-
hilscher

COMPETENCE IN
CONMMUNICATION

Protocol API
Web interface

Packet interface
V1.5.0

Hilscher Gesellschaft fir Systemautomation mbH

www.hilscher.com
DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public

Introduction 2/41

Table of contents

1 T} (e Xo [0 Tox 1o o PP 3
0 R AN o o101 1 T E= 3o [o oW =T o | PSPPSR 3
O I 1~ o) =Y/ 13 (o] o PR PRSP 3
R Y (=T o g I (=T 01T (=T 0 0=] SRS 3
O A 101 (=T oo [=To = T8 o 1= (ot PSPPSR 3
1.5 Technical data
1.6 Terms, abbreviations and definitioNs ... 4
1.7 References t0 dOCUMENTSuuiiiiiiiiii ittt e et e e e s ettt e e e e e e s e aanbeeeaeaaeesaannneeees 4

2 Functions of the Web Server.........cccciii 5

3 LI AY o] o1 LToz= Lo 4 I 1} (=1 o = U = TSP 6
3.1 OVEINVIEW OF PACKELSeeeiiiiiiiie ittt e st e e e st b e e e sbb et e e abbeeeeabneeeean 6
3.2 HTTP processing in the WebIf COMPONENTcoiiiiiiiiiiiiiie e e e e e 7
TG B Y/ =T F=To [T o 1= o | TP PPTTPTRRTPSPPPPPIN 9

3.3.1 Dispatch Entry CUSIOMIZALIONciiiiiiiiiiiiir ettt e e s e e e e e e e e e e s et r e e e e e e s eaataaeeeeaeas 9
3.3.1.1 SetDispatCh ENry URLccciiiiiiiiiiiiiice ettt e e e e e e e e e 10

3.3.1.2 Set Dispatch Entry ENADIEAcccoiiiiiiiiiiiiiieec e 11

3.3.2 SO TCP P OIS . 12
3.3.3 SEAMt the WED SEIVET ...t e e et e e e e e e s ettt e e e e e e s ennbraeeaaeeaanes 13
3.34 SEOP thE WED SEIVET ...ttt e e nnee s 13
3.35 Enable HTTP Request handling SEIVICEcoiuiiiiiiiiieiiiie ettt 14
3.3.6 Disable the HTTP Request handling SEIVICEccciiiiiiiiiiiieiiiee e 14
3.4 HTTP Request NANIINGcccoooiiiie e 15
3.4.1 HTTP REQUESE SEIVICEeeiiiiiiie ittt ettt ee et e e ettt e e st e e e s nte e e e ent e e e e snteeeesnbeeeesnneeeeennnes 15
3.4.2 HTTP REQUESE BOAY SEIVICE......ceiuiiieiiiiiee et etiee e sttt e et e e st e e sttt e e ette e e s snteeeesnteeeeasneeeennnee 17
3.4.3 ENd Of HTTP REQUESE SEIVICEcueiiieiiiiee ettt ettt et e e et e e e ettt e e s nnteeeesnteeeeaseeeesnees 18
344 Consideration about the request reception With DoAYccceiiiiiiiii e 18
3.4.5 Get HTTP ReqUESE FIElUS SEIVICEoviiiiiiiiiiiiie et 19
3.45.1 I EoR [T 1 Il = T Yo (Y= T o PR 19

R T S Tox 1) £ P UURUSUPRRP 20

3.5 HTTP RESPONSE GENEIALION.....ciciiie it e e e e aaaaaa e e e e aaaas 21
3.5.1 HTTP RESPONSE SEIVICE ...eeiuiiieeiitieeaaitieeeeteeeeestieee e st eeesteeeeassaeeeassteeeeasteeesanseeeesnteeeeansseeeennnes 21
3.5.2 Set HTTP ReSPONSE FI€lAS SEIVICEccoiuviiieiiiiie ittt e e e nneeeeen 22
3.5.2.1 Remark about the necessary response fieldscccociieiiieiiie e 22

3,53 HTTP RESPONSE BOOY SEIVICEceiiiiiiiiiiiiieee ettt e e e et e e e e e s e rnabneeeeeeas 23
354 ENd Of HTTP RESPONSE SEIVICE....ceiiiiiiiitiiieeee ettt ettt e e e e s ettt e e e e e e aabb et e e e e e e snebneeeeeeas 24

4 L= 11 01 0] (=T 25

4.1 GET Request EXamPIEccoooiiiiiiecce 25
4.1.1 REOUESE GENEIALION......eeiiiiiiiiitie ettt e et e e e e e s e bbb e e e e e e e e e bbb et e e e e e e e anbaneeeeeas 25
41.2 RECEIVING thE REQUEST......eeiiiiiii it e et snne e 26
4.1.3 Responding to the Request (Header GEeNeration)...........coocvvieiiieeeiniiee e 27
41.4 Responding to the Request (CONtENt BOAY)cuvveeiiiiiiiiiiii et 28
4.2 POST REQUESE EXAMPIEetiiiiiieiiiiiiiiiit ettt e e e e e e et e e e e e e s e e st e aaeeesseannseneeeeeens 29
421 REQUESE GENEIALION ...ttt s et et e e et e e e b e e e e a b e e e snne e e s nnnes 29
422 RECEIVING thE REQUEST......eeiiiiiii it e e nnne e 30
423 EXtracting REQUESE FIEIASuuiiiiiiiiiiee et 31
42.4 Responding t0 the REQUESToiiiiiiee e 32
4.3 Request termination eXample ... 33
43.1 How to react to Mmalformed reQUESTSeeiiiiiiiiieiee e 33
43.2 SEQUENCE DIAGIAMT ...ttt et e e e ettt e e e e e e bbb b et e e e e e e s ab b b et e e e e e aantbbeeeeeeeeeannnneees 34

5) = AU ES oo Yo £ TSR A o] o o Yo 1= PSSR 35
LN 0T 1= o L PRSPPI 36
L0 A 151 o) i = 1] [T PP TR PR PTPUPPPTPP 36
6.2 LISE OF FIQUIES ...ttt e ettt e e e e e s be et e e e e e e s ababeeeaaeeeeannns 36
SRS T I =T P | 0] (= PP TUT PP PP PPPRPP 37
L @0 o | T 41

Web interface | Packet interface
DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2021-2022

Introduction 3/41

1 Introduction
1.1 About this document

This manual describes the API of the integrated web server. The name of this interface is Weblf
("Web interface”).

1.2 List of revisions

Rev | Date Name Chapter | Revision
1 2019-03-28 | ATI, HHE | All Document created.
2 2022-02-22 | AlV,RGO |3 Documented the use of ulSrcld in IND packets and ulDestld in REQ
packets for uniqgue HTTP request identification.
3.1 Added descriptions for new commands: Set Dispatch Entry URL, Set
Dispatch Entry Enabled, Set TCP Port, Start Web Server, Stop Web
Server
3.21 Updated the description of the tClientAddr and tAuth fields.
4 Added a new chapter with examples.
5 Updated error codes.

Table 1: List of revisions

1.3 System requirements

The software package has the following system requirements to its environment:
netX chip as CPU hardware platform
operating system for task scheduling required

1.4 Intended audience

This manual is suitable for software developers with the following background:
Knowledge of the programming language C
Knowledge of the cifXTools
Knowledge of the HTTP protocol

Web interface | Packet interface
DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2021-2022

Introduction 4/41

1.5 Technical data

The data below applies to the web server V1.5.0 featured with the Weblf component.

Stack available for netX

netX Available
netX 10 No

netX 50 No

netX 51 No

netxX 90 Yes

netX 100, netX 500 No

Table 2: Technical data — Available for netX

1.6 Terms, abbreviations and definitions

Term Description

HTTP Hypertext Transfer Protocol
HTTPS HTTP over SSL

Weblf Web Interface (component)

Table 3: Terms, abbreviations and definitions

1.7 References to documents

This document refers to the following documents:
[1] IETF: Hypertext Transfer Protocol -- HTTP/1.1 (https://tools.ietf.org/html/rfc2616).

[2] Hilscher Gesellschaft fur Systemautomation mbH: API, Web server API netX 90/4000,
Revision 2, Eglisch, 2021.

Table 4: References to documents

Web interface | Packet interface
DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2021-2022

https://tools.ietf.org/html/rfc2616

Functions of the web server 5/41

2 Functions of the web server

The web server is a component and (can be) integrated in a firmware.

The web server communicates using the HTTP protocol. Requests of a client, e.g. from a web
browser, are forwarded to the application. The application using this interface to the Weblf
component will be able to receive HTTP requests and has to generate the corresponding HTTP
responses.

In general, the integrated web server forwards HTTP requests to the application, though answers
specific HTTP requests (e.g. URL to /netX) directly.

Web interface | Packet interface
DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2021-2022

The Application Interface 6/41
3 The Application Interface
3.1 Overview of packets
The following table provides an overview on the packets available for your application:
Overview over packets of the Weblf component
No. of Packet Command Page
section code
(REQI/CNF or
IND/RSP)
Management packets
3.3.1.1 |WEBIF_SET_DISPATCH_ENTRY_URL_REQ/CNF — OXAF2A/ 10
Set dispatch entry URL request/confirmation OxAF2B
3.3.1.2 | WEBIF_SET_DISPATCH_ENTRY_ENABLED_ REQ/CNF — OxAF28/ 11
Set dispatch entry enabled request/confirmation OxAF29
3.3.2 WEBIF_SET_TCP_PORTS_REQ/CNF — Set TCP ports request/confirmation OXAF26/ 12
OXAF27
3.3.3 WEBIF_START_REQ/CNF — Start the web server request/confirmation OxAF22/ 13
OXAF23
3.34 WEBIF_STOP_REQ/CNF — Stop the Web Server request/confirmation OxAF24/ 13
OXAF25
3.35 WEBIF_ENABLE_REQUEST_HANDLING_REQ - OXAF10/ 14
Enable HTTP request handling request/confirmation OxAF11
3.3.6 WEBIF_DISABLE_REQUEST_HANDLING_REQ - OXxAF20/ 14
Disable HTTP request handling request/confirmation OxAF21
Packets for HTTP Request handling
3.4.1 WEBIF_HANDLE_HTTP_REQUEST_IND/RSP — HTTP Request indication/response | OXAF00/ 15
OXAF01
3.4.2 WEBIF_HANDLE_HTTP_REQUEST_CONTENT_IND/RSP — OXAF02/ 17
HTTP Request Content indication/response OxAF03
343 WEBIF_FINISH_HANDLING_HTTP_REQUEST_IND — OXAF04/ 18
End of HTTP Request indication/response OXAF05
3.45 WEBIF_GET_HTTP_REQUEST_FIELD_REQ - OXAFO06/ 19
Get HTTP Request Fields request/ confirmation OXAFO7
Packets for HTTP Response generation
35.1 WEBIF_GENERATE_HTTP_RESPONSE_REQ - OXAF08/ 21
Generate HTTP Response request/confirmation OxAF09
3.5.2 WEBIF_GENERATE_HTTP_RESPONSE_FIELD REQ - OxAFO0A/ 22
Set HTTP Response Fields request/confirmation OxAFOB
353 WEBIF_GENERATE_HTTP_RESPONSE_CONTENT_REQ - OXAFOC/ 23
HTTP Response Content request/confirmation OXAFOD
354 WEBIF_FINISH_GENERATION_HTTP_RESPONSE_REQ — OXAFOE/ 24
OXAFOF

End of HTTP Response request/confirmation

Table 5: Overview over packets of the Weblf component

Web interface | Packet interface

DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public

© Hilscher, 2021-2022

The Application Interface 7141

3.2 HTTP processing in the Weblf component

In order to receive HTTP requests, the application must first enable HTTP request handling within
the Weblf component. Afterwards, this handling can be disabled or re-enabled.

The HTTP processing is separated into two phases that each have to be performed sequentially.

The application has to perform the following steps for each phase (the numbering of steps relates
to Figure 1: Packet sequence on page 8):

1. HTTP request handling: reception of the HTTP request.
The Weblf component uses indication packets to inform the application and communicate to
it. The application has to use response packets to communicate to the Weblf component.

Wait for a new HTTP request (steps 1 and 2)
Wait for HTTP request body until HTTP request end (steps 3, 4, 5 and 6)
Get HTTP request fields (steps 7 and 8)
2. HTTP response generation: generation of the HTTP response.
The application has to use request packets to communicate to the Weblf component. The
Weblf component replies confirmation packets to the application.
Begin a new HTTP response (steps 9 and 10)
Set HTTP response fields (steps 11 and 12)
Set HTTP response body (steps 13 and 14)
End of the HTTP response (steps 15 and 16)

In case the application does not transmit the response packet or the request packet corresponding
to the current phase and current step within the timeout interval, the stack will generate a soo
server Error HTTP response directed to the client. After timeout expiration and the transmission
of the 500 server Error HTTP response, the stack again indicates a new HTTP request reception
with the corresponding indication.

Web interface | Packet interface
DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2021-2022

The Application Interface

8/41

web client

web server

HTTF request

application

Enahle HTTF request handling REQUEST

: Enable HTTP request handling CGNFIRMATION

3

web client

Figure 1: Packet sequence

' The application has to wait an HTTP request INDICATION
' to pool the HTTP request reception
I i
A HTTP request handling / !
1 HTTP request INDICATION }:
el TTP request RESPONSE I
loo [number of packets necessary to transfer the céntent]
t 3 HTTF request body INDICATION }:
| <A HTTPrequestbody RESPONSE |
' 5 End of HTTP request INDICATION }:
| B End of HTTP requsst RESPONSE |
loo I [number of field in the HTTP request] '
< 7 Get HTTP request fields REQUEST |
L 8 Get HTTP request fields CONFIRMATION
B HTTP response generation) !
.{ 9 HTTF response REQUEST |
L A0 HTTP response CONFIRMATION >
loo [number of fields in the HTTP response] :
11 Set HTTF response fields REQUEST :
'...1.3. Set HTTE response .f.E!'.‘?'.S_.F?.QNF!F?!‘.—‘!%T'@!‘?‘_._.}:
! !
loo [number of packets necessary to transfer the content]
13 HTTF response body REQUEST !
! ..1.*.‘. HITP response body CONFIRMATION >
E{ 15 End HTTP response REQUEST !
| 16 End HTTP responss CONFIRMATION |
HTTP response : :
web server application

Web interface | Packet interface
DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public

© Hilscher, 2021-2022

The Application Interface 9/41

3.3 Management
3.3.1 Dispatch Entry Customization

The web server manages modules within a dispatch table. Each web server module is represented
there in an individual dispatch entry. At system startup, a default dispatch table containing all
configured web server modules is predefined. A certain degree of dispatch table customization is
allowed at runtime.

For each dispatch entry, a unique identifier is defined, so that a specific web-server module can
later be customized using this dispatch entry ID. These entries correspond to the features
described in [2], Table 2: Feature overview.

The following table describes the dispatch entries available for customization and the URLs that

they are by default mapped to:

Feature Dispatch ID Default URL
(decimal)

Reset 5 /netx/reset

Diagnostic 6 /netx/diag

Weblf 3 Iwebif

File server 8 [files

File manager 9 Inetx/filemanager

Firmware upload 4 Inetx/firmware

netProxy object access 17 /netx/npx

Authentication 12 /netx/login

User Manager 11 /netx/usermanager

GUI 7 /netx

Table 6: Dispatch ID per feature and corresponding default URLs.

The IDs above are defined in the WebServer Configurations DispatchIds.h header file.

Web interface | Packet interface
DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public

© Hilscher, 2021-2022

The Application Interface

3.3.1.1

This service allows to customize the URL, at which a webserver module is configured to respond.

Set Dispatch Entry URL

Note:

This service can only be processed successfully, if the web-server is not running, e.g.
before sending the WEBIF START REQ command.

Packet description

Variable Type Value / range Description

ulDest uint32_t Destination

ulLen uint32_t 1...129 Packet data length in bytes

ulCmd uint32_t OxAF2A WEBIF_SET_DISPATCH_ENTRY_URL_REQ

Data

bDispatchid uint8_t ID of the specific dispatch entry

szUrl CHAR]] 0 ...128 characters New URL string. The actual string size is determined
by the packet length. It does not need to be zero-
terminated.

Table 7: WEBIF_SET_DISPATCH_ENTRY_URL_REQ - Set dispatch entry URL request.

Packet description

Variable Type Value /range | Description

ulDest uint32_t Destination

ulLen uint32_t |0 Packet data length in bytes

ulSta uint32_t (0 See section Status codes / Error codes on page 35
ulcmd uint32_t | OXAF2B WEBIF_SET_DISPATCH_ENTRY_URL_CNF

Table 8: WEBIF_SET_DISPATCH_ENTRY_URL_CNF — Set dispatch entry URL confirmation

Web interface | Packet interface

DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public

© Hilscher, 2021-2022

The Application Interface 11/41
Example
web server application
| I
: Customize the WEBIF module URL |-
: :tHead
- - : : ulbDest = 0x00000020
The bDispatchld contains \ | wlten = Dx00000005
the webif module's dispatch ID: [| wlemd = 0x0000af2a
WEBSERVER _CFG_DISPATCH ID WEBIF=3 |! !
and the new URL is "/api”. I I|[tData
| Set Dispatch Entry URL || bDispatchId = 0x00000003
| REQUEST ! szlrl = "Sapi"

tHead
ullLen = 0x00000000
ulSta = 0x00000000
ulCmd = 0x0000aflb

Set Dispatch Entry URL

CONFIRMATION

.. }

3.3.1.2

:Start the Web Server

Set Dispatch Entry Enabled

This service allows you to enable or disable a dispatch entry within the dispatch table. By default
all dispatch entries are enabled.

Note:

This service can only be processed successfully if the web-server is not running, e.g.
before sending the WEBIF START REQ command.

Packet description

Variable Type Value / range Description

ulDest uint32_t Destination

ulLen uint32_t 2 Packet data length in bytes

ulCmd uint32_t OxAF28 WEBIF_SET_DISPATCH_ENTRY_ENABLED_REQ
Data

bDispatchid uint8_t ID of the specific dispatch entry

bEnabled uint8_t Non-zero to enable, zero to disable.

Table 9: WEBIF_SET_DISPATCH_ENTRY_ENABLED_REQ - Set dispatch entry enabled request.

Packet description

Variable Type Value / range | Description

ulDest uint32_t Destination

ulLen uint32_t (0 Packet data length in bytes

ulSta uint32_t (0 See section Status codes / Error codes on page 35
ulCmd uint32_t | OxAF29 WEBIF_SET _DISPATCH_ENTRY_ENABLED_ CNF

Table 10: WEBIF_SET_DISPATCH_ENTRY_ENABLED_CNF — Set dispatch entry enabled confirmation

Web interface | Packet interface
DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public

© Hilscher, 2021-2022

The Application Interface 12/41

3.3.2 Set TCP Ports

This service allows changing the TCP ports that the HTTP and HTTPS (if available) servers are
listening on.

Note: This service can only be processed successfully if the web-server is not running, e.g.
before sending the WEBIF START REQ command.

Packet description

Variable Type Value / range Description

ulDest uint32_t Destination

ulLen uint32_t 8 Packet data length in bytes

ulCmd uint32_t OXAF26 WEBIF_SET_TCP_PORTS_REQ

Data

usHttpPort uintl6_t 1...65535 TCP listening port for non-encrypted transfers.
usHttpsPort uintl6_t 1...65535 TCP listening port for encrypted transfers.
ulReserved uint32_t Reserved

Table 11: WEBIF_SET_TCP_PORTS_REQ — Set TCP ports request.

Packet description

Variable Type Value /range | Description

ulDest uint32_t Destination

ulLen uint32_t (0 Packet data length in bytes

ulSta uint32_t |0 See section Status codes / Error codes on page 35
ulCmd uint32_t | OXAF27 WEBIF_SET_TCP_PORTS_CNF

Table 12: WEBIF_SET_TCP_PORTS_CNF — Set TCP ports confirmation

Web interface | Packet interface
DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2021-2022

The Application Interface

3.3.3

appropriate time to do so.

Packet description

Start the Web Server

The web server may have been configured not to start explicitly at system startup. This command
gives the control to the application to start the web server only if it is needed and choose the most

Variable Type Value / range Description

ulDest uint32_t Destination

ulLen uint32_t 0 Packet data length in bytes
ulCmd uint32_t OxAF22 WEBIF_START_REQ

Table 13: WEBIF_START_REQ - Start the web server request.

Packet description

Variable Type Value /range | Description

ulDest uint32_t Destination

ulLen uint32_t (0 Packet data length in bytes

ulSta uint32_t |0 See section Status codes / Error codes on page 35
ulCmd uint32_t | OXAF23 WEBIF_START_CNF

Table 14: WEBIF_START_CNF- Start the web server confirmation

After the successful confirmation of the command, the web server starts to listen for client
connections on the configured TCP port(s).

3.34 Stop the Web Server

Once the web server is started, it may be stopped again. This service gives the control to the
application to stop the web server in order to disable it or to modify some of its configuration,
before starting it again. It may take up to 4 seconds for the web server to stop and the confirmation
packet to be received.

Packet description

Variable Type Value / range Description

ulDest uint32_t Destination

ulLen uint32_t 0 Packet data length in bytes
ulCmd uint32_t OxAF24 WEBIF_STOP_REQ

Table 15: WEBIF_STOP_REQ — Stop the web server request.

Packet description

Variable Type Value /range | Description

ulDest uint32_t Destination

ulLen uint32_t (0 Packet data length in bytes

ulSta uint32_t (0 See section Status codes / Error codes on page 35
ulCmd uint32_t | OxAF25 WEBIF_STOP_CNF

Table 16: WEBIF_STOP_CNF — Stop the web server confirmation

Web interface | Packet interface

DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2021-2022

The Application Interface

3.3.5

As soon as the application is ready to receive and process the HTTP requests, the application can

Enable HTTP Request handling service

enable the handling of the incoming HTTP requests.

If the handling of the incoming HTTP requests is not enabled, the HTTP Request indications are
not transmitted to the application; and the web server will respond“404 Not Found” to all requests
on /webif URL

Packet description

Variable Type Value / range Description

ulDest uint32_t Destination

ulLen uint32_t 0 Packet data length in bytes

ulCmd uint32_t OxAF10 WEBIF_ENABLE_REQUEST_HANDLING_REQ

Table 17: WEBIF_ENABLE_REQUEST_HANDLING_REQ — Enable HTTP request handling request

Packet description

Variable Type Value /range | Description

ulDest uint32_t Destination

ulLen uint32_t (0 Packet data length in bytes

ulSta uint32_t (0 See section Status codes / Error codes on page 35
ulCmd uint32_t | OXAF11 WEBIF_ENABLE_REQUEST HANDLING_CNF

Table 18: WEBIF_ENABLE_REQUEST_HANDLING_CNF — Enable HTTP request handling confirmation

In order

to assure the

retro-compatibility,

WEBIF_REGISTER_CNF are still defined.

3.3.6

In order to stop the reception of the HTTP request indication, the application can use the disable

request.

Packet description

the symbols WEBIF_REGISTER_REQ and

Disable the HTTP Request handling service

Variable Type Value / range Description

ulDest uint32_t Destination

ulLen uint32_t 0 Packet data length in bytes

ulCmd uint32_t O0xAF20 WEBIF_DISABLE_REQUEST_HANDLING_REQ

Table 19: WEBIF_DISABLE_REQUEST HANDLING_REQ — Disable HTTP request handling request

Packet description

Variable Type Value / range | Description

ulDest uint32_t Destination

ulLen uint32_t (0 Packet data length in bytes

ulSta uint32_t (0 See section Status codes / Error codes on page 35
ulCmd uint32_t | OXAF21 WEBIF_DISABLE_REQUEST_HANDLING_CNF

Table 20: WEBIF_DISABLE_REQUEST_HANDLING_CNF — Disable HTTP request handling confirmation

In order to assure the retro-compatibility,

WEBIF_UNREGISTER_CNF are still defined.

Web interface | Packet interface

DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public

the symbols WEBIF_UNREGISTER_REQ and

© Hilscher, 2021-2022

The Application Interface

15/41

3.4 HTTP Request handling

3.4.1

HTTP Request service

As soon as the Weblf stack receives a new HTTP request, it transmits this indication to the
application. This indication marks the beginning of the HTTP request handling.

Figure 2 GET request reception and Figure 5 POST request reception show typical application
cases of the HTTP Request service.

Packet description

Variable Type Value / range Description
ulDest uint32_t Destination
ulSrcld uint32_t 1 — OXFFFFFFFF A unique number identifying the HTTP request. It must
be stored and used in all following request packets to
identify the same HTTP request.
ulLen uint32_t 136 (V1) Packet data length in bytes
180 (V2)
ulCmd uint32_t 0xAF00 WEBIF_HANDLE_HTTP_REQUEST_IND
Data
ulHttpMethod uint32_t 1...7 HTTP method to be used:
» 1:GET
= 2:HEAD
= 3: POST
= 4:PUT
» 5:DELETE
= 6: TRACE
= 7: CONNECT
ulContentLength | uint32_t 0 ... OXFFFFFFFE, Body size,
OXFFFFFFFF OxFFFFFFFF enables reception by chunks.
aPathName CHAR[128] [0...255]* 128 Null-terminated string of maximal 128 characters
containing the path name.
tClientAddr WEBIF_IP_ADDR_T | N/A Only valid for the V2 packet (see the ulLen field in the
header). The address of the client which transmitted
the request.
tAuth WEBIF_AUTH_T N/A This field is filled-out only on IoT firmware with HTTPS

enabled. This is the information about the
authenticated user using the COM-CPU authentication.

Table 21: WEBIF_HANDLE_HTTP_REQUEST_IND — HTTP Request indication

The “tClientAddr” field contains IP address information about the client from which the request
originated. Here are its sub-fields:

Variable Type Value /range | Description

ullpAddr Uint32_t Client IP Address (v4)
usPort uintl6_t 0 ... 65535 Client TCP Port
usReserved uintl6 _t 0 Reserved

Table 22: WEBIF_IP_ADDR_T — Client IP Address information

Web interface | Packet interface

DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public

© Hilscher, 2021-2022

The Application Interface

16/41

The tAuth field could be used in some firmwares (loT with HTTPS enabled) to retrieve the user
previously authenticated via the HTTP basic authentication in the COM-CPU user database. If the

feature is not enabled, the whole field is zeroed. Here are its sub-fields:

Variable Type Value /range | Description

ulGroupBitfield uUint32_t Bit field 0 = user has no rights,
For more information, see Authentication Manager's structure
AUTH_USRDB_USER_GROUP_BF_T type

szUserName CHAR[32] Username (UTF-8)

Table 23: WEBIF_AUTH_T — Authentication information

Packet description

Variable Type Value /range | Description

ulDest uint32_t Destination

ulLen uint32_t (0 Packet data length in bytes

ulSta uint32_t See section Status codes / Error codes on page 35
ulCmd uint32_t | OXAF0O1 WEBIF_HANDLE_HTTP_REQUEST RSP

Table 24: WEBIF_HANDLE_HTTP_REQUEST_RSP - HTTP Request response

Web interface | Packet interface

DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public

© Hilscher, 2021-2022

The Application Interface

17/41

3.4.2

HTTP Request Body service

The application has to wait for the HTTP request body indications until the end of the HTTP
request handling. If there is no data to receive (body is empty; ulContentLength field on the HTTP
request indication is equal to zero), the stack will not transmit any HTTP request body indications.
With the chunked encoding enabled, the decoding is performed by the stack, data here are without

chunk headers.

Figure 5 POST request reception shows a typical application case of the HTTP Request Body

service.

Packet description

Variable Type Value / range Description
ulDest uint32_t Destination
ulSrcld uint32_t 1 ... OXFFFFFFFF Unique number identifying the HTTP request.
ulLen uint32_t 1040 (=8 + 8 + 1024) | Packet data length in bytes
ulCmd uint32_t OxAF02 WEBIF_HANDLE_HTTP_REQUEST_CONTENT_IND
Data
ulOffset uint32_t Offset of the following data in the body.
ulDataSize uint32_t 0...1024 Size of the following data
aData uint8_t* |0 ... 255] * 1024 Array of bytes
1024

Table 25: WEBIF_HANDLE_HTTP_REQUEST_CONTENT_IND — HTTP Request Content indication

Packet description

Variable Type Value /range | Description

ulDest uint32_t Destination

ulLen uint32_t (0 Packet data length in bytes

ulSta uint32_t See section Status codes / Error codes on page 35
ulCmd uint32_t | OXAF03 WEBIF_HANDLE_HTTP_REQUEST_CONTENT_RSP

Table 26: WEBIF_HANDLE_HTTP_REQUEST_CONTENT_RSP — HTTP Request Content response

Web interface | Packet interface
DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2021-2022

The Application Interface 18/41
3.4.3 End of HTTP Request service
As soon as the entire body of the HTTP request has been transmitted to the application, the Weblf

transmits this indication. This indication marks the end of the HTTP request handling.

Figure 2 GET request reception and Figure 5 POST request reception show typical application
cases of the End of HTTP Request service.

As displayed there, the application should reply a response packet (see Table 28) each time it
receives an End of HTTP Request indication.

Packet description

Variable Type Value / range Description

ulDest uint32_t Destination

ulSrcld uint32_t 1 ... OXFFFFFFFF Unique number identifying the HTTP request.

ulLen uint32_t 0 Packet data length in bytes

ulCmd uint32_t OXAF04 WEBIF_FINISH_HANDLING_HTTP_REQUEST_IND

Table 27: WEBIF_FINISH_HANDLING_HTTP_REQUEST_IND — End of HTTP Request indication

Packet description

Variable Type Value /range | Description

ulDest uint32_t Destination

ulLen uint32_t |0 Packet data length in bytes

ulSta uint32_t |0 See section Status codes / Error codes on page 35
ulCmd uint32_t | OXAF05 WEBIF_FINISH_HANDLING_HTTP_REQUEST RSP

Table 28: WEBIF_FINISH_HANDLING_HTTP_REQUEST_RSP - End of HTTP Request response

3.4.4 Consideration about the request reception with body

In the application, the body reception handling should be accomplished with care regarding the
security. If the ContentLength is given (a value between 1 and OXFFFFFFFE), the stack itself will
perform the verification of the body size; in this case (for example, if the reception buffer in the
application is too small) the application can reject the request reception at the transmission of a
confirmation packet. In case of chunk encoding (ContentLength is equal to OXFFFFFFFF), the
stack cannot perform any size verification.

If an attacker manages to transmit a continued stream of chunks to the Weblf module, the request
content indication packets will be transmitted without end; the application has to interrupt the
reception by transmitting a confirmation packet with a status not equal to O.

Web interface | Packet interface
DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2021-2022

The Application Interface 19/41
3.4.5 Get HTTP Request Fields service

In case, the HTTP request contains GET-using fields, the application has to use a request packet
(see Table 29: WEBIF_GET_HTTP_REQUEST_FIELD_REQ — Get HTTP Request Fields request)
to read the parameters and values of a GET request.

Note: The application has to "know" the fields. As a result, fields have to be defined before
starting the implementation of the application.

3451 IS In URI“ Boolean

The following text uses the command-line tool “curl” for “Client URL”. This tool is convenient to
easily transmit HTTP requests with different HTTP methods or special fields, unlike end-user web
browsers.

Fields encoded in the URL:

> curl http://webserver.local/service?field1=1&field2=2

This results in the following HTTP request:

GET /get?field1=1&field2=2 HTTP/1.1\r\n
Host: webserver.local\r\n

On the other hand, some fields can be also encoded in the HTTP request header:

> curl -H “field1: 1”7 -H *field2: 2" http://webserver.local/service

This results in the following HTTP request:

GET /get HTTP/1.1\r\n
Host: webserver.local\r\n
fieldl: 1

field2: 2

If uilsInUri is set to zero in the request, the requested field is in the HTTP header. Otherwise, the
requested field is in the URL.

Web interface | Packet interface
DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2021-2022

http://webserver.local/service?field1=1&field2=2

The Application Interface

20/41

3.45.2

Packets

The following request packet allows to retrieve the content of a single field from an HTTP request
that uses the GET method. You have to specify the name of this field in the null-terminated string
aName. If the content of the specified field could successfully be retrieved, it is delivered in variable
aContent of the confirmation packet.

Figure 6 POST request header field extraction shows a typical application case of the Get HTTP
Request Fields service.

Packet description

Variable Type Value / range Description

ulDest uint32_t Destination

ulDestld uint32_t The unique number identifying the HTTP request
retrieved from the ulSrcld of a previous
WEBIF_HANDLE_HTTP_REQUEST_IND packet

ulLen uint32_t 132 (=4 + 128) Packet data length in bytes

ulCmd uint32_t OxAF06 WEBIF_GET_HTTP_REQUEST_FIELD_REQ

Data

uilsInUri uint32_t 0,1 0 if the field is in HTTP header, 1 if the field is in URL.

aName CHAR[128] |[[0 ... 255]* 128 Null-terminated string with the field name

Table 29: WEBIF_GET_HTTP_REQUEST_FIELD_REQ — Get HTTP Request Fields request

Packet description

Variable Type Value /range | Description

ulDest uint32_t Destination

ulLen uint32_t 128 Packet data length in bytes

ulSta uint32_t See section Status codes / Error codes on page 35
ulCmd uint32_t OxAFQ07 WEBIF_GET_HTTP_REQUEST_FIELD_CNF
Data

aContent ‘ CHAR[128] ‘ [0...255] * 128 ‘ Null-terminated string with the field content.

Table 30: WEBIF_GET_HTTP_REQUEST_FIELD_CNF - Get HTTP Request Fields confirmation

Web interface | Packet interface

DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public

© Hilscher, 2021-2022

The Application Interface 21/41

3.5 HTTP Response generation

After receiving all packets of a HTTP request, the application has to generate the HTTP response.

3.5.1

HTTP Response service

The application transmits this packet in order to begin to generate the HTTP response. This
request marks the beginning of the HTTP response generation.

Figure 3 GET request response header generation and Figure 7 POST request response
generation show typical application cases of the HTTP Response service.

Packet description

Variable Type Value / range Description
ulDest uint32_t Destination
ulDestld uint32_t The unique number identifying the HTTP request
retrieved from the ulSrcld of a previous
WEBIF_HANDLE_HTTP_REQUEST_IND packet
ulLen uint32_t 8 (V1) Packet data length in bytes
136 (V2)
ulCmd uint32_t OXAF08 WEBIF_GENERATE_HTTP_RESPONSE_REQ
Data
ulStatusCode uint32_t IxXX, 2XX, 4xX, 5xX, HTTP status code (200 OK)
ulContentLength uint32_t 0 ... OXFFFFFFFE Size of the HTTP response body.
OXFFFFFFFF Chunk Encoding.
aReasonPhrase Char [0...127]1* 128 Only valid for the V2 packet (see the ulLen field in the
header). The reason phrase.

Table 31: WEBIF_GENERATE_HTTP_RESPONSE_REQ — Generate HTTP Response request

Note:

The ulContentLength value shall be given here to know, when the body is completely
received from the application side. Unlike the ulStatusCode value, the ulContentValue
value will not be used to generate the content of the HTTP response header. It would
be probably necessary to the send the “Content-Length” field explicitly: see the remark
in section 3.5.2.1. If the V1 packet is used (with a data size (the ulLen field) of 8 bytes)
or the reason phrase (the aReasonPhrase field in the V2 packet) is not given (the first
character is 0), the integrated default reason phrase will be transmitted in the HTTP
response header. There is a dedicated default reason phrase for the following status
codes: 301, 304, 400, 401, 403, 404, 500, 501 and 503. For the other status codes, the
integrated reason phrase is “Unknown”.

Otherwise, the reason phrase given in this packet is transmitted in the HTTP response
header. Do not forget to use the V2 packet by setting the data size (the ulLen field) to
the correct (V2) length above.

Packet description

Variable Type Value /range | Description

ulDest uint32_t Destination

ulLen uint32_t (0 Packet data length in bytes

ulSta uint32_t See section Status codes / Error codes on page 35
ulCmd uint32_t | OXAF09 WEBIF_GENERATE_HTTP_RESPONSE_CNF

Table 32: WEBIF_GENERATE_HTTP_RESPONSE_CNF - Generate HTTP Response confirmation

Web interface | Packet interface
DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2021-2022

The Application Interface

3.5.2

The application uses this request to transmit HTTP response fields. Use this service during the
HTTP response generation only! If ulSta in the confirmation packet is equal to zero, the HTTP
response field specified in variable aName of the request packet could be set to the content
specified within variable aContent.

22/41

Set HTTP Response Fields service

Figure 3 GET request response header generation shows a typical application case of the Set

HTTP Response Fields service.

Packet description

Variable Type Value / range Description

ulDest uint32_t Destination

ulDestld uint32_t The unique number identifying the HTTP request
retrieved from the ulSrcld of a previous
WEBIF_HANDLE_HTTP_REQUEST_IND packet

ulLen uint32_t 2*128 Packet data length in bytes

ulCmd uint32_t OxAFOA WEBIF_GENERATE_HTTP_RESPONSE_FIELD_REQ

Data

aName CHAR[128] |[0...255]*128 Null-terminated string with the name of the field

aContent CHAR[128] |[0...255]*128 Null-terminated string with the field content

Table 33: WEBIF_GENERATE_HTTP_RESPONSE_FIELD_REQ — Set HTTP Response Fields request

Packet description

Variable Type Value / range Description

ulDest uint32_t Destination

ulLen uint32_t 0 Packet data length in bytes

ulSta uint32_t See section Status codes / Error codes on page 35
ulCmd uint32_t OXAFOB WEBIF_GENERATE_HTTP_RESPONSE_FIELD_CNF

Table 34: WEBIF_GENERATE_HTTP_RESPONSE_FIELD_CNF - Set HTTP Response Fields confirmation

3521

Except on

some

cases

(described

Remark about the necessary response fields

section 3.3.2 of the RFC7230

https://tools.ietf.org/html/rfc7230#section-3.3.2), the “Content-Length” field is needed by the client
in order to know the size of the transmitted bodyln normal case, the application shall explicitly (via
the Set HTTP Response Fields service) define the “Content-Length” field, it would not be defined
by the Weblf interface automatically.

The application should also define the “Content-Type” header field, which helps the client to
recognize the data format.

Web interface | Packet interface

DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2021-2022

https://tools.ietf.org/html/rfc7230#section-3.3.2

The Application Interface

23/41

3.5.3

HTTP Response Body service

The application uses this request to transmit the body of the HTTP response. This request shall be
only transmitted during the HTTP response generation.

Figure 4 GET request response body generation shows a typical application case of the HTTP
Response Body service.

Packet description

Variable Type Value / range Description

ulDest uint32_t Destination

ulDestld uint32_t The unique number identifying the HTTP request retrieved
from the ulSrcld of a previous
WEBIF_HANDLE_HTTP_REQUEST _IND packet

ulLen uint32_t 1028 (=4 + 1024) | Packet data length in bytes

ulCmd uint32_t OXAFOC WEBIF_GENERATE_HTTP_RESPONSE_CONTENT_REQ

Data

ulDataSize uint32_t 0...1024 Size of the following data

aData uint8_t * 1024 | [0 ... 255] * 1024 | Array of bytes

Table 35: WEBIF_GENERATE_HTTP_RESPONSE_CONTENT_REQ - HTTP Response Content request

Packet description

Variable Type Value /range | Description

ulDest uint32_t Destination

ulLen uint32_t (0 Packet data length in bytes

ulSta uint32_t See section Status codes / Error codes on page 35

ulCmd uint32_t | OXAFOD WEBIF_GENERATE_HTTP_RESPONSE_CONTENT_CNF

Table 36: WEBIF_GENERATE_HTTP_RESPONSE_CONTENT_CNF - HTTP Response Content confirmation

Web interface | Packet interface
DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2021-2022

The Application Interface

24/41

3.5.4

End of HTTP Response service

As soon as all HTTP response fields and the body are transmitted, the application transmits this
request to trigger the transmission of the HTTP response. This request marks the end of the HTTP
response generation.

Figure 4 GET request response body generation and Figure 7 POST request response generation
show typical application cases of the End of HTTP Response service.

Packet description

Variable Type Value / range | Description

ulDest uint32_t Destination

ulDestld uint32_t The unique number identifying the HTTP request retrieved
from the ulSrcld of a previous
WEBIF_HANDLE_HTTP_REQUEST _IND packet

ulLen uint32_t 0 Packet data length in bytes

ulCmd uint32_t | OXAFOE WEBIF_FINISH_GENERATION_HTTP_RESPONSE_REQ

Table 37: WEBIF_FINISH_GENERATION_HTTP_RESPONSE_REQ — End of HTTP Response request

Packet description

Variable Type Value /range | Description

ulDest uint32_t Destination

ulLen uint32_t (0 Packet data length in bytes

ulSta uint32_t See section Status codes / Error codes on page 35

ulCmd uint32_t | OXAFOF WEBIF_FINISH_GENERATION_HTTP_RESPONSE_CNF

Table 38: WEBIF_FINISH_GENERATION_HTTP_RESPONSE_CNF - End of HTTP Response confirmation

Web interface | Packet interface

DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public

© Hilscher, 2021-2022

Examples

25/41

4 Examples

4.1 GET Request Example
4.1.1 Request Generation

An example GET request can be generated using the ,curl® tool. Apart from the requested file

name it also contains user authentication information.

> curl --basic -u root:password -i http:/{ip}/webif/index.html

Here is the actual HTTP GET request sent to the web server

GET /webif/index.html HTTP/1.1

Host: 192.168.210.12

Authorization: Basic cm9vdDpwY XNzd29yZA==
User-Agent: curl/7.58.0

Accept: */*

The content of the requested index.html file used in the example below is a simple html file 364

bytes long:

<IDOCTYPE html|>

<html lang="en">

<meta charset="UTF-8">

<title>Page Title</title>

<meta name="viewport" content="width=device-width,initial-scale=1">
<link rel="stylesheet" href="">

<style>

</style>

<script src=""></script>

<body>

<div class="">

<h1>This is a Heading</h1>
<p>This is a paragraph.</p>
<p>This is another paragraph.</p>
</div>

</body>
</html>

Web interface | Packet interface
DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public

© Hilscher, 2021-2022

Examples

26/41

4.1.2

Receiving the Request

we

b client

web server

IJ,I'rGET fwebiffindex.html HTTR/1.1

Host: 192.168.210.12
Authorization: Basic cm3v...
User-Agent: curl/7.58.0

application

a file from the web server.

The weh client is requesting

]

: Start of HTTP request reception :

Accept: *f* HTTP request
—_—
1
1
|
tHead
ulsreld = Dx00000002
ullen = D0x000000k4
ulCrac = Dx=x0000af00
thata
ulHttpMethod = D=x00000001
ulContentLength = 0O=x00000000
aFPathMame = "/index.html"
tClientAddr.ullpiddr = OxcOaBdZ 14
tClientAddr.usPort = Dxce73
tClientAddr.usBeserved = 0x0000
thuth.ulGroupBitfiseld = 0xB0000000
thuth. szUserlames = "root"

A new request has arrived.
Validate it - e.g. check method,
resource path and user info.

Store ulSrcld to use as ulDestld

of future request packets.
Copy back all header fields
from the IND packet and
overwrite anly the fields below.

Send back the response packet.

HTTP request
INDICATICN

Y

HTTP request
RESPONSE

tHead
ulDest = 0x000000Z0
ulLen = 0x0000000O0
ulSta = 0x00000000
ulCmd = 0x0O000afOl

: HTTP request hody reception {optional)

The example request has no body, so no content indications are sent to the application. b}

End of HTTP request reception |-

tHead
ulSreld = 0x00000002
ullen = D=z0O0000000
ulCrcl = Dx0000af04
)
1
1
1
1
1
1
1
1
1
1
1

End of HTTF request

HTTP request has been
fully received.
Just acknowledge it.

INDICATION

=

End of HTTP request

<. RESPONSE

tHead

ullest = 0Ox000000Z0

ullen = 0Ox00000000
ulsta = 0Ox0O0000000
ulCmd = 0Ox0000af05

HTTP request fields extraction (optional)

The HTTF request fields are not of any interest for this example. b]

Figure 2 GET request reception

Web interface | Packet interface

DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public

© Hilscher, 2021-2022

Examples 27141

4.1.3 Responding to the Request (Header Generation)

web client web server application

:Write back the HTTP response header :

I
The ulDestld is set with the request id | || EHead
(ulSrcld of the initial indication). X | ulbest - Ox00000020
Frepare the positive response header - i | ulDestId = Dx00000002
status code 200 OK I::U}(CBII : : ullen = Qx0000008g
ulContentLength = 0 means that ! N ulemd = Ox0000af08
chunk encoding will not be used. ' '
In that case the length of the body X |tData
must he later explicitly indicated ! ! i
through a "Content-Length” header field. | j| uwilStatustode = OxDO00D0CE
No customn reason phrase is applied. ! HTTP respanse | el e 2GR et el
- L REQUEST ; aReasonPhrase = "
tHead :
ullen = 0x00000000 CHGﬁNIP:IE{e;p;HéiI |
ulSta = Ox00000000 L >
ulCmed = O0x0000af09 :

E Write back the HTTP response fields :

]
])
]]] b
: : : tHead
! ! ! ulDest = Ox000000Z0
! ! ! ulDestId = O0x00000002
' | | ulLen = Dx00000100
Setup the "Content-Type" header field. b] X X ulCmel = 0OxD000af0a
1]]
| | I thata
]]]
! ! ! allame = "Content-Type"
X i Set HTTP response fields | aContent = "text/html"
' ' REQUEST '
1 . 1
1]
[
tHead
ullen = 0Ox0000000D Set HTTP response fields
ulSta = 0x00000000 ||} CONFIRMATION 1
ulCmd = 0x0000af0k ! !
]]
[1]
]]]
[,
: : : tHead
| | i| ulbest = oxoooooozo
X X /| ulDestId = Ox0000000Z
1 | | ullen = D0Ox00000100
]]
Smupthe"CnmentLenmh"headerﬂmd.tﬂ. i ulCmd = Dx0000af0a
T 1]
| | || thaca
]]]
allame = "Content-Length"
\ \ Set HTTP response fields \ Comtent = "3ga" o
! : REQUEST !
] |]
]
tHead B !
]
ullen = 0x00000000 Set HTTP response fields
]
ulSca = Ox00DOOOCO)) CONFIRMATION !
ulCmd = Ox0000af0b X X
]]
]

Figure 3 GET request response header generation

Web interface | Packet interface
DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2021-2022

Examples 28/41
4.1.4 Responding to the Request (Content Body)
web client Web server application
: Write back the HTTP response content |5
loo |

[numherl of packets necessa'ry to transfer the content]
1

:_,H'I'I'F-‘ response

[HTTR/ 1 200 OK

Content-Type: text/html

Content-Length: 364

<content of index. html=

L

Figure 4 GET request response body generation

: : : tHead B
| | | ulbest = 0x000000Z0
. \ | ulDestId = Ox0000000Z
;I'he ﬂfle ”;thihexamplf can Eet ! ! ullen = 0x00000404
ransfered with a single packet. [! _ .
L 1 Crocl = 0Ox0000af0
The data size is 364 bytes (0x16C). |, \ s * atte
The aData field contains all : '| thata
the bytes of the mde.x.html file. | ! S IDatasiz= - OxOoOOOlEE
: : : abata = «zcontent of
| | HWPRFEEFSE%?I'WW | index.html>
| N
1]
tHead D :
ullLen = 0x00000000 HTTP response body |
e] CONFIRMATION
ulCmed = 0x0000af0d : :
I]
: Finish the HTTP response |-
: : : ctHead By
. [| ulDest = Dx000000ZO0
Motify the web server that B‘ | i e
B I] Pl il
no More response datla is to be sent. | A | P e S BBl
i =N REQUE;PI'DHSE | ulcmd = Dx0DODafOs
tHead &
ullen = 0Ox00000000 End HTTP response
mlorn = wooiiu g CONFIRMATION o,
ulCmd = Ox0000af0f

Web interface | Packet interface
DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public

© Hilscher, 2021-2022

Examples 29/41
4.2 POST Request Example
4.2.1 Request Generation

An example POST request can be generated using the ,curl® tool. The following request is used to
transfer url-encoded data to the web server. The (form) data is part of the request body.

> curl -X POST http:/ip}webif/fform -H "Content-Type: application/x-www-form-urlencoded" -d
"paraml=valuel¶m2=value2"

Here is the actual HTTP POST request sent to the web server

POST /webif/fform HTTP/1.1

Host: 192.168.210.12

User-Agent: curl/7.58.0

Accept: */*

Content-Type: application/x-www-form-urlencoded
Content-Length: 27

paraml=valuel¶m2=value2

The web server does not need to respond with a content, so for the purpose of simplifying the
example a “204 No Content” response status will be returned. Returning a content is illustrated in
the GET Request Example, see 4.1.4.

Web interface | Packet interface
DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2021-2022

Examples 30/41

4.2.2 Receiving the Request

application

| web client | ‘ web server

/F’OST fwebiffform HTTP/1.1
Host: 192.168.210.12

.(-I.ontent—Type:
application/x-www-form-urlencoded
| Caontent-Length: 27

farm data to the web server.

1
'| The web client is sending j

\param1=\ralue1¶m2=valu92 HTTP request
—_—

: Start of HTTP request reception

! |
1 1
tHead | I
i i
N - 1 ! - &8
LR - DS 1 '| A new request has arrived.
ERCEs = DEIHROOIDER | 1| Validate it - e g. check method,
L e 1| resource path and user info (if any).
tData 1 !| Stare the (non-zero) content length
| 1| for future body length validation.
y leng
ulHttpMethod = 0x00000003 : '| Store ulSreld to use as ulDestld
ulContentLength = 0xDD00001kL I 1| of future request packets.
|
aPathlMams = "/form" 1 1| Copy back all header fields
tClientAddr.ullphddr = OxcDaBdz 14 || 1| fram the IND packet and
tClientAddr .usPort = Oxfdca : ! overwrite only the fields below.
tClientldddr .usReserved = 0x0000 | 1| Send back the response packet.
tAuth.ulGroupBitfield = Dx0000000O || HTTP request X
tAuth. szUserNames ="] INDICATION !
T 1
| |
| | tHead
| |
X | HTTP request ulDest = 0Ox000000Z0
: : RESPONSE ullen = O0x0000000O0
! I{ ulsta = Dx00000000
X . ulCmd = DxDO00af01
| |
|
|
T
i

: HTTP request body reception :.
U

]
i
|
|
:
T
:
loo [number of packets necessdry to transfer the ¢ontent] |
1]
tHead 1 i
i i
ulsreld = Dx0000000a 1 '
LT = Ox0O000D408 : 1| The body in the example can be
| . :
ulCrmd = Dx0000af0z i 1| transfered with a single packet.
1 '| The data size is 27 bytes (0x1B).
tData ! 1| The aData field contains the form data:
1 1| "parami=value1¶m2=value2".
ultffset = 0Ox00000000 1 |
ulDataSize = Ox000000Lb | HTTP request body |
aData = <POST data> | INDICATION o !
; | g
X | tHead
| |
! ' HTTP request body ulDest = Ox000000Z0
! .. RESFONSE ullen = 0x0000000D
X | ! ul3ta = 0x00000000
: : : ulCmd = 0x0000af03
| i i
| i
- : End of HTTP request reception [=
' | |
tHesad | |
1 1| HTTP request has been
ulSrcId = O0x0000000a : : f|_,|||]|I received.
ullLen = Dx=DD000000 |} End of HTTP request || Just acknowledge it.
ulCmed = 0x0000af04 i INDICATION |
= r
X) tHead
| |
! ' End of HTTP request ulDest = Ox000000Z0
| |
| |‘ RESFONSE ullen = 0Ox000000O0O
X | ! ulSta = 0Ox00000000
: : : ulCmd = 0Ox0000af0s

Figure 5 POST request reception

Web interface | Packet interface
DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2021-2022

Examples

31/41

4.2.3 Extracting Request Fields

web client

web server

application

HTTP request fields extraction (optional)

Extract the "Content-Type" header field.
This is not a URI encoded field.

Get HTTF request fields

REQUEST

-
[
tHead
ullLen = Ox00000080
ulsSta = 0x00000000
ulCmd = 0x0000af07
thata -
]
aContent = "application/
—-www—-form-ur lencoded"
]
]

Get HTTP request fields

CONFIRMATION

tHead
ullbest = Dx0000o0zao
ulbestld = 0x0000000a
ullLen = O=x000000284
ulCrmd = Ox0000af0e
tDhata
uilsInUri = 0=x00000000
= "Content—-Type"

I
]
]
1
]
]
1
]
]
1
]
]
]
]
]
]
]
[alfame
1
]
1
]
]
1
]
]
1
]
]
1
]
]
1
]
]
]

Any other request header field availability can be checked here. b]

Figure 6 POST request header field extraction

Web interface | Packet interface
DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public

© Hilscher, 2021-2022

Examples

32/41

4.2.4

Responding to the Request

web client

web server

application

Write back the HTTP response header [

The ulDestld is set with the request id
(ulSreld of the initial indication).
Prepare the positive response header -

status code 204 Mo Content (0xCC).
Mo custom reason phrase is applied.

HTTF response

» REQUEST
tHead
HTTP response
ullen = Ox00000000
ulSta = oxoooooooo L. CONFIRMATION
ulCmd = Ox0000af0g | !

tHead
ullest = 0=x000000Z0
ulbestId = OxD000000a
ulLen = 0=00000088
ulCrmd = 0O=0000af0os8
tData
ulStcatusCode = Ox000000cc
ulContentlength = 0x00000000
aReasonPhrase ="

Write back the HTTP response fields (Optional) |5

Mo response fields are needed when no content is sent back. b]

Write back the HTTP response content (Optional) |5

Finish the HTTP response

Mo content is sent back, so no packet exchange is needed. b]

Motify the web server

that

no more response data is to be sent.

End HTTP response

|

! REQUEST
tHead D
ullen = Ox00000000 End HTTF response
ulSta = 0xDODOODOC Q) § CONFIRMATION .
ulCme = Ox0000af0f

(HTTP/1.1 204 No Content

HTTP response

-
-

Figure 7 POST request response generation

tHead
ullest = Ox000000Z0
ulDestId = 0x0000000a
ullLen = 0Ox00000000
ulCmd = 0Ox0000af0e

Web interface | Packet interface
DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public

© Hilscher, 2021-2022

Examples 33/41
4.3 Request termination example
4.3.1 How to react to malformed requests

A request may sometimes have an unexpected structure. A file being uploaded may be bigger than
the application can handle or the web client may purposely try to flood the web server with too
much data (DoS attack).

> curl -d "@big_file.txt" -X POST http:/K{ip}/webif/upload

Any such request that may cause an endless sequence of indications can be terminated by the
application by returning a response packet with the ulSta field set to a non-zero value. This will
lead to the web server generating an error response “500 Internal Server Error” and a termination
of the exchange.

Web interface | Packet interface
DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2021-2022

Examples

34/41

4.3.2 Sequence Diagram

web client

web server

application

'POST fwebiflupload HTTR/1 .1
Host: 192.168.210.12

L‘denrclless stream of data=

HTTP request
>

to the web server.

The weh client is sending
an endless stream of data

: Start of HTTP request reception

)
I
Content-Length: 3000 |

tHead
ulSreld = Dx0000000f
ullLen = Dx000000k4
ulCmd = 0Ox0000af00
tData
ulHttpMethod = 0=x00000003
ulContentLength = 0x00000bLE
aF at hlMName = "fupload"

HTTP request
INDICATION

A new request has arrived.

At this point it may appear valid

if the declared length
in the header is acceptable.
It is confirmed as usual.

Y

tHead

HTTP request ullest = 0x00000020
< RESFPONSE ullen = 0x00000000
| ulsSta Dx00000000
| ulCmd Dx0000af0l

]

: HTTP request body reception :

T

tHead
ulsrecld = 0x0000000f
ulLen = 0x00000408
ulCmd = 0x0000af0Z
thata
uloffset = <byte offset>
ulbataSize = 0x00000400
alata = <POST data>

|qu J [numhel: of packets necessa:ry

1
to transfer the cuntent]

HTTP request body

INDICATION

The body reception in the example
does not end after the announced
length is received.

In that case the application can
terminate the request by sending

a non-zero ulSta value in the

response packet (e.g. ERR_HIL FAIL).

>

HTTP request body

RESPONSE

{

tHead

ullLen
ulsta
ulCmd

ulbest =

Ox000000Z0
O=x00oo00ooooo

OxCO0000001

0x0000&af03

/

\

HTTP/ .1 500 Internal Server Error

Cache-Contral: no-store
Caonnection; close
Content-Length: 25
Content-Type: text/plain

Error 500: Internal Errar

Figure 8 Malformed POST request termination

HTTP response
T

Web interface | Packet interface
DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public

© Hilscher, 2021-2022

Status codes / Error codes 35/41

5 Status codes / Error codes

Hexadecimal value

Definition and description

0xC0000001 ERR_HIL_FAIL
Common error, detailed error information optionally present in the data area of packet.
0xC0000006 ERR_HIL_UNKNOWN_DESTINATION_ID
Unknown Destination Id in Packet received.
The value does not match the identifier of any active HTTP request.
0xC0000119 ERR_HIL_NOT_CONFIGURED
Configuration not available.
The web server component is not configured to support delayed start.
0xC0000205 ERR_HIL_DATA_ALREADY_SET

The data was already set.
The web server is already started.

Table 39: Weblf status and error codes

Web interface | Packet interface
DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2021-2022

Appendix 36/41

6 Appendix
6.1 List of tables

LI Lo (I I N] o) =Y/ 1= (o] o TSRS 3
Table 2: Technical data — AVAIlADIE FOr NEEXoi i e e 4
Table 3: Terms, abbreviations and definitiONS............coouii i e e 4
Table 4: REfErenCes t0 JOCUMENTSciiiiiiiie ittt b e st e st st e et s et e s e e ssreenan e 4
Table 5: Overview over packets of the WebIf COMPONENT...........ooiiiiiiiii e 6
Table 6: Dispatch ID per feature and corresponding default URLS.ooiiiiiiiio e 9
Table 7: WEBIF_SET_DISPATCH_ENTRY_URL_REQ — Set dispatch entry URL reqUEeSL.cccocveeiriiiieiiieeeeniieeee 10
Table 8: WEBIF_SET_DISPATCH_ENTRY_URL_CNF — Set dispatch entry URL confirmation

Table 9: WEBIF_SET_DISPATCH_ENTRY_ENABLED_REQ — Set dispatch entry enabled request.ccceeevvveene 11
Table 10: WEBIF_SET_DISPATCH_ENTRY_ENABLED_CNF — Set dispatch entry enabled confirmation 11
Table 11: WEBIF_SET_TCP_PORTS_REQ — Set TCP POIMS FEQUEST.cociiiiiiiieee ettt 12

Table 12: WEBIF_SET_TCP_PORTS_CNF — Set TCP ports confirmation ..
Table 13: WEBIF_START_REQ - Start the web server request...................
Table 14: WEBIF_START_CNF- Start the web server confirmation
Table 15: WEBIF_STOP_REQ — Stop the web server request.....................
Table 16: WEBIF_STOP_CNF — Stop the web server Confirmation.............ocuviiiiieeiiiiie e
Table 17: WEBIF_ENABLE_REQUEST_HANDLING_REQ — Enable HTTP request handling request

Table 18: WEBIF_ENABLE_REQUEST_HANDLING_CNF — Enable HTTP request handling confirmation 14
Table 19: WEBIF_DISABLE_REQUEST_HANDLING_REQ — Disable HTTP request handling request............ccccccoe... 14
Table 20: WEBIF_DISABLE_REQUEST_HANDLING_CNF — Disable HTTP request handling confirmation................... 14

Table 21: WEBIF_HANDLE_HTTP_REQUEST_IND — HTTP Request iNdiCatiONccooiuiieiiiieeeiiieeeeiieeesiieee e
Table 22: WEBIF_IP_ADDR_T — Client IP Address informationcoouiiiiiiieeeeee e et e e e sarvee e e e e e eneaees
Table 23: WEBIF_AUTH_T — Authentication infOrMatioNoooiiiieiiiiie it
Table 24: WEBIF_HANDLE_HTTP_REQUEST_RSP - HTTP RequeSt reSPONSEeeevvvvvernveeeennnennn
Table 25: WEBIF_HANDLE_HTTP_REQUEST_CONTENT_IND — HTTP Request Content indication ...
Table 26: WEBIF_HANDLE_HTTP_REQUEST_CONTENT_RSP — HTTP Request Content response
Table 27: WEBIF_FINISH_HANDLING_HTTP_REQUEST_IND — End of HTTP Request indication........
Table 28: WEBIF_FINISH_HANDLING_HTTP_REQUEST_RSP - End of HTTP Request response........
Table 29: WEBIF_GET_HTTP_REQUEST_FIELD_REQ — Get HTTP Request Fields requestcccoccvveviieeeiiineeenns
Table 30: WEBIF_GET_HTTP_REQUEST_FIELD_CNF - Get HTTP Request Fields confirmationccccccceeevvveenne
Table 31: WEBIF_GENERATE_HTTP_RESPONSE_REQ — Generate HTTP Response request
Table 32: WEBIF_GENERATE_HTTP_RESPONSE_CNF - Generate HTTP Response confirmation...............c.c.ccuue....

Table 33: WEBIF_GENERATE_HTTP_RESPONSE_FIELD_REQ — Set HTTP Response Fields request...................... 22
Table 34: WEBIF_GENERATE_HTTP_RESPONSE_FIELD_CNF - Set HTTP Response Fields confirmation................ 22
Table 35: WEBIF_GENERATE_HTTP_RESPONSE_CONTENT_REQ - HTTP Response Content request................... 23
Table 36: WEBIF_GENERATE_HTTP_RESPONSE_CONTENT_CNF - HTTP Response Content confirmation............. 23
Table 37: WEBIF_FINISH_GENERATION_HTTP_RESPONSE_REQ — End of HTTP Response request...................... 24
Table 38: WEBIF_FINISH_GENERATION_HTTP_RESPONSE_CNF - End of HTTP Response confirmation................ 24
Table 39: WeDbIf StatUS @nd ©ITOT COURSoiiiiiiiiiiiiii ettt e e e e e sttt e e e e e s s e bt e et e e e e e aasateseeeaeeeaansbaneeaaeeeannnseeees 35

6.2 List of figures

FIQUIE 1: PACKET SEOUENCE. ..ottt ettt ettt oottt e e oo oo et bttt e e e e e oo a kb b e et e e e e e e e s abbb et e e e e e e e nbbbeeeeeeeeaasbnnneeeeeeeann
Figure 2 GET request reception

Figure 3 GET request reSponse header gENEIALIONc..cui ittt e et e e e e et b e e e e e e s abbbnreeaeeeaanas 27
Figure 4 GET request reSponse DOAY GENEIALIONiiiiiiiiiiiiiiit ettt e e s et e e e e e s sbb b e e e e e e e e s abbbereeeeeeaaanes 28
Figure 5 POST request reception

Figure 6 POST request header field @XIFACHONciiiiiiiiiee et e b e e 31
Figure 7 POST request reSPONSE GEMETALIONceiuviieiiteee et ee ettt e ettt e e st e e et et e et e e s be e e e e as b et e e e b et e e s ann e e e e anbbeeesnneeeennnes 32
Figure 8 Malformed POST requESt tEIMINALIONcoiiiieiiiiie ettt e et bt e st e e s ann e e e e ann e e e snneeeenanes 34

Web interface | Packet interface
DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2021-2022

Appendix 37/41

6.3 Legal notes

Copyright
© Hilscher Gesellschaft fir Systemautomation mbH
All rights reserved.

The images, photographs and texts in the accompanying materials (in the form of a user's manual,
operator's manual, Statement of Work document and all other document types, support texts,
documentation, etc.) are protected by German and international copyright and by international
trade and protective provisions. Without the prior written consent, you do not have permission to
duplicate them either in full or in part using technical or mechanical methods (print, photocopy or
any other method), to edit them using electronic systems or to transfer them. You are not permitted
to make changes to copyright notices, markings, trademarks or ownership declarations.
lllustrations are provided without taking the patent situation into account. Any company names and
product designations provided in this document may be brands or trademarks by the
corresponding owner and may be protected under trademark, brand or patent law. Any form of
further use shall require the express consent from the relevant owner of the rights.

Important notes

Utmost care wasl/is given in the preparation of the documentation at hand consisting of a user's
manual, operating manual and any other document type and accompanying texts. However, errors
cannot be ruled out. Therefore, we cannot assume any guarantee or legal responsibility for
erroneous information or liability of any kind. You are hereby made aware that descriptions found
in the user's manual, the accompanying texts and the documentation neither represent a
guarantee nor any indication on proper use as stipulated in the agreement or a promised attribute.
It cannot be ruled out that the user's manual, the accompanying texts and the documentation do
not completely match the described attributes, standards or any other data for the delivered
product. A warranty or guarantee with respect to the correctness or accuracy of the information is
not assumed.

We reserve the right to modify our products and the specifications for such as well as the
corresponding documentation in the form of a user's manual, operating manual and/or any other
document types and accompanying texts at any time and without notice without being required to
notify of said modification. Changes shall be taken into account in future manuals and do not
represent an obligation of any kind, in particular there shall be no right to have delivered
documents revised. The manual delivered with the product shall apply.

Under no circumstances shall Hilscher Gesellschaft flr Systemautomation mbH be liable for direct,
indirect, ancillary or subsequent damage, or for any loss of income, which may arise after use of
the information contained herein.

Web interface | Packet interface
DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2021-2022

Appendix 38/41

Liability disclaimer

The hardware and/or software was created and tested by Hilscher Gesellschaft fir
Systemautomation mbH with utmost care and is made available as is. No warranty can be
assumed for the performance or flawlessness of the hardware and/or software under all application
conditions and scenarios and the work results achieved by the user when using the hardware
and/or software. Liability for any damage that may have occurred as a result of using the hardware
and/or software or the corresponding documents shall be limited to an event involving willful intent
or a grossly negligent violation of a fundamental contractual obligation. However, the right to assert
damages due to a violation of a fundamental contractual obligation shall be limited to contract-
typical foreseeable damage.

It is hereby expressly agreed upon in particular that any use or utilization of the hardware and/or
software in connection with

Flight control systems in aviation and aerospace;
Nuclear fission processes in nuclear power plants;
Medical devices used for life support and

Vehicle control systems used in passenger transport

shall be excluded. Use of the hardware and/or software in any of the following areas is strictly
prohibited:

For military purposes or in weaponry;

For designing, engineering, maintaining or operating nuclear systems;
In flight safety systems, aviation and flight telecommunications systems;
In life-support systems;

In systems in which any malfunction in the hardware and/or software may result in physical
injuries or fatalities.

You are hereby made aware that the hardware and/or software was not created for use in
hazardous environments, which require fail-safe control mechanisms. Use of the hardware and/or
software in this kind of environment shall be at your own risk; any liability for damage or loss due to
impermissible use shall be excluded.

Web interface | Packet interface
DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2021-2022

Appendix 39/41

Warranty

Hilscher Gesellschaft fir Systemautomation mbH hereby guarantees that the software shall run
without errors in accordance with the requirements listed in the specifications and that there were
no defects on the date of acceptance. The warranty period shall be 12 months commencing as of
the date of acceptance or purchase (with express declaration or implied, by customer's conclusive
behavior, e.g. putting into operation permanently).

The warranty obligation for equipment (hardware) we produce is 36 months, calculated as of the
date of delivery ex works. The aforementioned provisions shall not apply if longer warranty periods
are mandatory by law pursuant to Section 438 (1.2) BGB, Section 479 (1) BGB and Section 634a
(1) BGB [Burgerliches Gesetzbuch; German Civil Code] If, despite of all due care taken, the
delivered product should have a defect, which already existed at the time of the transfer of risk, it
shall be at our discretion to either repair the product or to deliver a replacement product, subject to
timely notification of defect.

The warranty obligation shall not apply if the notification of defect is not asserted promptly, if the
purchaser or third party has tampered with the products, if the defect is the result of natural wear,
was caused by unfavorable operating conditions or is due to violations against our operating
regulations or against rules of good electrical engineering practice, or if our request to return the
defective object is not promptly complied with.

Costs of support, maintenance, customization and product care

Please be advised that any subsequent improvement shall only be free of charge if a defect is
found. Any form of technical support, maintenance and customization is not a warranty service, but
instead shall be charged extra.

Additional guarantees

Although the hardware and software was developed and tested in-depth with greatest care,
Hilscher Gesellschaft fir Systemautomation mbH shall not assume any guarantee for the suitability
thereof for any purpose that was not confirmed in writing. No guarantee can be granted whereby
the hardware and software satisfies your requirements, or the use of the hardware and/or software
is uninterruptable or the hardware and/or software is fault-free.

It cannot be guaranteed that patents and/or ownership privileges have not been infringed upon or
violated or that the products are free from third-party influence. No additional guarantees or
promises shall be made as to whether the product is market current, free from deficiency in title, or
can be integrated or is usable for specific purposes, unless such guarantees or promises are
required under existing law and cannot be restricted.

Web interface | Packet interface
DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2021-2022

Appendix 40/41

Confidentiality

The customer hereby expressly acknowledges that this document contains trade secrets,
information protected by copyright and other patent and ownership privileges as well as any related
rights of Hilscher Gesellschaft fir Systemautomation mbH. The customer agrees to treat as
confidential all of the information made available to customer by Hilscher Gesellschaft fir
Systemautomation mbH and rights, which were disclosed by Hilscher Gesellschaft fir
Systemautomation mbH and that were made accessible as well as the terms and conditions of this
agreement itself.

The parties hereby agree to one another that the information that each party receives from the
other party respectively is and shall remain the intellectual property of said other party, unless
provided for otherwise in a contractual agreement.

The customer must not allow any third party to become knowledgeable of this expertise and shall
only provide knowledge thereof to authorized users as appropriate and necessary. Companies
associated with the customer shall not be deemed third parties. The customer must obligate
authorized users to confidentiality. The customer should only use the confidential information in
connection with the performances specified in this agreement.

The customer must not use this confidential information to his own advantage or for his own
purposes or rather to the advantage or for the purpose of a third party, nor must it be used for
commercial purposes and this confidential information must only be used to the extent provided for
in this agreement or otherwise to the extent as expressly authorized by the disclosing party in
written form. The customer has the right, subject to the obligation to confidentiality, to disclose the
terms and conditions of this agreement directly to his legal and financial consultants as would be
required for the customer's normal business operation.

Export provisions

The delivered product (including technical data) is subject to the legal export and/or import laws as
well as any associated regulations of various countries, especially such laws applicable in
Germany and in the United States. The products / hardware / software must not be exported into
such countries for which export is prohibited under US American export control laws and its
supplementary provisions. You hereby agree to strictly follow the regulations and to yourself be
responsible for observing them. You are hereby made aware that you may be required to obtain
governmental approval to export, reexport or import the product.

Web interface | Packet interface
DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2021-2022

Appendix

41/41

6.4 Contacts

Headqguarters

Germany

Hilscher Gesellschaft fir Systemautomation mbH

Rheinstrale 15

D-65795 Hattersheim

Phone: +49 (0) 6190 9907-0
Fax: +49 (0) 6190 9907-50
E-mail: info@hilscher.com

Support
Phone: +49 (0) 6190 9907-990
E-mail: hotline@bhilscher.com

Subsidiaries

China

Hilscher Systemautomation (Shanghai) Co. Ltd.

200010 Shanghai

Phone: +86 (0) 21-6355-5161
E-mail: info@hilscher.cn
Support

Phone: +86 (0) 21-6355-5161
E-mail: cn.support@bhilscher.com

France

Hilscher France S.a.r.l.

69800 Saint Priest

Phone: +33 (0) 4 72 37 98 40
E-mail: info@hilscher.fr
Support

Phone: +33 (0) 4 72 37 98 40
E-mail: fr.support@hilscher.com

India

Hilscher India Pvt. Ltd.

Pune, Delhi, Mumbai, Bangalore
Phone: +91 8888 750 777
E-mail: info@hilscher.in
Support

Phone: +91 8108884011

E-mail: info@hilscher.in

Italy

Hilscher ltalia S.r.l.

20090 Vimodrone (MI)

Phone: +39 02 25007068
E-mail: info@hilscher.it
Support

Phone: +39 02 25007068
E-mail: it.support@hilscher.com

Japan

Hilscher Japan KK

Tokyo, 160-0022

Phone: +81 (0) 3-5362-0521
E-mail: info@hilscher.jp
Support

Phone: +81 (0) 3-5362-0521
E-mail: jp.support@hilscher.com

Republic of Korea

Hilscher Korea Inc.

13494, Seongnam, Gyeonggi
Phone: +82 (0) 31-739-8361
E-mail: info@hilscher.kr
Support

Phone: +82 (0) 31-739-8363
E-mail: kr.support@hilscher.com

Austria

Hilscher Austria GmbH

4020 Linz

Phone: +43 732 931 675-0
E-mail: sales.at@hilscher.com

Support
Phone: +43 732 931 675-0
E-mail: at.support@hilscher.com

Switzerland

Hilscher Swiss GmbH

4500 Solothurn

Phone: +41 (0) 32 623 6633
E-mail: info@hilscher.ch

Support
Phone: +41 (0) 32 623 6633
E-mail: support.swiss@hilscher.com

USA

Hilscher North America, Inc.
Lisle, IL 60532

Phone: +1 630-505-5301
E-mail: info@hilscher.us

Support
Phone: +1 630-505-5301
E-mail: us.support@hilscher.com

Web interface | Packet interface

DOC181004APIO3EN | Revision 3 | English | 2022-10 | Released | Public

© Hilscher, 2021-2022

mailto:info@hilscher.com
mailto:hotline@hilscher.com
mailto:info@hilscher.jp
mailto:jp.support@hilscher.com
mailto:info@hilscher.kr
mailto:kr.support@hilscher.com
mailto:sales.at@hilscher.com
mailto:at.support@hilscher.com
mailto:info@hilscher.ch
mailto:support.swiss@hilscher.com
mailto:info@hilscher.us
mailto:us.support@hilscher.com
mailto:info@hilscher.cn
mailto:cn.support@hilscher.com
mailto:info@hilscher.fr
mailto:fr.support@hilscher.com
mailto:info@hilscher.in
mailto:info@hilscher.in
mailto:info@hilscher.it
mailto:it.support@hilscher.com

