Call including without reading SYCON.net Settings 

In this case the standard parameters described in section Configuration Pa-
rameters for Data Transmission apply. Then the function call  
xuart = PortOpen() 

is sufficient. 

For example, if only the baud rate shall be modified compared to the stan-
dard parameter set, the following sequence of instructions can be applied: 
conf = {baudrate = 9600} 
xuart = PortOpen(conf) 

See also the example script on the DVD   
„Examples\netSCRIPT\Serial Port Blockmode\blkmode.lua 

7.1.2.3 Closing the Ports  

To close the port which was opened in the example in section 7.1.2.1 and 
7.1.2.2 use: 
xuart:PortClose() 

 



Serial Communication in Block Mode 85/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

8 Serial Communication in Block Mode 
Several send and receive requests can be transferred from netSCRIPT to 
the UART synchronously. netSCRIPT reserves a special area in memory of 
16 Kbytes for transfer of serial data to and from the UART. This memory 
area is dynamically allocated to the single requests according to their re-
quired amount of transmitted user data. Maximally, each send or transmit 
command can transfer 1024 Bytes user data. 64 Bytes of administration 
data are put in front of each command. In the limiting case, this results in 
16 Kbytes / 1088 Bytes = 15 requests each with 1024 Bytes of user data to 
be processed synchronously. For example, if only 64 Bytes of user data are 
required to be transmitted, then 16 Kbytes / 128 Bytes = 128 requests may 
be activated. 

Send and receive requests are activated as sequential requests in the se-
rial UART via the netSCRIPT program. It is possible to transfer several re-
quests to the UART synchronously. At each call, netSCRIPT dynamically 
reserves a sufficiently large transmission buffer per command, which is 
provided for sending and receiving. The number of requests to be activated 
in parallel synchronously depends on the amount of user data of the single 
requests. The parameters required for the calculation of this number can be 
found in the introduction of this section. 

The serial UART provides two queues (FIFOs). Into the so called Request 
FIFO the single send and receive requests are entered according to the 
FIFO principle (First In First Out). netSCRIPT provides corresponding func-
tions for this purpose. The UART sequentially processes the requests and 
acknowledges the requests within the so called Confirmation FIFO in a 
manner readable for netSCRIPT. Accessing this queue enables the net-
SCRIPT user to determine whether the requests have been processed 
successfully or a failure happened. Doing so, the acknowledgement of the 
request is removed from the Confirmation FIFO and the formerly allocated 
memory space is released and provided as free storage area for new re-
quests. Thus a circulation of request blocks is set up. Requests cannot 
overtake one another, as the FIFO principle is always obeyed. 

If two or more send requests are activated within the UART immediately fol-
lowing one after the other, the data are sent on the serial interface without 
any gap if the baud rate is not too high and the requests are processed with 
sufficient speed. In this manner it is possible to produce data streams of a 
length of more than 1024 Byte. 

If the execution of the netSCRIPT program is faster than the requests can 
be processed by the UART due to a low baud rate, a lack of free request 
blocks may occur. If no free request block is available any more, a send or 
receive request will finally be denied. 

The single requests can be supplied with an identification number to iden-
tify them uniquely after processing. Send and receive requests with or with-
out identification number can arbitrarily be combined. 



Serial Communication in Block Mode 86/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

8.1 Block Processing without Identification Number 
When using send request without identification number, the processed re-
quests do not need to be removed from the Confirmation FIFO. For this 
kind of request netSCRIPT always takes over this task automatically per-
forming a check for processed requests without ID at the invocation of each 
function of the serial interface and removing those requests. In this way, an 
arbitrary number of subsequent send requests can be activated without 
having to use a further netSCRIPT function. Thus the script program is sim-
ply, but there is no possibility to check for success or failure of the requests. 

The general sequence of execution is illustrated in the following picture, 
and is described in the following table. 

Point of 
time 

Description 

T1 The first sending block #1 is in the UART to be processed for sending. 5 
further blocks wait in the queue of the Request FIFO for being processed 
in UART. 

T2 The first block has been processed completely by the UART. It is for-
warded to the Confirmation FIFO queue.  

T3 The first receive block is currently in processing, two sent blocks still re-
main in the Confirmation FIFO queue. The receive block remains as long 
as it’s being processed within the UART as long as the defined number of 
characters has been received. 

T4 The receive request # 4 is filled with incoming data as they arrive at the 
UART until the expected amount of data has been reached. 
If now during T4 a request on received data occurs within the netSCRIPT 
program, all send requests without ID will be removed from the Confirma-
tion FIFO queue. (Symbolically these requests are crossed). The Receive 
data are read out and this block is also released. 

T5 The send request #5 is currently in the UART to be processed for sending. 
The receive data frame of request #4 can be read out by netSCRIPT. 

Table 31: Sequence of Block Processing without Identification Number 



Serial Communication in Block Mode 87/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

 
Figure 10: Send and Receive Data without Block-Id 

 



Serial Communication in Block Mode 88/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

8.2 Block Processing with Identification Number 
Aim of using requests with identification number is to be able to uniquely 
identify these during request processing and to be aware of their status of 
transmission. This directly affects the program execution in netSCRIPT as 
already processed requests must explicitly be removed from the queue of 
the Confirmation FIFO by netSCRIPT function calls. Multiple requests with 
ID may be requested synchronously. 

The general sequence of execution is illustrated in the following picture, 
and is described in the following table. 

Point of 
time t 

Description 

T1...T3 The execution up to the time T3 exactly corresponds to the execution at 
block processing without identification number. 

T4 If the data of the first receive data frame are to be read, the data frames 
for sending must be read / deleted from the Confirmation FIFO queue by 2 
function calls before being able to process the receive data of request #3. 

T5 Reading of the blocks 1, 2 and 3 has removed these from the Confirma-
tion FIFO queue. Thus the request #4, which already has been filled with 
data at the time T4, can now be processed. 

Table 32: Sequence of Block processing with Identification Number 

 
Figure 11: Send and Receive Data with Block-Id 

 



Serial Communication in Block Mode 89/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

8.3 Send / Receive Functions for the Block Mode 
Before the functions described in this chapter can be used, the UART must 
be initialized by calling function „PortOpen“. Doing so, will create an in-
stance, which has to be prepended to functions.  

Example: 
myuart = PortOpen() 

By this call mentioned above a port instance has been generated to be 
prepend to all of the following port functions. 

Example for passing the instance to the send function: 
myuart:PortSend(.........) 

8.3.1 :PortSend 
:PortSend(string, [id]) 
Generates a sending request in the Request FIFO queue and passes the data to be sent 

Arguments: string Contains the data to be sent. Data length ≤ 1024 Byte. 

 id Optionally, request identification number within the range of 0...2^32-1. 

Return value: true, if the send request could successfully be put into the Request FIFO queue. 

 false, if the send request could not be generated. 

err.PORT_STRING_TOO_LONG (0x40800218) 
   The string having been passed exceeds the limit of 1024 bytes. 

err.PORT_FIFO_FULL  (0x40800205) 
   The Request FIFO is completely filled; try to wait for the end of processing of running 
requests and to retry the request later on. 

err.PORT_NO_BUFFER (0x40800210) 
   No send buffer of sufficient size could be provided. First data of completed requests 
must be fetched in order to be able to provide buffers of sufficient size. 

err.PORT_NOT_OPEN (0xC0800213) 
   The specified port has not been opened. 

Status-/Error code  
in „lasterror“ 

err.PORT_WRONG_MODE (0xC0800203) 
   The port was opened in character mode and can’t be used requested with block mode. 

 



Serial Communication in Block Mode 90/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

8.3.2 :PortReceive 
:PortReceive(len, [fMatch, [fTimeout]], [id]) 
Creates a receive request within the Request FIFO Queue. The parameters len, fMatch and fTimeout are transferred 
to the UART for detection of end of reception. The UART finishes the reception of data if any of these three conditions 
is fulfilled. 
Contrary to a pure send request without ID processing of the request must in each case be accomplished using the 
function :PortIsReceiveDone() when issuing a receive request, independently, whether an id has been passed to the 
:PortReceive() function or not. 

Arguments: len Number of bytes to be received. Possible values are: 1...1024, the default value is 1024. 
true, the parameters endPattern and endMask are used for detection of end of reception. 
The reception data length must be less than the argument len. 

 fMatch 

false, no checks for detection of end of reception are done (default). 

true, (default) the UART parameters ackDelayTime and charDelayTime are used for the 
monitoring by the UART.  

 fTimeout 

false, the UART parameters ackDelayTime and charDelayTime are not used for the re-
ception monitoring by the UART. 

 id Freely assignable request identification number within the range 0...2^32-1. 

true, if the request could successfully be put into the Request FIFO queue. Return value: 

false, if the request could not be generated. 

err.PORT_INVALID_PARAMETER (0x 40800216) 
   An invalid parameter has been passed; please check the allowed range of values.  

err.PORT_FIFO_FULL (0x40800205) 
   The Request FIFO is completely filled; try to wait for the end of processing of running 
requests and to retry the request later on. 

err.PORT_NO_BUFFER (0x40800210) 
   No send buffer of sufficient size could be provided. First data of completed requests 
must be fetched in order to be able to provide buffers of sufficient size. 

err.PORT_NOT_OPEN (0xC0800213) 
   The specified port has not been opened. 

Status-/Error code  
in „lasterror“ 

err.PORT_WRONG_MODE (0xC0800203) 
   The port was opened in character mode and can’t be used requested with block mode. 

 



Serial Communication in Block Mode 91/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

8.3.3 :PortExchange 
:PortExchange(string, len, [fMatch, [fTimeout]], [id]) 
Generates a sending request in the Request FIFO Queue. Passes the data to be sent (Argument string). After the 
sending of the data by the UART this switches to receive operation and immediately waits for a receive signal. 
The parameters len, fMatch and fTimeout are passed to the UART to the detection of end of reception. The UART 
finishes the reception of data if any of these three conditions is fulfilled. 
Contrary to a pure send a request without ID processing of a combined send/receive request must be accomplished 
using function :PortIsExchangeDone(), independently, whether an id has been passed to the : PortExchange () func-
tion or not. 

Arguments: string Contains the length of the data to send. Data length must be less than 1024 bytes. 

 len Number of bytes to be received. Possible values are: 1...1024, default is 1024. 
If this number of bytes have been received, receive operation will be finished. 
true, the parameters endPattern and endMask are used to the detection of end of recep-
tion. The actual receive data length of the character sequence to be expected must be less 
than the argument len. 

 fMatch 

false, no checks for detection of end of reception are done (default). 

true, (default) the UART parameters ackDelayTime and charDelayTime are used for the 
monitoring by the UART.  

 fTimeout 

false, the UART parameters ackDelayTime and charDelayTime are not used for the re-
ception monitoring by the UART. 

 id Freely assignable request identification number within the range 0...2^32-1. 

true, if the request could successfully be put into the Request queue. Return value: 

false, if the request could not be generated. 

err.PORT_STRING_TOO_LONG (0x 40800218) 
   The string having been passed exceeds the limit of 1024 bytes. 

err.PORT_INVALID_PARAMETER (0x 40800216) 
   An invalid parameter has been passed; please check the allowed range of values.  

err.PORT_FIFO_FULL (0x40800205) 
   The Request FIFO is completely filled; try to wait for the end of processing of running 
requests and to retry the request later on. 

err.PORT_NO_BUFFER (0x 40800210) 
   No send buffer of sufficient size could be provided. First data of completed requests 
must be fetched in order to be able to provide buffers of sufficient size. 

err.PORT_NOT_OPEN (0x 40800213) 
   The specified port has not been opened. 

Status-/Error code  
in „lasterror“ 

err.PORT_WRONG_MODE (0xC0800203) 
   The port was opened in character mode and can’t be used requested with block mode. 

 



Serial Communication in Block Mode 92/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

8.3.4 :PortIsSendDone 
:PortSendDone() 
This function checks for a processed request within the Confirmation FIFO Queue. If present, this request will be re-
moved and its id will be passed as return value. Exactly one, namely the oldest send request will be removed. 
This function must be called only if an id has been passed during activation of the send request. Otherwise, send re-
quests without any id will be removed automatically by netSCRIPT. 
Please note that the function will always remove the timely oldest request. If no processed send request is available, 
the function cannot be processed successfully. 

Arguments: none 

nil, if no send request has been completely processed, or instead of a completed send re-
quest, another kind of completed request is ready to be fetched within the Confirmation 
FIFO Queue. This needs to be removed off the Confirmation FIFO Queue applying the ac-
cording functions. 

Return values: 

id of the released sending request. 

err.PORT_FIFO_EMPTY (0x40800204) 
  The Confirmation FIFO Queue currently does not contain any completely processed re-
quest  

err.PORT_NO_CONFIRMATION (0x40800217) 
  A completely processed request is located at the Confirmation FIFO Queue, but this is no 
send request. Please always fetch the processed requests exactly in the order of their ac-
tivation. 

err.PORT_NOT_OPEN (0xC0800213) 
   The specified port has not been opened. 

Status-/Error code  
in „lasterror“ 

err.PORT_WRONG_MODE (0xC0800203) 
   The port was opened in character mode and can’t be used requested with block mode. 

 

 



Serial Communication in Block Mode 93/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

8.3.5 :PortIsReceiveDone 
:PortReceiveDone() 
This function checks for a processed request within the Confirmation FIFO Queue. If present, this request will be re-
moved and its id will be passed as return value. Exactly one, namely the oldest send request will be removed. 
Please take note that the function will always remove the timely oldest request. If no processed send request is avail-
able, the function cannot be processed successfully. 

Arguments: none 

port.STA_ACK_TIMEOUT (3) 
  Within the configured time ackdelaytime no character could be received 

port.STA_CHAR_TIMEOUT (4) 
  The reception has been finished due to the chardelaytime being elapsed. 

port.STA_SIZE_REACHED (2) 
  The specified number of characters was received.  

port.STA_PATTERN_MATCH (1) 
  The receive request has been processed successfully. The configured detection of end of 
reception by endpattern and endmask was successful and the reception has therefore 
been completed. 

Return value: status 

 

nil, if no other receive request has been completed or instead of a completed receive re-
quest another kind of completed request is ready to be fetched at the Confirmation FIFO 
Queue. At first, this request must be removed from the Confirmation FIFO Queue with an 
according function.  
If nil is returned in this case, all other return values will also be set to the value nil. 
The received string of data  data 
An empty string of length 0, if the status contains port.STA_ACK_TIMEOUT or 
port.STA_CHAR_TIMEOUT, or if error ≠ nil is true. 

nil, with no error occurred. 

port.ERR_PARITY_ERROR (2) 
  A parity error has been detected during reception.  

port.ERR_FRAMING_ERROR (4) 
   A telegram frame error has been detected, such as a start –stop bit error. 

 error 

port.ERR_BREAK_DETECTED (1) 
   A break has been received on the serial interface. 
nil, if the receive request has not been supplied with an id  at its generation  id 

id, which has been supplied to the receive request at generation with t :PortReceive(). 
err.PORT_FIFO_EMPTY (0x40800204) 
  The Confirmation FIFO Queue currently does not contain any completely processed re-
quest  

err.PORT_NO_CONFIRMATION (0x40800217) 
  A completely processed request is located at the Confirmation FIFO Queue, but this is no 
send request. Please always fetch the processed requests exactly in the order of their ac-
tivation. 

err.PORT_NOT_OPEN (0xC0800213) 
   The specified port has not been opened. 

Status-/Error code  
in „lasterror“ 

err.PORT_WRONG_MODE (0xC0800203) 
   The port was opened in character mode and can’t be used requested with block mode. 

 



Serial Communication in Block Mode 94/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

Example of the call of the function: 
sta, data, e , ident = port:PortIsReceiveDone() 
if sta == port.STA_PATTERN_MATCH then 
    
end 

8.3.6 :PortIsExchangeDone 
:PortIsExchangeDone() 
This function checks for a processed combined send/receive request within the Confirmation FIFO Queue. If present, 
this request will be removed and its id and data will be passed as return values. Exactly one, namely the oldest send 
request will be removed. 
Please take note that the function will always remove the timely oldest request. If no processed combined send/receive 
request is available, the function cannot be processed successfully. 
The function returns the contents of the receive data of a send request having been put into the Request FIFO-Queue 
by the function :PortExchange. 

Arguments: none 

port.STA_ACK_TIMEOUT (3) 
  Within the configured time ackdelaytime no character could be received. 

port.STA_CHAR_TIMEOUT (4) 
   The reception has been finished due to the chardelaytime being elapsed. 

port.STA_SIZE_REACHED (2) 
  The specified number of characters was received.  

port.STA_PATTERN_MATCH (1) 
   The receive request has been processed successfully. The configured detection of end 
   of reception by endpattern and endmask was successful, and the reception has been 
   completed. 

Return values 
: status 

nil, If the receipt block not concluded, or not the first block in the Confirmation FIFO cue. In 
this case all the other return values are also nil. 
string, the received data string.  data 
An empty string of length 0, if the status contains s port.STA_ACK_TIMEOUT or 
port.STA_CHAR_TIMEOUT or if error ≠ nil is true. 

nil, if no error has appeared. 

 port.ERR_PARITY_ERROR (2) 
  A parity error has been detected during reception.  

port.ERR_FRAMING_ERROR (4) 
   A telegram frame error has been detected, such as a start – stop bit error. 

 error 

port.ERR_BREAK_DETECTED (1) 
   A break has been received on the serial interface. 

nil, if the receive request has not been supplied with an id  at its generation  id 

id, which has been supplied to the receive request at generation within the Request FIFO. 

err.PORT_FIFO_EMPTY (0x40800204) 
   The Confirmation FIFO Queue currently does not contain any completely processed 
   request  

err.PORT_NO_CONFIRMATION (0x 40800217) 
   A completely processed request is located at the Confirmation FIFO Queue, but this is  
   no send request. Please always fetch the processed requests exactly in the order of their 
   activation. 

err.PORT_NOT_OPEN (0xC0800213) 
   The specified port has not been opened. 

Status-/Error code  
in „lasterror“ 

err.PORT_WRONG_MODE (0xC0800203) 
   The port was opened in character mode and can’t be used requested with block mode. 

 



Serial Communication in Block Mode 95/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

8.3.7 :PortAbort 
:PortAbort() 
This function deletes all blocks from the Request and Confirmation FIFO Queue. 
Processing the currently executed block is immediately aborted. 

Arguments: none 

Return value: none 

err.PORT_NOT_OPEN (0xC0800213) 
   The specified port has not been opened. 

Status-/Error code  
in „lasterror“ 

err.PORT_WRONG_MODE (0xC0800203) 
   The port was opened in character mode and can’t be used requested with block mode. 

 



Serial Communication in Character Mode 96/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

9 Serial Communication in Character Mode  
In character mode the UART operates in full duplex mode. This mode is 
able to send and receive data simultaneously (not for RS-485). Also for RS-
485 the communication in character mod is possible for the script, but 
works on the serial line as in block mode.  

The size of both reception and transmission FIFOs is 256 byte each. 
 

The following graphics illustrates data processing: 

 
Figure 12: Processing on data reception in character mode. 

In FIFO Mode up to 256 characters are recorded. To avoid an overflow of 
the data reception FIFO, the FIFO must be emptied within this data recep-
tion time period by netSCRIPT. 

If there is an overflow at the data reception FIFO, all forthcoming characters 
will be ignored. In this case at the next read access with „PortGetChar“ the 
error message „ERR_RX_FIFO_OVERFLOW“ will be set. 
 

 
Figure 13: Processing on data transmission in character mode. 

The setting of the transmission FIFO allows up to 256 characters to be 
stored there, which can sequentially be put out on the line. If a script func-
tion tries to write more characters into the FIFO as there is free space 
within the transmission FIFO, the write request will be denied from the 
FIFO. 

Behavior at break of line: 
If at the input line (RxD) there is level 0 for 11 bit periods, i.e. on re-
ception of 11 zero-bits (which does not occur at usual data transmis-
sion), the break flag is set and  one zero character is stored. 

In character mode this character with the break flag is immediately 
visible at the FIFO. 

At data transmission, data are sent which will never be received. If 
RTS/CTS handshake has been activated and the received level on 
CTS is not equal to the parameter Handshake Polarity nothing is 
sent. 



Serial Communication in Character Mode 97/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

9.1 Transmission- und Reception Functions 

9.1.1 :PortGetChar 
:PortGetChar([n]) 
Reads n characters out of the FIFO data reception buffer (if available). 

Arguments:  string n is an optional argument indicating how many characters are to be read from the FIFO 
   input memory.  
   If n is not specified, one single character is read. 
   If n is negative, all present characters are read. If no characters are available, 
      then no error  is generated. 

Parameter 
 string 

If  n characters are present in the data reception FIFO, these are returned string. 
If the data reception FIFO contains less than n characters, the value nil will be returned. 

 err port.ERR_PARITY_ERROR (2) 
   There is a parity error at least within one character. 
port.ERR_FRAMING_ERROR (4) 
   A frame error has been detected during the reception of data. 
port.ERR_BREAK_DETECTED 
   A break of the line has been detected. 
port.ERR_RX_FIFO_OVERFLOW (8) 
...The FIFO had an overflow since the last call. 

err.PORT_FIFO_EMPTY (0x40800204) 
   No input data available. Error only if  n>0. 
err.PORT_INVALID_PARAMETER (0x40800216) 
   Port: A function argument is of the wrong type, or its value is outside the allowed range   
(n exceeds 256) 

err.PORT_NOT_OPEN (0xC0800213) 
   Port: Tried to call a function on a port which is not open. 

Status-/ error code in „las-
terror“ 

err.PORT_WRONG_MODE (0xC0800203) 
   Port: Char mode function called in block mode, or vice versa. 

Status-/ error code are store in variable „lasterror“. 

 



Serial Communication in Character Mode 98/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

9.1.2 :PortPutChar 
:PortPutChar(str) 
Passes the string str to the transmission FIFO. If there is not sufficient space in the transmission FIFO, nothing at all 
will be passed. Only the number of data bits defined in the data table for the interface is passed. 

Arguments:  str: Accepts each number of arguments. Each argument can be either a character or a num-
ber. 
String arguments are sent byte wise. If less than eight data bits are configured, the upper 
bits of each byte within the string will be ignored. 
Numeric arguments will be converted into integer values, and the up to 8 least significant 
bits will be sent. 

true, if the request could be placed in the transmission FIFO. Return value: 
 false, if the request could not be placed in the transmission FIFO. 

err.PORT_NOT_OPEN (0xC0800213) 
   Port: Tried to call a function on a port which is not open. 

Status-/Error code  
in „lasterror“ 

err.PORT_WRONG_MODE (0xC0800203) 
   Port: Char mode function called in block mode, or vice versa. 

 

 

Note: If all data within the reception or transmission FIFO shall be erased 
after a interruption of transmission, the port needs to be closed with func-
tion „:PortClose()“ and then reinitialized with function „:PortOpen()“. 

 



Functions for the Communication with the superordinated I/O Network 99/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

10 Functions for the Communication with the su-
perordinated I/O Network 

A buffer of 1024 bytes for each direction is present in the device for the 
communication between netSCRIPT and the superordinated control unit. 
Both netScript and the superordinated control unit have to signal each other 
that new valid data are available and have to acknowledge each other that 
the data have been taken over. This process is named handshake. Two 
operating modes are possible and differ how this handshake is realized.  

1. A read and write function is provided in direct mode to transfer any 
data. Here, no acknowledge for received data or new data is gener-
ated automatically. An acknowledge for received or a detection for 
new data has to be programmed, if necessary, in the script  

2. A handshake procedure is implemented in handshake mode in the 
firmware and executed automatically from netSCRIPT. The script has 
not to take care for this handshake procedure. But this handshake 
procedure has to be programmed in the superordinated control unit.  

A read command is also available here, which however returns data 
only according to the handshake procedure. The take over of the data 
is acknowledged automatically. 

The write command only writes data when the last data written were 
acknowledged.  

A 24 byte large header is additionally available in both directions be-
side the data buffer to transfer the handshake information.  

 

For both communication procedures the following is valid:  

For the data transfer from the serial interface to the superordinated I/O 
network, which is usually the network of a controlling PLC and is named 
"Bus IO", is standardized. The same data transfer method is used for all 
networks like PROFIBUS, CANopen, DeviceNet or Real-Time Ethernet 
based systems like EtherCAT, EtherNet/IP or PROFINET IO.  

For both transfer directions a header of 24 bytes and max. 1024 bytes for 
user data is reserved. Input is the direction from netSCRIPT to the su-
perordinated control unit, because this is the input for the superordinated 
control unit. Output is the direction from the superordinated control unit to 
netSCRIPT, because this is the output for the superordinated control unit.  
 

Byte Output Input Meaning 
0-23 Header for handshake pro-

tocol mode  
Header for handshake pro-
tocol mode 

Handshake flags, Length information, 
Error codes (for handshake mode 
only). 

24-1047 Max. 1024 bytes data Max. 1024 bytes data User data 

Table 33: netSCRIPT, Data Transfer Structure 

The data header (byte 0 ... 23) is also present in direct mode, but is not 
used.  

The user has no direct access to this I/O data transfer memory. The data 
transfer is realized with functions for netSCRIPT instead, which handles the 
necessary access and synchronization. These netSCRIPT functions trans-
fer only the user data.  



Functions for the Communication with the superordinated I/O Network 100/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

The data amount of 1024 bytes is usually too much for I/O networks. It is 
not needed to transfer the complete user data to or from the superordinated 
control unit. The real data amount, which is transferred via the I/O network, 
is configured in the superordinated control unit.  

Example:  
A length of 64 bytes for output and a length of 70 bytes for input is set in 
the control unit for the netSCRIPT device. Reduced by the 24 bytes for the 
data header, netSCRIPT can receive 40 bytes user data per command and 
can send 46 bytes. The amount of user data is a result of the maximum da-
ta amount that should be transferred within one command via netSCRIPT 
to the IO interface. 

 

 

Note: Please note that the structure of I/O data transfer memory is stan-
dardized within netSCRIPT, but the structure can be changed with the 
configuration software SYCON.net before the handover to the superordi-
nated network. It is possible, for example, that the first register is mapped 
to the end of the transfer memory. Read more in the document User Man-
ual, netTAP NT 100, Gateway Devices chapter 7. 

 

10.1 Bus IO Communication – Start and End  
To use the BusIO interface an instance must be created. Via this instance 
the additional functions of netSCRIPT can be used.  

Even when the BusIO interface is set up correctly, user data only can be 
transferred, when the superordinated control unit has released the opera-
tion. This has to be done with the synchronization register and is checked 
by netSCRIPT automatically with the execution of the read and write func-
tions.  

10.1.1 BusIOOpen 
The communication of the BusIO interface is initialized and resources are 
allocated.  

BusIOOpen([Instanznr], [config]) 
Initializes and opens the one BusIO instance. 

Arguments: Instanznr  If empty, the default instance (2) is provided. An instance can only be opened once. 

 config Configuration table, see below. 

instance, when successful. (Has to be used for all additionally interface calls) Return values:  

nil, the instance could not be created. 

err.BUSIO_INVALID_CONFIG (0xC0800303) 
   One config parameter is invalid.  

err.BUSIO_NO_SUCH_INSTANCE (0x40800301) 
   Instance could not be opened. 

Status/error code 
in the variable "lasterror" 

err.BUSIO_ALREADY_OPEN (0x40800302) 
   Instance is already opened.  

 



Functions for the Communication with the superordinated I/O Network 101/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

Structure of the configuration table 
Parameter Key word Range  Default 
Direct mode directmode true/false 

(true = direct mode 
false = handshake mode) 

false 

Max. output length in direct mode (Gateway  Lua) maxreadlen 1..1024 1024 
Max. input length in direct mode (Lua  Gateway) maxwritelen 1..1024 1024 

Table 34: netSCRIPT, BusIO Configuration Table 

The parameter of the BusIO configuration table are necessary for the direct 
mode only.  

 

Example:  open interface in handshake mode 
Gw = BusIOOpen() 

  open interface on direct mode 
Gw = BusIOOpen({directmode = true, maxreadlen = 100, 
                maxwritelen = 50}) 

The amount of the internal copy process for the input and output buffer can 
be limited with the parameter maxreadlen / maxwritelen. Without this infor-
mation always 1024 bytes are copied. 

All read and write commands to this interface has to be done with the in-
stance number returned from the BusIOOpen function as a prefix for the 
following functions. 
 

 

Note:  
By calling this function all input data (data to the superordinated control 
unit) are initialized with 0. 

 

10.1.2 :BusIOClose 
The connection to the BusIO interface is closed. All allocated resources are 
deallocated in the system. The communication on the superordinated net-
work continues.  

Use the function BusIOOpen() again to reopen the communication for net-
SCRIPT to the BusIO interface.  

:BusIOClose () 
Closes the BusIO instance. 

Arguments:  no 

Return value:  no 

Status/error code 
in the variable "lasterror" 

BUSIO_NOT_OPEN (0x40800304) 
   Instance could not be closed, because it was not opened before. 

 

Example: 
Gw:BusIOClose() 
 

 

Note:  
By calling this function all input data (data to the superordinated control 
unit) are initialized with 0. 

 



Functions for the Communication with the superordinated I/O Network 102/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

10.2 Read / Write Functions for Direct Mode 
The 24 byte large header in both directions are unconsidered in direct 
mode. No signaling is done automatically, if data are ready for transfer or 
data already have been taken over. This signaling has to be programmed in 
the script and in the superordinated control unit and within the 1024 data 
buffer.  

 

10.2.1 :BusIOReadDirect() 
 

:BusIOReadDirect([Offset[, Length]]) 
In direct mode 
Reads a user data string from the superordinated control unit via the Bus IO interface. 

Argument  Offset  Offset: Start position in the data buffer of the user data (0 .. maxreadlen-1, Default: 0)  
maxreadlen is the length of data to be transferred, which was defined with the function  
BusIOOpen. 

 Length Length: 0.. maxreadlen-Offset, Default: maxreadlen-Offset  
maxreadlen is the length of data to be transferred, which was defined with the function  
BusIOOpen. 

  

Return Values:  
 string 

Outputdata.  
If no data are transferred from the superordinated control unit after BusIOOpen, then a 
string with zero bytes is returned.  
nil: no error for offset/length  

BUSIO_BUFFER_LENGTH_EXCEEDED (0x40800314) 
   Invalid argument: Offset or lenght. 

BUSIO_NOT_OPEN (0x C0800304) 
   The instance was not opened. 

Status/error code 
in the variable "lasterror" 

BUSIO_WRONG_MODE (0xC0800306) 
   This function was called for an interface, which was opened in handshake mode 

 

Using this function the first 24 bytes of the interface are unconsidered. The 
sender gets no feedback, if the data were read and new data can be send. 



Functions for the Communication with the superordinated I/O Network 103/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

 

10.2.2 :BusIOWriteDirect() 
:BusIOWriteDirect(Offset, string, [fConfirm]) 
In direct mode 
Writes the user data string into the send buffer to the superordninated control unit. This buffer is released only for data 
transfer, if fConfirm is NIL or true. As long as this argument is false the data of the send buffer is not transfered. This 
makes it possible to write the buffer in single steps.  

Arguments:  Offset  Offset: Start position in the data buffer (0 .. maxwritelen-1)  
maxwritelen is the length of data to be transfered, which was defined with the function  
BusIOOpen. 

 string Send data. Length 0..maxwritelen-Offset 

 fConfirm true (Default): After execution of this command the data buffer is copied in the next IO cy-
cle to the superordinated IO interface.  
false: Data buffer is not copied. 

true, if data are stored in the buffer. Return Value: 

false, if data were not stored in the buffer. 

BUSIO_BUFFER_LENGTH_EXCEEDED (0x40800314) 
   Invalid argument: Offset or lenght. 

BUSIO_NOT_OPEN (0xC0800304) 
   The instance was not opened. 

Status/error code 
in the variable "lasterror" 

BUSIO_WRONG_MODE (0xC0800306) 
   This function was called for an interface, which was opened in handshale mode 

 



Functions for the Communication with the superordinated I/O Network 104/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

10.3 Data Header for Handshake Mode 
Each header in the transfer memory starts with a Synchronization register 
of 4 byte size. The superordinated control unit synchronizes the data flow 
via this register. Then a register of 4 byte size follows which contains the 
number of data for the data transfer. For the data direction 'Input' two more 
registers are present for error information to the superorninated control unit.  

The data transfer via the BusIO interface is done via the following structure 
of the I/O data transfer memory.  
Byte Output (from PLC) Input (to PLC) Meaning 
0-3 App_Handshake Prot_Handshake Synchronization register 

see section Handshake 
and Initialization of the I/O 
Communication in Hand-
shake Mode on page 111 

4-7 App_Tx_Bytecount Prot_Rx_Bytecount Number of valid bytes of 
user data . 

8-11 Reserved Prot_Rx_Error Error number, program-
mable, see function 
:BusIOSetError() on page 
109. 

12-15 Reserved Prot_Tx_Error Error number, program-
mable, see function 
:BusIOSetError() on page 
109. 

16-19 Reserved Reserved - 
20-23 Reserved Reserved - 
24-1047 Max. 1024 bytes data Max. 1024 bytes data User data 

Table 35: Communication Data structure 

 



Functions for the Communication with the superordinated I/O Network 105/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

10.4 Read/Write Functions for Handshake Mode 

10.4.1 :BusIORead 
:BusIORead([fConfirm]) 
In Handshake Mode:  
Reads the user data string (from the superordinated control unit) from the BusIO interface, when available and ac-
knowledge it then.  

Arguments:     fConfirm  States, if the read of the data of the control unit has to be acknowledged  
true, receipt of the data will be acknowledged. 
false, receipt of the data is not acknowledged. In this case the the 'receipt of the data' has 
to be used with the parameter value true with this function at a later time . The data trans-
fer method does not allow the control unit to send new data, when old data are not ac-
knowledged.  

string: read from the BusIO interface.  
   If the length information in the header is more than the memory area (>1024 Byte), 
   then nil is returned and lasterror is set to err.BUSIO_STRING_TOO_LONG. The receipt 
   of the data is acknowledged nevertheless, except if fConfirm was set to false. 

Return values: 

nil, when error.  

err.BUSIO_RECEIVE_NO_DATA (0x40800321) 
   No data is available to be read. 

err.BUSIO_RECEIVE_DISABLED (0x40800322) 
   The receipt of the data is not released from the control unit.  

err.BUSIO_STRING_TOO_LONG (0x 40800313) 
   Error in the protocol header: invalid length information in the header from the  
   superordinated control unit. Handshake is not acknowledged.  

err.BUSIO_NOT_OPEN (0x40800304) 
   Instance could not be closed, because it was not opened before. 

Status/error code 
in the variable "lasterror" 

BUSIO_WRONG_MODE (0xC0800306) 
   This function was called for an interface, which was opened in direct mode 

 

10.4.2 :BusIOWrite 
:BusIOWrite(string) 
In Handshake Mode: 
Writes the user data string into the data transfer memory to the control unit, when an earlier data string was already 
acknowledged from the control unit.  

Arguments:  string, to be written to the BusIO interface  

true, when data could be transfered. Return values: 

false, when data could not be transfered.  

err.BUSIO_SEND_NOT_READY (0x40800311) 
   The receipt of the last send data was not acknowledged from the control unit yet.  

err.BUSIO_SEND_DISABLED (0x40800312) 
   The send of the data is not released from the control unit.  

err.BUSIO_STRING_TOO_LONG (0x40800313) 
   A buffer overflow happened. String to long. More than 1024 byte. 

err.BUSIO_NOT_OPEN (0x40800304) 
   Instance could not be closed, because it was not opened before.  

Status/error code 
in the variable "lasterror" 

BUSIO_WRONG_MODE (0xC0800306) 
   This function was called for an interface, which was opened in direct mode 

 



Functions for the Communication with the superordinated I/O Network 106/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

Example for an simple data transfer: 
Gw = BusIOOpen() 

Gw:BusIOWrite(„Hello“)  

The string „Hello“ is written to the BusIO interface. The superordi-
nated control unit gets the signal 'new data available’.  

The function BusIOOpen() has to be called only once in the script. Be-
cause of that the interface is usable until function Gw: :BusIOClose () is 
called.  

 



Functions for the Communication with the superordinated I/O Network 107/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

10.5 Reset Command in Handshake Mode 
The control unit is able to generate a reset command to netSCRIPT via the 
BusIO interface. If this function is intended to be used, then the netSCRIPT 
program has to check regulary to see if this command was activated by the 
control unit.  

The netSCRIPT programmer is responsible for the program to be done for 
a reset. Of course the command can also be used for other purposes.  

The position of the Reset bit in the head data is in section 10.9.1 described. 

10.5.1 :BusIOIsReset 
:BusIOIsReset() 
In Handshake Mode: Reads the APP_HS_RESET_CMD bit of the synchronization register. See section 
Superordinated Control Unit to netSCRIPT on page 112.  
Checks whether an unconfirmed reset command exists. The reaction to this has to be realized by the netSCRIPT pro-
grammer.  

Arguments:  no 

true, an unconfirmed reset command is available.  Return value: bool  
false, no unconfirmed reset command is available.  

err.BUSIO_NOT_OPEN (0x40800304) 
   Instance could not be closed, because it was not opened before. 

Status/error code 
in the variable "lasterror" 

BUSIO_WRONG_MODE (0xC0800306) 
   This function was called for an interface, which was opened in direct mode 

 

 

10.5.2 :BusIOResetDone 
:BusIOResetDone() 
In Handshake Mode: Writes the PROT_HS_RESET_ACK bit of the synchronization register. See section netSCRIPT to 
Superordinated Control Unit on page 113.  
The receipt of the reset command is acknowledged. In general this function is called, when within the netSCRIPT pro-
gram the reset was done.  

Arguments:  no 

Return values: no 

BUSIO_NOT_OPEN (0x40800304) 
   Instance could not be closed, because it was not opened before. 

Status/error code 
in the variable "lasterror" 

BUSIO_WRONG_MODE (0xC0800306) 
   This function was called for an interface, which was opened in direct mode 

 



Functions for the Communication with the superordinated I/O Network 108/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

10.6 Ready Signal to the Control Unit in Handshake Mode 

10.6.1 :BusIOSetRun 
:BusIOSetRun(bool) 
In Handshake Mode: 
Signals the end of the initialization to the superordinated control unit. This function should be the first used within the 
netSCRIPT program after the initialization.  
The signal PROT_HS_RUN_IND is transfered to the superordinated control unit. See also section 10.9.1.2 on page 
113.  

true, sets the status to 'ready'  Arguments:  bool 
false, sets the status to 'not ready' 

Return value:  no 

BUSIO_NOT_OPEN (0x40800304) 
   Instance could not be closed, because it was not opened before. 

Status/error code 
in the variable "lasterror" 

BUSIO_WRONG_MODE (0xC0800306) 
   This function was called for an interface, which was opened in direct mode 

 



Functions for the Communication with the superordinated I/O Network 109/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

10.7 Report an Error to the superordinated Control Unit in 
Handshake Mode 

It is possible to transfer error information to the control unit via the BusIO 
interface. Two error registers are available in the transfer memory for this, 
which can be written by netSCRIPT functions.  

One register is defined for receive errors the other is defined for send er-
rors.  

10.7.1 :BusIOSetError() 
:BusIOSetError(Direction, Errorflag, [Errorcode]) 
In Handshake Mode: 
Sets or clears an error in the transfer memory to the control unit. 
See section Structure for Input - Data netSCRIPT to Control Unit on page 110 and bit PROT_HS_TX_ERROR_IND in 
the synchronization register respectively bit PROT_HS_RX_ERROR_IND. See section netSCRIPT to Superordinated 
Control Unit on page 113.  

send, sets or clears the error in the register (byte 4-7) Arguments: Direction 

receive, sets or clears the error in the register (byte 12-15) 

nil, leave error unchanged  
 true, Set flag to 1 and signal it  

 Errorflag 

false, Set flag to 0  

nil or omit = leave error unchanged  Errorcode 

32 Bit unsigned error value. Can be set independently from the state of the error flag  

Return values: no 

BUSIO_INVALID_PARAMETER (0x40800305) 
   The values to be transfered are not reasonable. 

BUSIO_NOT_OPEN (0x40800304) 
   Instance could not be closed, because it was not opened before. 

Status/error code 
in the variable "lasterror" 

BUSIO_WRONG_MODE (0xC0800306) 
   This function was called for an interface, which was opened in direct mode 

 

 



Functions for the Communication with the superordinated I/O Network 110/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

10.8 I/O Data Structure for the Transfer to and from the Con-
trol Unit in Handshake Mode 

10.8.1 Structure for Output - Data from the Control Unit to netSCRIPT 
 

Byte Signal Readable with  
0-3 Output synchronization register No access, is read by the netSCRIPT 

functions automatically 
4-7 Number of user data to be trans-

ferred  
No access, is read by the netSCRIPT 
functions automatically 

8...23 Not used Not used 
24-1047 Output User data Function :BusIORead() 

Table 36: netSCRIPT – Structure for Output – Data from the Control Unit 

See section Superordinated Control Unit to netSCRIPT on page 112 for the 
structure of the synchronization register. 

 

10.8.2 Structure for Input - Data netSCRIPT to Control Unit  
 

Byte Signal Writable with 
0-3 Input synchronization register No access, is written by the net-

SCRIPT functions  
4-7 Number of user data to be trans-

ferred 
No access, is written by the net-
SCRIPT functions 

8-11 Error register (receive error) to 
transfer error information  

Writable with the netSCRIPT function 
:BusIOSetError(). 

12-15 Error register (transmit error) to 
transfer error information  

Writable with the netSCRIPT function  
:BusIOSetError() . 

16..23 Not used Not used 
24-1047 Input User data Function :BusIOWrite() 

Table 37: netSCRIPT – Structure for Input – Data to the Control Unit 

See section netSCRIPT to Superordinated Control Unit on page 113 for the 
structure of the synchronization register. 

 



Functions for the Communication with the superordinated I/O Network 111/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

10.9 Handshake and Initialization of the I/O Communication in 
Handshake Mode  

The data transfer is between the control unit and netSCRIPT is organized 
by a transfer method within the I/O data transfer memory.  

The basic idea of this method is that for each action a pair of bits is used in 
both synchronization registers. One bit is used to request an action the 
other is used to acknowledge the action. One is located in the input syn-
chronization register the other in the output synchronization register.  

One action is requested by setting the command bit unequal to the ac-
knowledge bit. The other side acknowledges this request by setting the ac-
knowledge bit equal to the command bit.  



Functions for the Communication with the superordinated I/O Network 112/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

10.9.1 Structure of the Synchronization Register in the I/O Data 

10.9.1.1 Superordinated Control Unit to netSCRIPT 

Structure of the synchronization register of the control unit to netSCRIPT: 
Bit-
No. 

Name Read by function 

0 APP_HS_TX_CMD :BusIORead 
1 APP_HS_RX_ACK :BusIOWrite 
2 ... 
5 

Not used   

6 APP_HS_TX_ENABLE_CMD automatisch 
7 APP_HS_RX_ENABLE_CMD automatisch 
8 ... 
14 

Not used  

15 APP_HS_RESET_CMD :BusIOIsReset 
16 ... 
31 

Not used  

Table 38: netSCRIPT – Synchronization Register to netSCRIPT  

 

Where:  
APP_HS_TX_CMD 

Command from the control unit to send output data to netSCRIPT. Is 
checked by the function :BusIORead() automatically.  

APP_HS_RX_ACK 

Acknowledge received input data in the control unit. The bit is 
checked automatically within netSCRIPT by the function 
:BusIOWrite(). 

APP_HS_TX_ENABLE_CMD 

Enable the output user data transfer from the control unit to net-
SCRIPT. If this bit is not set, then netSCRIPT will not evaluate re-
quested commands via the bit APP_HS_TX_CMD.  

APP_HS_RX_ENABLE_CMD 

Enable the input user data transfer from netSCRIPT to the control 
unit. If this bit is not set, then netSCRIPT can not requested com-
mands via the bit APP_HS_RX_CMD.  



Functions for the Communication with the superordinated I/O Network 113/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

APP_HS_RESET_CMD 

Is queried by the function :BusIOIsReset(). 
 RESET_CMD RESET_ACK 
Initial state 0 0 
Superordinated control unit requests a reset. 
This is queried by :BusIOIsReset()  

1 0 

In the script, function :BusIOResetDone() is 
called 

1 1 

Superordinated control unit has taken back 
the reset command RESTE_CMD.  

0 1 

netSCRIPT takes back the reset acknowledge 
RESET_ACK automatically. 

0 0 

The communication to and from the serial interface within netSCRIPT 
can used independently from the I/O synchronization mechanism. 
There is no causal coherence between both interfaces.  

 

10.9.1.2 netSCRIPT to Superordinated Control Unit  

Structure of the synchronization register from netSCRIPT to the control 
unit: 

 
Bit-
Nr. 

Name Written by function 

0 PROT_HS_TX_ACK :BusIORead 
1 PROT_HS_RX_CMD :BusIOWrite 
2 Not used  
3 PROT_HS_RUN_IND :BusIOSetRun 
4 PROT_HS_TX_ERROR_IND :BusIOSetError 
5 PROT_HS_RX_ERROR_IND :BusIOSetError 
6 PROT_HS_TX_ENABLE_ACK automatically 
7 PROT_HS_RX_ENABLE_ACK automatically 
8 ... 
14 

Not used  

15 PROT_HS_RESET_ACK :BusIOResetDone 

Table 39: netSCRIPT – Synchronization Register to the Superordinated Control Unit  

 

Where:  
PROT_HS_TX_ACK 

Acknowledge bit from netSCRIPT to the superordinated control unit 
for sent output data. Is used by the function :BusIORead() automati-
cally. 



Functions for the Communication with the superordinated I/O Network 114/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

PROT_HS_RX_CMD 

Command for input user data from netSCRIPT to the superordinated 
control unit. The bit is checked automatically within netSCRIPT by the 
function :BusIOWrite(). 

PROT_HS_RUN_IND 

The netSCRIPT program signals 'Ready' and the end of initialization. 
if used by the function :BusIOSetRun(). 

PROT_HS_TX_ERROR_IND 

0: ok, 1: Error (Error number see error register in bytes 12-15). Is writ-
ten by the function :BusIOSetError().  
This bit is set from netSCRIPT independently from 
APP_HS_RX_ENABLE_CMD.  

PROT_HS_RX_ERROR_IND 

0: ok, 1: Error (Error number see error register in bytes 8-11). Is writ-
ten by the function :BusIOSetError(). 

PROT_HS_RESET_ACK 

The reset command of the control unit is acknowledged. Is written by 
the function :BusIOResetDone(). 

PROT_HS_TX_ENABLE_ACK 

Acknowledges the enabling of output data transfer from the control 
unit to netSCRIPT. This bit is controlled from netSCRIPT automati-
cally.  

PROT_HS_RX_ENABLE_ACK 

Acknowledges the enabling of input data transfer from netSCRIPT to 
the control unit. This bit is controlled from netSCRIPT automatically.  



Functions for the Communication with the superordinated I/O Network 115/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

10.9.2 Initializing of the Communication 
Start of the communication  

St
ep

 

Action:  
Start of the communication, initialization is done by the su-
perordinated control unit. 

Handshake-
send byte of 
the su-
perordinated 
control unit  
 

7 6 5 4 3 2 1 0  

Handshake-
receive byte of 
the superordi-
nated control 
unit 
 

7 6 5 4 3 2 1 0 
1 Memory after power on. netSCRIPT signals 'ready'.  0 0 x x x x 0 0  0 0 0 0 X 0 0 0 
2 The superordinated control unit starts the communication with net-

SCRIPT. By setting bit 6 and 7 allows netSCRIPT to communicate 
with the superordinated control unit.  

1 1 x x x x 0 0  0 0 0 0 X 0 0 0 

3 netSCRIPT receives the handshake flags from the superordinated 
control unit. These release the following actions:  
The send direction to the superordinated control unit is enabled 
based on bit 7. The receive direction for netSCRIPT via BusIO is 
enabled based on bit 6.  

1 1 x x x x 0 0  

 

4 The receipt is acknowledges by netSCRIPT.  
The data transfer to the superordinated control unit can start.  

 1 1 0 0 X 0 0 0 
 After the superordinated control unit has received the acknowledg-

ment from netSCRIPT for 'send and receive ready' it can send data 
to netSCRIPT.  

 
1 1 0 0 X 0 0 0 

Table 40: netSCRIPT – Initialising of the Communication  

 

 After enabling the communication the control unit or netSCRIPT can 
now start the communication  

 

 

Note: The value of bit 3 of the handshake receive byte of the superordi-
nated control unit (in the table above marked with "X") depends from the 
function call :BusIOSetRun. If this function called within netSCRIPT this 
bit has value 1, otherwise 0.  

 



Functions for the Communication with the superordinated I/O Network 116/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

10.9.3 Acknowledgment of the Processing between the Superordi-
nated Control and netSCRIPT  

An acknowledgment of the receipt is expected from the receiver for each 
data transfer from netSCRIPT to the superordinated control unit and visa 
versa. As long as this receive acknowledgment is not available, no further 
data can be send to the receiver.  

This handshake procedure is described in the following section for both di-
rections.  

 

 

Note: In the following tables an "x" marks an undefined bit position and an 
"X" marks a defined but not relevant bit position.  

 



Functions for the Communication with the superordinated I/O Network 117/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

10.9.3.1 Superordinated Control Unit to netSCRIPT  

The value of a bit marked with "x" don't cares.   

 

St
ep

 

Action:  
The superordinated control unit sends data to netSCRIPT  

Handshake-
send byte of 
the su-
perordinated 
control unit / 
receive byte 
of the gate-
way  

7 6 5 4 3 2 1 0  

Handshake-
receive byte of 
the superordi-
nated control 
unit / send byte 
of the gateway  
 
 

7 6 5 4 3 2 1 0 
0 State before beginning to send (and after initialization).  

Handshake bit 0 in the receive and send buffer has the same value. 
 It is possible to send data to netSCRIPT.  

1 1 x x x x X 0  1 1 x x x x X 0 

1 The superordinated control unit has provided user data in its send 
buffer, sets the length information in the header and sets hand-
shake bit 0. 

1 1 x x x x X 1   

2 The data is transfered to netSCRIPT  1 1 x x x x X 1   
3 As long as bit 0 of the handshake in the send and receive buffer is 

unequal, it is not allowed for the superordinated control unit to send 
new user data to the gateway.  

1 1 x x x x X 1  1 1 x x x x X 0 

4 netSCRIPT recognizes that bit 0 of the handshake in the send and 
receive buffer is unequal, that new user data is available from the 
superordinated control unit. 

1 1 x x x x X 1  1 1 x x x x X 0 

5 When netSCRIPT unit has taken the user data from the receive 
buffer, netSCRIPT sets bit 0 in the handshake send byte and ac-
knowledges  

 1 1 x x x x X 1 

6 The handshake send byte of the gateway is transfered to the su-
perordinated control unit.   1 1 x x x x X 1 

7 The superordinated control unit recognizes that handshake bit 0 in 
the send and receive buffer is equal  netSCRIPT has received the 
data and is ready to receive new user data  

1 1 x x x x X 1  1 1 x x x x X 1 

8 The superordinated control unit provides new user send data for 
netSCRIPT in its send buffer, sets the length information in th 
header and sets the handshake bit 0 to zero.  

1 1 x x x x X 0   

9 The data is transfered to netSCRIPT  1 1 x x x x X 0   
10 As long as bit 0 of the handshake in the send and receive buffer is 

unequal, it is not allowed for the superordinated control unit to send 
new user data to the gateway.  

1 1 x x x x X 0  1 1 x x x x X 1 

11 netSCRIPT recognizes that bit 0 of the handshake in the send and 
receive buffer is unequal, that new user data is available.  1 1 x x x x X 0  1 1 x x x x X 1 

12 When netSCRIPT has taken the user data from the receive buffer, 
the superordinated control unit sets bit 0 to zero in the handshake 
send byte and acknowledges  

 1 1 x x x x X 0 

13 The handshake send byte of netSCRIPT is transfered to the su-
perordinated control unit.   1 1 x x x x X 0 

14 The superordinated control unit recognizes that handshake bit 0 in 
the send and receive buffer is equal  netSCRIPT has received the 
data and is ready to receive new user data  

 1 1 x x x x X 0 

15 Handshake bit 0 in the receive and send buffer has the same value.  
This is the same state as in step 0. Now this procedure can start 
from the beginning.  

1 1 x x x x X 0  1 1 x x x x X 0 

 



Functions for the Communication with the superordinated I/O Network 118/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

10.9.3.2 netSCRIPT to the superordinated Control Unit 

The value of a bit marked with x does not matter.  

 

St
ep

 

Action:  
netSCRIPT sends data to the superordinated control unit  

Handshake-
send byte of 
the su-
perordinated 
control unit / 
receive byte 
of netSCRIPT 
 

7 6 5 4 3 2 1 0  

Handshake-
receive byte of 
the superordi-
nated control 
unit / send byte 
of netSCRIPT  
 
 

7 6 5 4 3 2 1 0 
0 State before beginning to send.  

Handshake bit 1 in the receive and send buffer has the same value. 
 It is possible to send data to the superordinated control unit.  

1 1 x x x x 0 X  1 1 x x x x 0 X 

1 netSCRIPT has provided user data to be sent, sets the length in-
formation in the header and sets handshake bit 1.  1 1 x x x x 1 X 

2 The data is transfered to the superordinated control unit   1 1 x x x x 1 X 
3 As long as bit 1 of the handshake in the send and receive buffer is 

unequal, netSCRIPT is not allowed to send new user data to the 
superordinated control unit.  

1 1 x x x x 0 X  1 1 x x x x 1 X 

4 The superordinated control unit recognizes that bit 1 of the hand-
shake in the send and receive buffer is unequal, that new user data 
from netSCRIPT is available.  

1 1 0 0 0 0 0 X  1 1 x x x x 1 X 

5 When the superordinated control unit has taken the user data from 
the receive buffer, the superordinated control unit sets bit 1 in the 
handshake send byte and acknowledges  

1 1 0 0 0 0 1 X   

6 The handshake send byte of the superordinated control unit is 
transfered to netSCRIPT.  1 1 0 0 0 0 1 X   

7 netSCRIPT recognizes that handshake bit 1 in the send and receive 
buffer is equal  The superordinated control unit has received the 
data and is ready to receive new user data  

1 1 0 0 0 0 1 X  1 1 x x x x 1 X 

8 netSCRIPT provides new user send data, set the length information 
in the header and sets the handshake bit 1 to zero.   1 1 x x x x 0 X 

9 The data is transfered to the superordinated control unit   1 1 x x x x 0 X 
10 As long as bit 1 of the handshake in the send and receive buffer is 

unequal, netSCRIPT is not allowed to send new user data to the 
superordinated control unit.  

1 1 0 0 0 0 1 X  1 1 x x x x 0 X 

11 The superordinated control unit recognizes that bit 1 of the hand-
shake in the send and receive buffer is unequal, that new user data 
from netSCRIPT is available. 

1 1 0 0 0 0 1 X  1 1 x x x x 0 X 

12 When the superordinated control unit has taken the user data from 
the receive buffer, the superordinated control unit sets bit 1 to zero 
in the handshake send byte and acknowledges  

1 1 0 0 0 0 0 X  1 1 x x x x 0 X 

13 The handshake send byte of the superordinated control unit is 
transfered to netSCRIPT. 1 1 0 0 0 0 0 X  1 1 x x x x 0 X 

14 netSCRIPT recognizes that handshake bit 1 in the send and receive 
buffer is equal  The superordinated control unit has received the 
data and is ready to receive new user data  

  

15 Handshake bit 1 in the receive and send buffer has the same value.  
This is the same state as in step 0. Now this procedure can start 
from the beginning.  

1 1 x x x x 0 X  1 1 x x x x 0 X 



Error-Handling 119/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

11 Error-Handling 
11.1 About “lasterror” 

Error information of the interface communication (port and Bus-IO) is de-
posited in the variables ”lasterror”. 

Within netSCRIPT, the treatment of the errors occurs purely symbolically 
like the following example points. To use the error codes in this script is 
preceded by a prefix "err." (without quotes). 
if lasterror == err.BUSIO_SEND_NOT_READY then 

…    

end 

or 
If uart:PortSend(“hello”) then 
     
elseif lasterror == err.PORT_FIFO_FULL then 
     
elseif lasterror == err.PORT_NO_BUFFER then 
     
end 

 

If the error values of other purposes are used, for example, outside from 
netSCRIPT, the values reflect 32 bits of value.  

As 8-figure hex numbers, their meaning is described in the following table. 
In it containing error numbers without entry in the column error code, are 
abnormal termination errors (Errors one start of the script processing pre-
vent), which are indicated in the diagnostic ofSYCON.net as an error mes-
sage.  

If the hex number begins with 0xC, the Script processing is stopped (with 
the exception of the case where the call occurred with the function pcall). 
These messages are marked in the following table in the column “stop” with 
▼. 

If the error code begins with 0x4, the script processing is not stopped. The 
error can be treated in the Script further. 



Error-Handling 120/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

11.1.1 Error Codes in “lasterror” 
In the variable lasterror. 

Error num-
ber in hex 

Error code Stop Meaning 

C0800002  ▼ Storage allocation in the netScript task has 
missed. 

C0800080  ▼ Lua start failed. 
C0800081  ▼ No script file available. 

Script file could not be loaded. 
Script file as "startup" does not select. 

C0800082  ▼ The value of __CYCLIC_FUNCTION is not a func-
tion. 

C0800083  ▼ An error has appeared in an Error Handler. 
C0800084  ▼ A storage allocation in the Lua interpreter has 

missed. 
C0800085  ▼ A Lua panic has appeared. (The error has proba-

bly appeared beyond the script). 
C0800101 LUA_ERROR ▼ Lua error (from Lua even released error). 
C0800201 err.PORT_INVALID_CONFIG ▼ Faulty configuration parameter. 
C0800202 err.PORT_INVAL_PORT ▼ Wrong port number, port does not exist. 
C0800203 err.PORT_WRONG_MODE ▼ It was tried to use a port in a mode, but the port 

was not initialized for the requested mode.  
40800204 err.PORT_FIFO_EMPTY  No dates of receipt available. 
40800205 err.PORT_FIFO_FULL  Not of enough free FIFO memory available. 
C0800206 err.PORT_XC_INIT_FAILED ▼ The initialization has missed. 
40800210 err.PORT_NO_BUFFER  No free memory block availably (perch mode). 
40800211 err.PORT_NO_SUCH_PORT  Call of a non-existent port authority. 
C0800213 err.PORT_ NOT_OPEN ▼ It was tried to access a port which was not open. 
C0800214 err.PORT_NO_UARTDB ▼ No UART Configurations data bank was found. 
C0800215 err.PORT_PARSING_UARTDB ▼ Errors with interpret to the UART Configurations 

data bank. 
40800216 err.PORT_INVALID_PARAMETER  Faulty parameters by sending call and receipt call. 
40800217 err.PORT_NO_CONFIRMATION  End password of the telegram not found. 
40800218 err.PORT_STRING_TOO_LONG  The string to be transmitted is too long (for sending 

buffer). 
40800212 err.PORT_ALREADY_OPEN  It was tried to open a port which is already opened. 
40800302 err.BUSIO_ALREADY_OPEN  Instance is already used. 
40800301 err.BUSIO_NO_SUCH_INSTANCE  Instance does not exist. 
C0800303 err.BUSIO_INVALID_CONFIG ▼ Faulty configuration data (does not appear cur-

rently). 
C0800304 err.BUSIO_NOT_OPEN ▼ Instance not opened. 
C0800305 err.BUSIO_INVALID_PARAMETER ▼ Wrong parameter. 
C0800306 err.BUSIO_WRONG_MODE  A function for direct mode was called in handshake 

mode or visa versa. 
40800311 err.BUSIO_SEND_NOT_READY  Write: Input buffer not free. 
40800312 err.BUSIO_SEND_DISABLED  Write: RxEnableCmd is not put. 
40800313 err.BUSIO_STRING_TOO_LONG  Write: String too long for send buffer. 

Read: Invalid length in header. 
40800314 err.BUSIO_BUFFER_LENGTH_EX

CEEDED 
 The function :BusIOReadDirect or 

:BusIOWriteDirect are used with invalid length or 
offset values for the arguments. 



Error-Handling 121/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

Error num-
ber in hex 

Error code Stop Meaning 

40800321 err.BUSIO_RECEIVE_NO_DATA  Read: no new data. 
40800322 err.BUSIO_RECEIVE_DISABLED  Read: TxEnableCmd is not put. 
C0800401 err.UTIL_INVALID_PARAMETER ▼ Invalid parameter with purpose type, ENDIAN, 

LED or Identifier. 
40800402 err.UTIL_OUT_OF_RANGE  Number does not lie in the worth area of the pur-

pose type. 
C0800411 err.UTIL_STRING_TOO_LONG ▼ String from the variable list SYCON is too long. 
C0800410 err.UTIL_UNKNOWN_TYPE ▼ It is an unknown variable type in the variable list 

SYCON. 
40800403 err.UTIL_WRONG_SIZE  The value does not have the correct size for the 

given type. 

Table 41:netSCRIPT - „lasterror“ Error Codes 

The errors which are marked with the character ▼ can be indicated only in 
the SYCON.net. See section 12.1.2 page 124. The processing of the script 
was stopped.  

The execution of the script continues for all other error cases.  

 



Error-Handling 122/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

11.2 Return values for Status and Error of the Port Functions 
For the functions: PortIsReceiveDone and PortIsExchangeDone 

11.2.1 Possible values of confirmation status: 
“Status Code” Return-

value 
Meaning 

port.STA_ACK_TIMEOUT 3 Reception ended after the acknowledge delaytime, no charac-
ters have been received (an empty string is returned) 

port.STA_SIZE_REACHED 2 Reception has ended because the maximum number of charac-
ters given in the request has been received. 

port.STA_PATTERN_MATCH 1 Reception has ended because the the end pattern has been 
found in the input. 

port.STA_CHAR_TIMEOUT 4 Reception has ended because the pause after the last received 
character was longer than chardelaytime 

 

Example for an error handling: 
sta, data, rxerr = port:PortIsReceiveDone()  
if sta == port.STA_PATTERN_MATCH then 
… 
end 

 

11.2.2 Possible values for receive error: 
“Error Code” Return-

value 
Meaning 

port.ERR_PARITY_ERROR 2 At least one character has a parity error 
port.ERR_FRAMING_ERROR 4 A framing error has been detected during reception 
port.ERR_BREAK_DETECTED 1 A break condition has been detected during reception 
port.ERR_RX_FIFO_OVERFLOW 8 Char mode only: The FIFO has overflowed since the last call to 

PortGetChar 
 

Only the most severe receive error is reported:  
if a Framing error is reported, characters may also have had parity errors;  
if a break was detected, framing or parity errors may also have occurred,  
if a FIFO overflow was detected, all other errors may also have occurred. 

 



Troubleshooting 123/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

12 Troubleshooting 
Depending on the type of error analysis, there are two possibilities. 

• For Device errors or communication errors on the bus, there is the dig-
nostic in Sycon. 

• For script errors, there is the netSCRIPT Debugger. 

 

12.1  Diagnostics in SYCON.net 
As a rule, the USB diagnostic interface of the target device is used to com-
municate with the configuration tool SYCON.net. 

If the SYCON software is connected to the diagnostic interface of the target 
device, the state of the netSCRIPT function in the device can be deter-
mined.  

This error diagnostic is only possible if the logical connection to the device 
is built up by the SYCON.net. 

 

12.1.1 Diagnostic 
 Click with the right mouse button on the icon of the device which should 

be analyzed. 

 The following context menu opens. 

 
Figure 14: SYCON - Diagnostic Menu 

 Select “Diagnostic > netSCRIPT”. 

 The window opens with general diagnostic. 

 



Troubleshooting 124/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

12.1.2 General Diagnostic - Stop Error in SYCON.net 
Because a stop error stops the processing of a script, no error analysis with 
the debugger is possible. These errors are displayed in SYCON and can be 
used for error analysis. 

 Under the menu of the netSCRIPT device “Diagnosis > General Diag-
nosis” you get the following information: 

 
Figure 15: SYCON - Diagnostic General Diagnosis 



Troubleshooting 125/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

The displays have the following meaning 
Indication Color Meaning 
Device State 

 green Script is running: Displays that the script is executed. Communication 

 
 grey Script is not running /stopped 

 green Script loaded. Run 

 
 gray No script loaded  

 yellow netSCRIPT task initialized successfully Ready 

 
 grey Initialization error  

 red Script stops: A error has occured which prevents the script 
processing. 
Under communication error, an error number and an error 
text is entered. 

Error 

 

 grey Script is running: No error since last restart of the script. 

Network State  

 green Operates: Indicates that the script is processed cyclically. Operate 

 
 gray Script is not processed cyclically. 

 yellow Script stops: netSCRIPT waits for commands from the 
Debugger 
Reasons: After sings step; break point reached; Script re-
loaded; Error.  

Idle 

 

 gray netSCRIPT NOT running in debug mode. 

 red Stop: Script was stopped because of an error.  Stop 

 
 gray Script is not stopped.  

 yellow Offline: no script loaded, or netSCRIPT- Initialization error Offline 

 
 gray Script NOT offline. 

Configuration State  

 yellow NOT used. Configuration 
locked 

 gray  

 yellow NOT used. New Configu-
ration pending 

 gray  

 yellow NOT used. Reset required 

 gray  

 green Bus ON: Shows that netSCRIPT can communicate to the 
Mapping-Task (BUSIO Interface). 

Bus ON 

 

 gray Communication to the Mapping-Task is not possible.  

Table 42: Display General Diagnostic 



Troubleshooting 126/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

 
Parameter Meaning 
Communication Error 

 

Communication Error: Shows the last error message of the com-
munication error since last power on. 
The error message is deleted when the script is reloaded or 
loaded from the debugger.  

Watchdog time Watchdog time: NOT used. 

Error Count 

 

Error Count: This field holds the total number of errors detected 
since power-up, respectively after reset. The protocol stack 
counts all sorts of errors in this field no matter if they were net-
work related or caused internally. 
This error counter is not deleted when the script is loaded from 
the debugger.  

Table 43: Parameter General Diagnostic 

 

 



Troubleshooting 127/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

12.1.3 Firmware Diagnosis 
In the dialog Firmware Diagnosis the actual task information of the firm-
ware is displayed.  

 
Figure 16: SYCON - Diagnostic Firmware Diagnostic 

 The name of the loaded firmware.  

 The version number of the loaded firmware. 

 The date of the firmware creation  

Task Information: 
The table Task Information is listing the task information of the single 
firmware tasks. 
 

No. Column Meaning 

 Task Task number  

 Name of task Name of the task 

 Version Version of the task 

 Prio Priority of the task 

 Description Description of the task 

 Status Status of the task 

Table 44: Description Table Task Information 

 

 



Troubleshooting 128/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

12.1.4 Task-Information 

 
Figure 17: SYCON - Diagnostic Task- Information 

In this window following information is displayed: 

 Identifier: The task number of the netSCRIPT task.  

 Identifier: The task number of the netSCRIPT task.  

 Internal version number.  

 Internal packet size to the external communication.  

 Address of the diagnosis package queue. 

 Internal version number. 

 Information about the initialization state of the netSCRIPT function. 
(should always be 0).  

 



Troubleshooting 129/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

12.1.5 Lua-Status 
Under "Lua status" the following information is displayed: 

 
Figure 18: SYCON - Diagnostic Lua Status  

 The diagnosis call path. 

 The error text and the error number is displayed. 

 In this line you find the error code. 

 Here it is displayed in which script file the error has occured. 

 Here you find the line number of the code in the script file. 



Troubleshooting netSCRIPT 130/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

13 Troubleshooting netSCRIPT 
A netSCRIPT debugger is available for error location in the execution of 
script programs. The debugger is independent and regardless of 
SYCON.net software under Windows and a so-called software debugger.  

An additional driver in the device firmware of the netSCRIPT capable de-
vice communicates with the debugger. There, the driver checks in the cyclic 
netSCRIPT-processing loop automatically for commands of the debugger. 
The commands for example "stop" or "start" are integrated by the driver into 
the program execution and enable it to control the execution of the pro-
gram.  

 

Note: The proper function of the debugger requires that the netSCRIPT 
program be debugged always performs its process cyclically, otherwise 
the debugger is not able to communicate to the device driver software and 
debug the executed program.  

If the script execution was stopped due to a serious error, only an error 
analysis may be possible with SYCON.net.  

 

13.1 netSCRIPT Debugger 
The Debugger serves to test the script in the netTAP device.  

It enables debugging of the code line by line and shows the contents of the 
variables in every program step. It is also possible to change the source file 
and to transfer this into the device.  

The debugger is able to open the current script running in the netTAP with-
out a project, to load it from the target device and to display it. However, to 
change the Script it is necessary to have a project opened. 

There is the possibility to set breakpoints. 

 

Note: For a better clarity the areas of the debugger window are marked 
with letters and the buttons with numbers in the following figures. 

 

13.1.1 Installation 
To use the debugger, it is essential that the SYCON.net software commu-
nication drivers (for example USB or TCP/IP) for the target device are in-
stalled on the Windows platform.  

How to install the debugger is described in the document “Software Installa-
tion - Gateway Solutions UM xx EN.pdf” which is on the DVD in the direc-
tory Documentation.  

 



Troubleshooting netSCRIPT 131/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

13.1.2 Start the Debugger 
Start the debugger with „Start > All Programs > Hilscher GmbH > net-
SCRIPT_Debugger > netSCRIPT_Debugger“ or via the desktop icon  

 
 The following screen appears. 

 
Figure 19: netSCRIPT Debugger Window  

The debugger has basically 8 areas: 

 The area of project selection.  

 The script display and editing area. 

 The window in which the nesting of the script is displayed in which the 
script is actually running. Level 0 is always the main program.  

 The window in which the debugging mode, all variables and their cur-
rent contents are displayed. 

 The window in which the position of the set breakpoints appear. 



Troubleshooting netSCRIPT 132/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

 The bar with the tools to connect to the device netSCRIPT. 

 The bar of the debugging tools. 

 The bar of the project tools 

 

13.1.3 Connection to the netTAP Device 
First the hardware connection to the netTAP device has to be established. 
In general, these will be a USB connection. USB connections are displayed 
as serial COM interfaces of the PC, e.g., "COM1_Ch1"... "COM4_Ch1" in 
connection select menu. 

 To connect the debugger to the netTAP unit click on button  in area 
 which is the area of connection management. 

 
Figure 20: netSCRIPT Debugger Start Connection  

 As a result a Scan for the possible connections is done from PC side 
and netSCRIPT capable devices found.  

 After successful Scan the following becomes visible in the connection 
administration: 

 
Figure 21: netSCRIPT Debugger Connection Management  

 The operating buttons ,  and  will become selectable. In the line 
 the found connection (with device type, device version, communica-

tion channel, device type number and devices-standard number) is dis-
played  

With the button  the connection channel can be closed again. 

With the button  a new connection scan can be started. 

With the button  the logical connection to the netSCRIPT task can be 
established to the device. Also, the button  in the line of the debugger 
tools becomes selectable. 

 



Troubleshooting netSCRIPT 133/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

13.1.4 Load Current Script from netTAP 

 After the connection setup to the target, the button  (break) has to be 
selected  

 

Note: Also, the Script is interrupted in the processing! 

 
Figure 22: netSCRIPT Debugger Debugger Tools 

 The active netSCRIPT program loaded in the debugger is interrupted 
and is displayed. 

Now the whole Debug functionality can be used. See section 13.1.7 , page 
135. 

 

 

Note: Nevertheless, the script loaded from the device into the debugger 
can only be changed when at the same time the corresponding project is 
opened. 

 

13.1.5 Open a Project 

 Open in window pane  the button . 

 
Figure 23: netSCRIPT Debugger - Project Tools  

 This opens the file management window of the operating system. Here 
the corresponding project with the file ending .nxspr has to be selected. 



Troubleshooting netSCRIPT 134/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

 After the selection of the project it appears in window pane   

 
Figure 24: netSCRIPT Debugger Window pane A and B  

 

 A double click on the entry  opens the file tree.  

 After a double click on the file to be opened its contents appear in win-
dow pane . 

If the project contains only one script file, this is displayed immediately in 
window pane . 

If the file is edited, the icon in front of the file path in the head of the window  
 becomes red which indicated that there is a difference between the dis-

played script and the saved project version.  

 
Figure 25: netSCRIPT Debugger - Changed Script File 

Changed script files can be only loaded into the netSCRIPT device if the 
project was saved before. 

 Save the project with the button  of the project tools.  

 
Figure 26: netSCRIPT Debugger - Project Tools - save - load. 



Troubleshooting netSCRIPT 135/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

13.1.6 Load a Script into the netTAP Device 

 With a mouse click on button  of the project tools bar, the currently 
netSCRIPT file displayed in the window  is loaded into the device. 

 If the current script in the device is still executed, then this has to be in-
terrupted with button  of the debugger tools.  

 
Figure 27: netSCRIPT Debugger - Project Tools - Break 

Thus, the following buttons are enabled:  

 
Figure 28: netSCRIPT Debugger – Tools - Debug mode 

 A mouse-click on button  is necessary in window pane  to start the 
newly downloaded program, whereby the new script is compiled for 
execution. 

 To start the new script click button .  

 

13.1.7 Script Debug 
A script file loaded from the target device into the debugger as well as a 
script file loaded from a project and loaded into the target device can be 
debugged. If it is needed to edit the code in the debugger, then a project file 
is necessary.  

The elements of the debugger tool bar in window pane  are: 

 
Figure 29: netSCRIPT Debugger Tools - Debug Mode 

 Step Into: 

The script line is executed where the courser  is displayed. If this is 
a function call of a netSCRIPT function, the debugger goes to the first 
line of this function.  

 Step Over: 

The upcoming function block is automatically executed. The debug-
ger stops in the next following line after the function block. 



Troubleshooting netSCRIPT 136/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

 

 Step Out: 

If a function block was entered with "Step Into", then further execution 
of the code is done automatically. The debugger stops in the first line 
after the return from the function call. 

 Continue: 

The debug mode will be left and the cyclic processing of the script will 
continue. 

 Break: 

The cyclic processing of the script will be stopped at the beginning of 
the next cycle and the debug mode is started. 

 

 

Note: If the script program is running in an endless loop, the script execu-
tion can not be interrupted with this command. In such a case, a changed 
script file has to be loaded into the target device which contains no end-
less loop. Then the power supply has to be disconnected and reconnected 
to the device once, so that the device starts with the new script file. 

 

 Reload: 

The script file loaded with button  into the target device is started 
for cyclic execution.  

13.1.7.1 Watch-Window 

In this window pane  in the Debug mode (Step Into) all netSCRIPT de-
fined variables, functions and tables with the actual values are displayed. 
These entries have a significant icon for a better identification. 

 Function call with name and address. 

 String variable with name and value. 

 Numerical variable with name and value. 

 Boolean variable with name and state 

Table, with a click on prehired "+" character the table with her contents 
can be opened. 

 Instance with name 

 



Troubleshooting netSCRIPT 137/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

13.1.7.2 Set Breakpoints 

Max. 32 breakpoints can be set. 

Pay attention to the fact that the breakpoints set are in the range the script 
runs through during script processing. 

 To set a breakpoint click with the left mouse button right beside the line 
number. See position  in the following figure.  

 
Figure 30: netSCRIPT Debugger Set Breakpoint  

 A red rectangle appears at this position. At the same time this break-
point is listed in the breakpoint window . 

 If the script execution is continued, the processing is stopped at the set 
breakpoint (before execution of the line). This position is marked with a 
green arrow . 

Set breakpoints can be removed by clicking the set breakpoint again with 
the left mouse button again. 

 



Troubleshooting netSCRIPT 138/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

13.1.8 Script Edit 
In order to edit a script it is necessary:  

 to have a project loaded in the debugger, 

 

 
Figure 31: netSCRIPT Debugger - Script Editing  

 Now the script is editable in the window pane . 

 After editing the script, the script must be saved with the button  be-
fore it can be loaded into the target device. The script from the editor 
window is not loaded, but the saved script file will be loaded into the 
target device. 

 After saving the script the button  Sync has to be clicked to transmit 
the script into the target device. Nevertheless, in this state the script is 
not executed yet in the target device. 



Troubleshooting netSCRIPT 139/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

 Stop the execution of the script in the target device by a click on button 
. By clicking this, the remaining buttons of the debugger tool bar  

become enabled.  

  
Figure 32: netSCRIPT Debugger Tools  

 With a click on button  the new script file is loaded for the execution. 
Afterwards the new script can be started by a click on button .  

 

 

Note: The last download of a netSCRIPT file into the netTAP device 
should be done with the editor of SYCON.net. With this you make sure 
that no inconsistency within the project managements happens.  

 

13.1.9 Exit the Debugger 
Please pay attention in whcih state the debug mod is, when you want to 
exit the debugger.  

13.1.9.1 Exit the Debugger – With suspended Script Processing 

 The script remains stopped after the debugger was exited and the USB 
connection was disconnected 

 The script is executed after the device was repowered  

13.1.9.2 Exit the Debugger – with running Script Processing 

 The script is executed after the debugger was exited and the USB con-
nection was disconnected 

 

13.1.9.3 Disconnect Debug Connection  

 Verify, if the script is executed. You can see this in the debugger tool 
bar: The button „Break“ is selectable as shown in the following figure.  

 

 
Figure 33: Debugger Tools. Break 

And in the bottom line of the debugger: The text script runs is displayed. 

 



Troubleshooting netSCRIPT 140/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

 Click in the Connection Management button  „Disconnect“. 

 
Figure 34: Debug – Connection Management 

 Click in the Connection Management the button  „Stop“, because the 
debugger can end the connection to USB.  

 Close/Exit the debugger window.  

 



Simple netSCRIPT Sample Application 141/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

14 Simple netSCRIPT Sample Application 
For execution of the scripts as presented here a netSCRIPT capable device 
with a serial interface and a PC for configuration is necessary. On the PC a 
hyperterminal emulation is required.  

14.1 Example Program: ECHO 
This script echos a character on the RS-232 interface in block mode.  

This script is on the DVD:  
“Examples\netSCRIPT\Echo\netscrpt.lua“. 

14.2 Example Program: Blockmode 
In this script the initializing of a RS interface in block mode is shown. The 
script echos the received character and counts the cycles.  

This script is on the DVD:  
“Examples\netSCRIPT\Serial Port Blockmode\blkmode.lua” 

You can load this script with the debugger into the device for execution.  

14.3 Example Program: Eliza 
This is a script in FIFO mode (character mode). It realizes a communication 
with words via the hyperterminal (Joseph Weizenbaum's classic Eliza) 

This script is on the DVD:  
“Examples\netSCRIPT\Eliza\eliza.lua” zu finden. 

You can load this script with the debugger into the device for execution.  

14.4 Example Program: BusIOCount 
With this script the error code in the state byte 8-11 of the BusIO interface 
is incremented cyclically. 

This script is on the CD in the folder  
“Examples\netSCRIPT\BusIOCount\busiocnt.lua “. 

For execution of the script a netSCRIPT capable device with a serial inter-
face and a PC for the configuration is required. To read the counter a su-
perordinated control unit with the bus interface and the used network proto-
col is required.  

The script can be loaded into the device with SYCON.net only (because of 
the needed signal mapping.) The signal mapping has tobe done by the 
user.  

14.5 Example Program: hello_World 
Opens the serial interface with specific parameter settings, sends a data 
string via this interface and closes afterwards the interface. 

This script is on the CD in the folder   
„Examples\netSCRIPT\Hello World\hello.lua “. 



Simple netSCRIPT Sample Application 142/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

14.6 Example Program: LedFlash 
The "Run Led" (depending on the cycle time) is switched on and off cycli-
cally.  

A counter is incremented by 1 at every cyclic start of the script. For de-
screasing the cycle time, the function Modular is used. 

This script is on the CD in the folder   
“Examples\netSCRIPT\LED Flash\ledflash.lua”. 

14.7 Example Program: Time 
This program realizes a clock. Their start time can be set via the UART in-
terface and / or via the bus IO interface. 

This script is on the CD in the folder   
“Examples\netSCRIPT\Time\time.lua“. 

For execution of the script, a netSCRIPT capable device with a serial inter-
face and a superordinated bus interface is required. Exemplarily this was 
done with a netTAP NT 100 device from Hilscher. For configuration of the 
device, a PC is required. On the PC a hyperterminal emulation is required. 

The script can be used only via the serial interface and is operational with-
out a superordinated control unit.  

To be able to use all possibilities of this example, the following hardware 
installation is necessary. 



Simple netSCRIPT Sample Application 143/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

14.7.1 Installation 

14.7.1.1 Hardware Installation  

 
Figure 35: Script Time Example - Hardware Installation  

To test only the communication of the serial interface and the transfer of the 
netSCRIPT program into the target device via the USB interface, no su-
perordinated bus master (cifX card in a PC) is necessary. As a bus master 
any control can be used which can communicate via PROFINET. 

Connect a USB cable to the USB interface of the netTAP NT 100 device 
and a USB interface of the PC. 

A firmware and the script need to be loaded with SYCON.net software into 
the target device. 

The test of the script can be done via the serial interface of the netTAP NT 
100 with a RS232 cable and a connection to the COM connection of the 
PC. Use the hyperterminal software of Windows as communication partner. 

From the debugger establish a communication via USB if the execution of 
the script should be monitored.  

 

14.7.1.2 Terminal Settings 

Open on the PC the hyperterminal program with the following settings: 

1. Enter the communication interface to which the RS232 cable is con-
nected (typically COM1). 

2. Enter the following settings for configuration:  
Bits per second: =115200  
Data bits:  8 
Parity:   none 
Stop bits:  1  
Flow control:  Hardware 

3. File > Properties > ASCII-Setup  
Echo typed characters locally. 



Simple netSCRIPT Sample Application 144/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

14.7.1.3 Superordinated Control 

For the complete function test of the example script the superordinated 
control has to do the function of a bus master and do the I/O data exchange 
with the netTAP device. In addition the netTAP device has to be connected 
with a suitable bus cable with the bus master. 

14.7.2 Explanations - Script Example Programs 
With help of the example the base of a meaningful script program structure 
is explained.  

14.7.2.1 Verbal Program Description 

The program "Time" realizes a clock, which cyclically displays the time on 
the HyperTerminal as ASCII text via the serial interface, and over the Bus 
IO interface to the superordinated control. After switching on the power, the 
time starts with the value 00:00:00. With a keyboard input via the Hyper-
Terminal, it is possible to set the time. The program also allows to set the 
time via the Bus IO interface on the control system.  

 

 

Note: The transmission of the time via the Bus IO interface is only suc-
cessfully if the control has also released the corresponding synchroniza-
tion register.  

 

This is a 4 digit counter (h,m,s,ms), which adds up hour, minute, seconds 
and the cycle time. The display is done with the format hh:mm:ss. 

The time can be set via the UART interface, as well as via the Bus IO inter-
face. Also the input via the serial interface is done in the same format 
hh:mm:ss and is finished with the Enter key. If the example script receives 
a keyboard character via the serial interface, it interrupts the output of the 
time. 



Simple netSCRIPT Sample Application 145/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

14.7.2.2 netSCRIPT Program Structure  

 

 

Note: Please note that with each cyclic start each script is executed com-
pletely again (after the cycle time configured). Hence, the definition part of 
the script has to be separated from the cyclic script part with a script 
command. 

 

Basic script program structure: 

 
Figure 36: Script Time - Basic Structure 

 

 In the head of every script, some comment lines should be present 
which document the application of the script and script version used. 

 In this line, the existence of the variables state is verified. If this vari-
able is not defined (with the first start), the following code block is executed, 
otherwise the block after „else“ is executed.  

 This is the definition part of the script which should be executed only the 
first time the script was started. 

 In this line variable state is defined to avoid that this code block  is 
executed another time (until the next voltage failure).  

 This block is initially commented out. This block shows a possibility of 
how an output on the UART interface can be prevented, as long as a tele-
gram from the superordinated control via the Bus IO interface has occurred. 



Simple netSCRIPT Sample Application 146/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

 This part of the script is executed every cycle. 

 This line quits the whole code. 

 

The script parts ,  and  are parts of a state machine, which has the 
following structure:  

if state == nil then 
    -- Initialization 
 ... 
 
    -- Definition of the states  
    STATE_1 = 1 
    STATE_2 = 2 
 
    -- Set of the next state  
    state = STATE_1 
 
elseif state == STATE_1 then 
    -- Action in state 1 
 ... 
    -- if necessary change state  
    state = STATE_2     
 
elseif state == STATE_2 then 
    -- Action in state 2 
 ... 
    -- if necessary change state 
    state = STATE_1 
 
end 

With a cyclic pass of this script section (as it is the case for usual process-
ing) only the currently valid part of the state machine is processed, because 
the state variables stay unchanged between the end of the script and the 
restart of the script.  

 



Simple netSCRIPT Sample Application 147/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

14.7.2.3 Details of Block B 

In this block  

• the functions for output formatting and time input recognition are de-
fined. 

• under “—UART initialization” the serial interface is initialized in CHAR 
mode using “PortOpen()” 

• under “— BusIO initialization” the interface to the superordinated control 
is initialized using “BusIOOpen()” 

• optionally the query of the communication enabling of the serial inter-
face over the BusIO interface (superordinated control) is implemented 

14.7.2.4 Details of Block C 

To activate this block the comment characters have to be deleted at  and 
 of the program section displayed below.  

 
Figure 37: Script Time - Block C 

As long as „state“ is „STATE_WAIT“ the „elseif“ condition is true and the 
following „else“ condition at  is not executed. When at  „state“ is 
„STATE_RUN“ then the code after the „else“ condition at  is executed in 
the next cycle and then the UART interface is used. 

 



Simple netSCRIPT Sample Application 148/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

14.7.2.5 Details of Block D 

The block  has three sections: 

1. Time counting 

2. UART communication 

3. BusIO communication  

Section 1, Time counting  

 
Figure 38: Script Time - Block D Section 1 

In section  of the picture above the counters are used for the time dis-
play. 

With  the time formatting function from the initialization area  is called.  

With  the LED will blink on the UART module. 

 



Simple netSCRIPT Sample Application 149/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

Section 2, UART communications 

 
Figure 39: Script Time - Block D Section 2  

 It is verified, whether something was received via the UART interface. 

 It is checked, whether the reception was ok. At erroneous character re-
ception an error message is issued. 

 The received characters are serialized. 

 If the last received character is a “CR”, the serialized characters are 
passed to the function "parseTime" which was defined in the area  .  

 Within function "parseTime" it is checked, whether the characters having 
been put in can be interpreted as a time value. If yes, processing of the 
new time will be continued, otherwise nil will be returned and an error mes-
sage will be put out on the port. 

 The current time is put out independently whether characters have been 
received via the serial interface. The memory for the output time on the se-
rial interface is initialized. 

 



Simple netSCRIPT Sample Application 150/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

Section 3 – BusIO communications 

 
Figure 40: Script Time - Block D Section 3 

 The bus IO interface is checked for new data. 

 If a telegram was in the interface, the function "parseTime" is called. 
Depending on the result of this function an error to the Bus IO interface will 
be passed if necessary. If the interpretation of the telegram was successful, 
the time counters are set again by the function "parseTime". 

 If a new output time exists, this will be transferred via the Bus IO inter-
face. 

 This is an optional possibility how the output on the UART interface can 
be quit if the telegram handing via the Bus IO interface has failed. 

 



Simple netSCRIPT Sample Application 151/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

14.7.3 Use of the Program 

14.7.3.1 Usage via the Serial Communication Interface RS232 

The program starts automatically after the download with SYCON.net soft-
ware with the serial transmission without a release of the superordinated 
control via the Bus interface IO necessary. 

 Build up a connection from the COM port of your PC to the serial inter-
face of the target device. 

 Start a terminal program on the PC with the parameters listed in section 
14.1. 

 Then the window of the terminal shows the following data: 

 
Figure 41: Script Time - Display on a Serial Terminal 

 In this line you see the output without a start time was set. The script 
runs for 33 seconds. 

For a default time, enter a time in the format hh:mm:ss in the terminal win-
dow. The input has to be finished with the "Enter" key. 

 In this line, the reaction of the script to a faulty input is displayed with an 
output of the received characters. There was a number in the input for the 
hour missing. 

 In this line, the time output after a correct default time is displayed. The 
actual time is always displayed in the same line. 

 

14.7.3.2 Usage via the Superordinated Network Interface 

For the communication via the superordinated network interface of the net-
TAP device a bus master is needed. 

Please note that the input and output length of the I/O data to be transmit-
ted from and to netTAP needs to be configured in the control unit / master 
with at least 24 bytes, so that the data header can occur for the synchroni-
zation between netTAP and control via the I/O data. The pure user data 
begin from the 25'th byte. The time will be transmitted from the program via 
the Bus IO interface in the format hh:mm:ss. 8 user data bytes are to be 
transmitted, in addition, in I/O data. All together the example program 
needs 32 bytes input and output data. 



Simple netSCRIPT Sample Application 152/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

In the following example a CifX card was used as a PROFINET IO control-
ler. 

 In the handshake procedure between the master/controller and the net-
TAP a release is for send and receive data has to be done first from the 
master. For this value 000000C0h (LSB first) in the synchronization reg-
ister byte 0 to 3 of the output data has to be sent.  

The following figure shows at the top the data received from netTAP via the 
bus master and below the output data from the bus master. 

 
Figure 42: Script Time – Fieldbus Initialization Data Exchange 

 Handshake byte 0: The value is 0x00 if in the script the function 
":BusIOSetRun" is not called. If this function was already called, the value 
"0x08" is here. 

 

 After setting the release bits 6 and 7 (0xC0) ( ) and acknowledging 
with button  (by which the data are send to the script) the example 
program answers immediately with the actual counter values (time). In 
the bus master this value can be read in the input data.  

 



Simple netSCRIPT Sample Application 153/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

 
Figure 43: Script Time - Set the Actual Time 

 In the synchronization register byte 0 - 3 with 0xC2000000 the trans-
mission of the user data is confirmed. With the function ":BusIOSetRun" 
in the script the value 0xCA is returned. 

 Byte 4-7 contains the received user data length. 

 From byte 24 to byte 31 the time is returned. Here, 0x30 0x30 0x3A, 
0x30 0x31 0x3A, 0x33 0x31  00:01:31. The time in the script was not 
set till now. 

Should the time be transmitted the next time by the example script, must be 
informed (acknowledged) that the first data transmission was successful. 
This is done by adapting the state of the bit 1 in the output-synchronization 
register byte 0-3 to the state of bit 1 in the corresponding input-
synchronization register figure pos. . 

Moreover in the output data the value in byte 0 changes from 0xC0 to 
0xC2. 

Should the time be sent out on the fieldbus, the following needs to be done: 

1. First find out the handshake situation send to the master from the 
example program. 0xC0 or 0xC2, see  in the following figure. 



Simple netSCRIPT Sample Application 154/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

2. Set the output synchronization register byte 0-3 in  of the follow-
ing figure to the state of the following table and invert it with the 
state of the bit 0. 

Latest from the example program 
preserved synchronization regis-
ter value 

To the example program synchroni-
zation register value to be sent 

000000C0 000000C1 
000000C2 000000C3 

 

 
Figure 44: Script Time - Time set via Fieldbus 

3. Enter in the handshake byte ( ) the necessary value, with this the 
time in the script is editable. Enter in byte 4 ( ) the data length to 
be sent (here 0x08) and in the byte 24 to byte 31 ( ) the time 
which the script should use for sending the telegram. In the above 
figure the time has value 0x31, 0x36 0x3A, 0x33 0x30 0x3A, 0x34 
0x35 as a time: 16:30:45“. With a click on button  the data are 
sent.  
If you want to read only data again then enter for byte 4 ( ) data 
length 0. 



Simple netSCRIPT Sample Application 155/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

 The data receipt was confirmed by the example program by adapting 
the bit 0 in the input synchronization register 0xC3. Now new data can be 
sent. 

 Now the actual time corresponds to the sent data and is visible directly 
on the serial interface in the terminal program. 

14.7.3.3 Possible Handshake Sequence from the Perspective of the Superordi-
nated Control 

With the handshake input in clips standing values signify the value of the 
byte after call of the function ":BusIOSetRun" in the script. 

Handshake Input 
Byte 0 

Handshake Output 
Byte 0 

Description 

00 (08) 00 Initial state. 
 C0 Release of the communication,  

the script sends the first data. 
C2 (CA)  Data are transmitted from the script. 
 C2 The data receipt is confirmed  the 

script sends new data. 
C0 (C8)  Data are transmitted from the script. 
 C0 The data receipt is confirmed  the 

script sends new data. 
C2 (CA)  Data are transmitted from the script. 
 C1 Data are dispatched to the script. 
C3 (CB)  Data are transmitted from the script. 
 C3 The data receipt is confirmed  the 

script sends new data. 
C1 (C9)  Data are transmitted from the script. 
 C1 The data receipt is confirmed  the 

script sends new data. 
C3 (CB)  Data are transmitted from the script. 
 C2 The data receipt is confirmed  the 

script sends new data. 
C0 (C8)  Data are transmitted from the script. 
 C0 The data receipt is confirmed  the 

script sends new data. 
C2 (CA)  Data are transmitted from the script. 
 C2 The data receipt is confirmed.  

New data are dispatched to the 
script. 

C0 (C8)  Data are transmitted from the script. 
 C1 The data receipt is confirmed  the 

script sends new data. 
C3 (CB)  Data are transmitted from the script. 
 C2 The data receipt is confirmed.  

New data are dispatched to the 
script. 

C0 (C8)  Data are transmitted from the script. 



Lists 156/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

15 Lists  
15.1 List of Figures  
Figure 1: netSCRIPT communication channels 15 
Figure 2: Select device which is script capable 16 
Figure 3: SYCON, UART Configuration 17 
Figure 4: Script management 18 
Figure 5: Editor Windows 19 
Figure 6: Editor Window Syntax check 20 
Figure 7: Configurable Variable Definition 21 
Figure 8: Definition Configurable Variables compiled 22 
Figure 9: Configurable Variable Display 29 
Figure 10: Send and Receive Data without Block-Id 87 
Figure 11: Send and Receive Data with Block-Id 88 
Figure 12: Processing on data reception in character mode. 96 
Figure 13: Processing on data transmission in character mode. 96 
Figure 14: SYCON - Diagnostic Menu 123 
Figure 15: SYCON - Diagnostic General Diagnosis 124 
Figure 16: SYCON - Diagnostic Firmware Diagnostic 127 
Figure 17: SYCON - Diagnostic Task- Information 128 
Figure 18: SYCON - Diagnostic Lua Status 129 
Figure 19: netSCRIPT Debugger Window 131 
Figure 20: netSCRIPT Debugger Start Connection 132 
Figure 21: netSCRIPT Debugger Connection Management 132 
Figure 22: netSCRIPT Debugger Debugger Tools 133 
Figure 23: netSCRIPT Debugger - Project Tools 133 
Figure 24: netSCRIPT Debugger Window pane A and B 134 
Figure 25: netSCRIPT Debugger - Changed Script File 134 
Figure 26: netSCRIPT Debugger - Project Tools - save - load. 134 
Figure 27: netSCRIPT Debugger - Project Tools - Break 135 
Figure 28: netSCRIPT Debugger – Tools - Debug mode 135 
Figure 29: netSCRIPT Debugger Tools - Debug Mode 135 
Figure 30: netSCRIPT Debugger Set Breakpoint 137 
Figure 31: netSCRIPT Debugger - Script Editing 138 
Figure 32: netSCRIPT Debugger Tools 139 
Figure 33: Debugger Tools. Break 139 
Figure 34: Debug – Connection Management 140 
Figure 35: Script Time Example - Hardware Installation 143 
Figure 36: Script Time - Basic Structure 145 
Figure 37: Script Time - Block C 147 
Figure 38: Script Time - Block D Section 1 148 
Figure 39: Script Time - Block D Section 2 149 
Figure 40: Script Time - Block D Section 3 150 
Figure 41: Script Time - Display on a Serial Terminal 151 
Figure 42: Script Time – Fieldbus Initialization Data Exchange 152 
Figure 43: Script Time - Set the Actual Time 153 
Figure 44: Script Time - Time set via Fieldbus 154 
 



Lists 157/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

15.2 List of Tables 
Table 1: List of Revisions 8 
Table 2: Reference on Hardware 9 
Table 3: Reference on netSCRIPT 9 
Table 4: Reference on Software 9 
Table 5: Reference on Firmware 9 
Table 6: Script Description Syntax 10 
Table 7: Documentation 11 
Table 8: XML-Code – File Header 23 
Table 9: XML-Code - Numeric Variable 25 
Table 10: XML-Code - Bool-Variable 26 
Table 11: XML-Code - String Variable 27 
Table 12: XML-Code - File End 28 
Table 13: Overview Types 35 
Table 14: Assingments 36 
Table 15: Overview of mathematical operations 39 
Table 16: Overview of logical operations 40 
Table 17: Examples of Logical Operations 40 
Table 18: Overview of the Relation Operators 40 
Table 19: netSCRIPT - Function Definition 43 
Table 20: netSCRIPT - Function Call 44 
Table 21: netSCRIPT - Example of Function Definition and Call 44 
Table 22: netSCRIPT – Garbage Collector 45 
Table 23: netSCRIPT - Function Replacements using Function setmetatable 51 
Table 24: netSCRIPT - Function string.format - Formatting Characters 59 
Table 25: netSCRIPT - Function string.format - Transformation Characters 60 
Table 26: netSCRIPT - Function string.format - Accuracy entries 60 
Table 27: netSCRIPT - Function string.format - Control Characters 61 
Table 28: netSCRIPT -  Variants of check sum calculation 77 
Table 29: netSCRIPT - CRC Parameters 78 
Table 30: netSCRIPT - UART Parameters 81 
Table 31: Sequence of Block Processing without Identification Number 86 
Table 32: Sequence of Block processing with Identification Number 88 
Table 33: netSCRIPT, Data Transfer Structure 99 
Table 34: netSCRIPT, BusIO Configuration Table 101 
Table 35: Communication Data structure 104 
Table 36: netSCRIPT – Structure for Output – Data from the Control Unit 110 
Table 37: netSCRIPT – Structure for Input – Data to the Control Unit 110 
Table 38: netSCRIPT – Synchronization Register to netSCRIPT 112 
Table 39: netSCRIPT – Synchronization Register to the Superordinated Control Unit 113 
Table 40: netSCRIPT – Initialising of the Communication 115 
Table 41:netSCRIPT - „lasterror“ Error Codes 121 
Table 42: Display General Diagnostic 125 
Table 43: Parameter General Diagnostic 126 
Table 44: Description Table Task Information 127 

 

 

 



Glossar 158/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

16 Glossar 
Lua 

Lua is a freely usable Script language, witch is developed by the “Pon-
tifícia Universidade Católica do Rio de Janeiro- ©”. 

 

netSCRIPT 

Is a script-based programming language for communication devices of Hil-
scher GmbH, witch allows users themselves to program flows to program / 
protocol conversions into sights. 

 

netTAP 

Is a device which can be used in protocol conversions between two differ-
ent network systems Hilscher GmbH, on the netSCRIPT. 

 

SYCON.net 

PC-configuration tools of Hilscher GmbH used for configuration of fieldbus 
devices. 

UART 

A UART interface serves for the sending and receiving of data about a data 
line and illustrates the standard of the serial interfaces in PCs and micro-
controllers (e.g., RS-232 or RS-485). 

BUS IO 

Is the name of the in and output interface of the superior I/O network within 
netSCRIPT. Data to the control (master, host, PLC) will pass to the BUS it 
IO interface or receive from there data of the superior control. 

 

 

 



Technical Data 159/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

17 Technical Data 
 

Storage space for programs and variable approx. 1 Mbyte 

Cycle time   min 1 ms max 1000 ms 

Serial Interface support  RS-232, RS-422, RS-485 

Maximum usable data   1024 Byte 

 



Contacts 160/160 

netSCRIPT | Programming Language for Serial Communication  
DOC090801UM06EN | Revision 6 | English | 2010-07 | Public | Released  © Hilscher, 2009-2010 

18 Contacts 
 

Headquarters 
 
Germany 
Hilscher Gesellschaft für  
Systemautomation mbH 
Rheinstrasse 15 
65795 Hattersheim 
Phone: +49 (0) 6190 9907-0 
Fax:     +49 (0) 6190 9907-50 
E-Mail: info@hilscher.com 
Support 
Phone: +49 (0) 6190 9907-99 
E-Mail: de.support@hilscher.com 
 

 
 
 
 
 
 
 
 
 
 
 
 

Subsidiaries 
 

 

China 
Hilscher Systemautomation (Shanghai) Co. Ltd. 
200010 Shanghai 
Phone: +86 (0) 21-6355-5161 
E-Mail: info@hilscher.cn 
Support 
Phone: +86 (0) 21-6355-5161 
E-Mail: cn.support@hilscher.com 
 
France 
Hilscher France S.a.r.l. 
69500 Bron 
Phone: +33 (0) 4 72 37 98 40 
E-Mail: info@hilscher.fr 
Support 
Phone: +33 (0) 4 72 37 98 40  
E-Mail: fr.support@hilscher.com 
 
India 
Hilscher India Pvt. Ltd. 
New Delhi - 110 025 
Phone:  +91 11 40515640 
E-Mail: info@hilscher.in 
 
Italy 
Hilscher Italia srl 
20090 Vimodrone (MI) 
Phone: +39 02 25007068 
E-Mail: info@hilscher.it 
Support 
Phone: +39 02 25007068 
E-Mail: it.support@hilscher.com 

Japan 
Hilscher Japan KK 
Tokyo, 160-0022 
Phone: +81 (0) 3-5362-0521 
E-Mail: info@hilscher.jp 
Support 
Phone: +81 (0) 3-5362-0521 
E-Mail: jp.support@hilscher.com 
 
Korea 
Hilscher Korea Inc. 
Suwon, 443-810 
Phone: +82-31-204-6190 
E-Mail: info@hilscher.kr 
 
Switzerland 
Hilscher Swiss GmbH  
4500 Solothurn 
Phone: +41 (0) 32 623 6633 
E-Mail: info@hilscher.ch 
Support 
Phone: +49 (0) 6190 9907-99 
E-Mail: ch.support@hilscher.com 
 
USA 
Hilscher North America, Inc.  
Lisle, IL 60532 
Phone: +1 630-505-5301 
E-Mail: info@hilscher.us 
Support 
Phone: +1 630-505-5301 
E-Mail: us.support@hilscher.com 
 

 

 

mailto:info@hilscher.com
mailto:de.support@hilscher.com
mailto:info@hilscher.cn
mailto:cn.support@hilscher.com
mailto:info@hilscher.fr
mailto:fr.support@hilscher.com
mailto:info@hilscher.in
mailto:info@hilscher.it
mailto:it.support@hilscher.com
mailto:info@hilscher.jp
mailto:jp.support@hilscher.com
mailto:info@hilscher.kr
mailto:info@hilscher.ch
mailto:ch.support@hilscher.com
mailto:info@hilscher.us
mailto:us.support@hilscher.com

	1 Introduction
	1.1 About the User Manual
	List of Revisions
	1.1.2  Reference on netSCRIPT, Hardware, Software and Firmware 
	1.1.3 Conventions in this Manual
	1.1.3.1  Documentation 


	1.2  Legal Notes
	1.2.1 Copyright 
	1.2.2 Important Notes
	1.2.3  Exclusion of Liability
	1.2.4 Warranty
	1.2.5  Export Regulations
	1.2.6 Registered Trademarks

	1.3 Licenses

	2 Description and Requirements
	2.1 Description
	2.2 System Preconditions

	3  Editor for netSCRIPT
	3.1 Invoke the Editor
	3.1.1 Device Selection 

	3.2  Program Editor
	3.2.1 Script File Management 
	3.2.2 Script File Editing

	3.3  Configurable Variables (Parameters) 
	3.3.1 Definition of Configurable Variables (Variable Management)
	3.3.2  Structure of the XML File for Configurable Variables
	3.3.2.1 The File Header
	3.3.2.2 File Body
	3.3.2.3  Numeric Variables
	3.3.2.4  Bool Variables
	3.3.2.5 String
	3.3.2.6  File End
	3.3.2.7 Delete of a Table with Variable Definitions
	3.3.2.8 Call of the Variables within netSCRIPT

	3.3.3  Display of the Configurable netSCRIPT Variables


	4  The netSCRIPT Language
	4.1  Syntax and Keywords
	4.1.1 Comments
	4.1.2 Keywords

	4.2  Variables
	4.2.1 Variable Names
	4.2.2 Assignments
	4.2.3  Scope of Variables
	4.2.4  Types
	4.2.4.1 Nil
	4.2.4.2 Numbers
	4.2.4.3 Strings
	4.2.4.4 Boolean Values
	4.2.4.5 Functions

	4.2.5 Tables
	4.2.6 Garbage Collector

	4.3  Global System Variables
	4.3.1 _G

	4.4  Operations
	4.4.4.1 FOR-Statement
	4.4.4.2 WHILE loop
	4.4.4.3 REPEAT loop
	4.4.4.4  BREAK


	4.5  Functions

	5  Functions Library 
	5.1 Base Functions
	5.2  String Manipulation
	5.2.3.1  Patterns
	5.2.3.2 Captures
	5.2.3.3  Character Classes
	5.2.3.4  Pattern item


	5.3  Table Manipulation
	5.4  Mathematical Functions

	6  Special Functions for netTAP
	6.1 Bit-Operations
	6.2  Conversions of Numbers
	6.3  LED – Control
	6.4  Requesting the Cycle Time of the Script
	6.5  CRC Checksum Functions
	6.5.1.1 Variants of Check Sum Calculation
	6.5.1.2  Parameter for Check Sum Calculation Variant CRC
	6.5.2.1 Data Transfer to Hash Object 
	6.5.2.2  Check Sum Request
	6.5.2.3 Reset of Hash Object
	6.5.2.4 Example Script for the Usage of CRC Functions



	7  Serial Communication
	7.1 Configuration Parameters for Data Transmission
	7.1.1.1 PortReadConfigDb
	7.1.1.2 PortOpen
	7.1.1.3  :PortClose
	7.1.2.1 Function Call including reading SYCON.net Settings
	7.1.2.2 Function Call including without reading SYCON.net Settings
	7.1.2.3 Closing the Ports 



	8  Serial Communication in Block Mode
	8.1  Block Processing without Identification Number
	8.2  Block Processing with Identification Number
	8.3  Send / Receive Functions for the Block Mode

	9  Serial Communication in Character Mode 
	9.1  Transmission- und Reception Functions

	10  Functions for the Communication with the superordinated I/O Network
	10.1 Bus IO Communication – Start and End 
	10.2 Read / Write Functions for Direct Mode
	10.3  Data Header for Handshake Mode
	10.4  Read/Write Functions for Handshake Mode
	10.5  Reset Command in Handshake Mode
	10.6  Ready Signal to the Control Unit in Handshake Mode
	10.7  Report an Error to the superordinated Control Unit in Handshake Mode
	10.8  I/O Data Structure for the Transfer to and from the Control Unit in Handshake Mode
	10.9  Handshake and Initialization of the I/O Communication in Handshake Mode 
	10.9.1.1 Superordinated Control Unit to netSCRIPT
	10.9.1.2 netSCRIPT to Superordinated Control Unit 
	10.9.3.1  Superordinated Control Unit to netSCRIPT 
	10.9.3.2  netSCRIPT to the superordinated Control Unit



	11  Error-Handling
	11.1 About “lasterror”
	11.2  Return values for Status and Error of the Port Functions

	12  Troubleshooting
	12.1  Diagnostics in SYCON.net

	13  Troubleshooting netSCRIPT
	13.1 netSCRIPT Debugger
	13.1.7.1 Watch-Window
	13.1.7.2  Set Breakpoints
	13.1.9.1 Exit the Debugger – With suspended Script Processing
	13.1.9.2 Exit the Debugger – with running Script Processing
	13.1.9.3 Disconnect Debug Connection 



	14  Simple netSCRIPT Sample Application
	14.1 Example Program: ECHO
	14.2 Example Program: Blockmode
	14.3 Example Program: Eliza
	14.4 Example Program: BusIOCount
	14.5 Example Program: hello_World
	14.6 Example Program: LedFlash
	14.7 Example Program: Time
	14.7.1.1 Hardware Installation 
	14.7.1.2 Terminal Settings
	14.7.1.3 Superordinated Control
	14.7.2.1 Verbal Program Description
	14.7.2.2  netSCRIPT Program Structure 
	14.7.2.3  Details of Block B
	14.7.2.4 Details of Block C
	14.7.2.5  Details of Block D
	14.7.3.1 Usage via the Serial Communication Interface RS232
	14.7.3.2 Usage via the Superordinated Network Interface
	14.7.3.3 Possible Handshake Sequence from the Perspective of the Superordinated Control



	15  Lists 
	15.1 List of Figures 
	15.2  List of Tables

	16 Glossar
	17 Technical Data
	18 Contacts

