-
hilscher

COMPETENCE IN
CONMMUNICATION

API
Web server
netX 90/4000

V1.5

Hilscher Gesellschaft fir Systemautomation mbH

www.hilscher.com
DOC190901APIO3EN | Revision 3 | English | 2022-10 | Released | Public

Introduction 2/38

Table of contents

1 T} (e Xo [0 Tox 1o o PP 3
0 R AN o o101 1 T E= 3o [o oW =T o | PSPPSR 3
O I 1~ o) =Y/ 13 (o] o PR PRSP 3
R Y (=T o g I (=T 01T (=T 0 0=] SRS 3
N = (0 =] i [(o] o PO PPUTPTPRR T SPPPPPIN 3
R T I Tor o o1 Tot= o = - PP PR 4
1.6 References t0 dOCUMENTSuuiiiiiiii it e st e e e e e e s e sttt e e e e e e s e s anbeeeeeaaeesaannneeees 4

2 Hypertext Transfer ProtOCOl HTTP ...t e e e e s e e e e e e s et e e e e e e e e s e nnnneees 5
L@ YT VT PR OPPRPPPRPN 6

4 AP 7
4.1 RESEL AP 7

41.1 EXamPle WIth JAVASCIIPT ..c.eeei ittt e e ettt e e e e e sttt e e e e e e e e nnen e e e e e e e e e nneaeeeaaens 7
N B - To | (o1 (ol Y o F O TSP P PP PPPPPTOPI 8
4.3 FIrmware UPIOA APlot e e e e e e e e s e e e e e e s e st e e e e e e e e e nrrrrraaaas 10
43.1 EXample With JAVASCIIPEcooiiiiiiiiiee ettt e e ettt e e st e e e snbe e e e e s e e e nnnee 11
A4 File MANAGET AP ...ttt a et e et e e e e aees 12
441 =T Vo - T 1 =PRI 12
4.4.2 [= W [T =01 (0] YOO P PP PRPPPPPRN 13
443 R AT G- 1= PP 13
44.4 Remove a file or an emMpPty diFECLONYvviiiiiiiiiiieee et 14
4.4.5 Create @ NEW TIFECLONYciiiiie ittt ettt ekt e et e bt e e aa b e e e et e e s nane e e e s nneees 14
4.4.6 Get the MD5 checksum Of @ fil€cc.eeiiiiiiiiic e 14
45 FIleSYSIEM GCCESS ...ccc i 15
45.1 Default Content-TYPe COMPULALIONvviiiiiiieeiiiiee et et e e e ettt e e st e e e snbee e e sneeeesnees 15
45.2 Default Content-ENcoding COMPULALIONeieiiuiieeiiiieeeeiiie e siiee e siee e e e e seeeee e s teeeesneeeeenneee 16
453 EXtENdEd @trTDULES ... 16
45.4 EXAIMPIES ...ttt e e e 17
455 HOW t0 Create @ TAR @rCRIVEoiiiiiiiieiiei ettt e e et e e e e e e snnraeeeaaens 19
4.6 NEIPTOXY AP ...ttt e e e et e e e e e r et e e e st e e e e ae s 20
46.1 Get an ODJECT AESCIIPTIONveeeeiiiie ettt et et e e et e e e e snne s 21
4.6.2 Get the number of elements iN an ODJECTccviiiiiiii e 21
46.3 Get the element AESCHIPTIONco.iiieiiei ettt e s e e snneees 21
46.4 Get the number of ODJECT INSTANCESoiiiiii e 22
4.6.5 Read an 0DJECE INSTANCEcoueiiieieie e e e e et eeeeeas 23
4.6.6 W AN ODJECT INSTANCE ... it e e e e e e e e s et ee e e e s 23
4.6.7 REAA AN BIEMENT ...ttt e e e s et e e e e e e e e bbb e e e e e e e e e nnbneeeeeens 24
4.6.8 VL= TaIN=] [T =T o PR PPT PP 24
4.6.9 ElEMENES ENCOING ...eeiiiiiieeiiei ettt e e e s et e e snne e 25
Y Y o | SO 27
4.8 Authentication and AUthOFZAtioN APooii i e s eerreee e e e 27
48.1 YU 11 0= o1 (ToF= o o P EPPT PRI 27
48.2 YU 11 o] 2 (o] o F P EPPT PP 28
4.8.3 = 10 0] o L= OSSP P PP RPPPPPR 28
4.9 USEIr MANAGET AP ..t e e e e e e e e st e e e e e e 30
49.1 ISy £ LT T = £ SRR 30
49.2 REMOVE @ USEI .. 30
49.3 Create OF MOGITY @ USEIeeieiiiieei ittt e bbbt e e e e e st b bt e e e e e e e bbbrbeeeaeesanes 31
49.4 e T 0] o] [T PP PPTTT PP 31

5 UL T Y=Y o I o = Vo 1T (U PSR 33
5.1 Device adminiStration GUIcuuuiiiiiiiiii ettt e et e e e e e e abeaeeeeaaeeeaaa 33
5.2 File MANAGEN GUIottt e e e ettt e e e e e s e bb e et e e e e e e e nbabeeeaaeeeeaan 33

6 How to enable and use the file manager GUI ... 34
F N o] o 1= o Yo |1 G TP PSRRI 36
7.1 COMMON rESPONSE STALUS COUES.ciiiiuiiiiieiiiiie e iteeie ettt e e sttt e sttt e et e st e e nbe e e e s nnbbeeesnnneeeas 36
A N 11 B) = 1] [OSSPSR 37
%S T 1= o) B o U= PSR PR 37
420 O o T 38

Web server | netX 90/4000
DOC190901APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2020-2022

Introduction

3/38

1 Introduction

1.1 About this document

This manual describes the API via HTTP to the integrated web server.

1.2 List of revisions

Rev | Date Name Chapter | Revision

1 2019-11-26 | HHE, ATI |all Document created.

2 2021-04-09 | AIV 3 NetProxy Object Access and Authentication features are now set to “NA”

for usecase C.

4.6 Duplicate or unnecessary NetProxy APIs removed.
4.9 Description for setting URL-encoded passwords added.
- LogBook description and references removed.

3 2022-09-12 | AIV 3 Usecase C now supports Authentication and User Management features.
4.2 Added a description for the encoding of the Diagnostic Production Date.
4.3 Added NXS file support description.
4.6.9 Special ASCII characters in NetProxy strings output encoded as \uXXXX.
4.8 Authentication/authorization JSON response object format changed.
4.9 A user now can change their own password.
6 netHost may require a non-empty FILEMAN file.

Table 1: List of revisions

1.3 System requirements

The software package has the following system requirements to its environment:
netX-chip as CPU hardware platform

firmware with integrated web server

1.4 Target group

This manual is intended for software developers with basic knowledge of:
the HTTP protocol
the Web development and the associated tools (curl).

Web server | netX 90/4000

DOC190901APIO3EN | Revision 3 | English | 2022-10 | Released | Public

© Hilscher, 2020-2022

Introduction 4/38

1.5 Technical data

Technical data

HTTP/1.1 with persistent connection
Accept 8 simultaneous connections.
Only one connection is treated at the same time.

Features and APIs

Update the firmware and reset the new firmware

Manage the file system content

Access the file system content

Read, write and get descriptions of the netproxy objects

DPM interface (Weblf) to extend the resources from the application CPU

Limitations

Pipelined requests are not supported.
HTTP/2 is not supported

1.6 References to documents

This document refers to the following documents:

[1]
[2]

(3]
[4]

Hilscher Gesellschaft fur Systemautomation mbH: Protocol API, Web interface, Packet
interface, DOC181004API02EN, Revision 2, English, 2022-02.

Request for Comments 2616: Hypertext Transfer Protocol HTTP/1.1; IETF Network Working
Group; R.Fielding et al., 1999; http://www.ietf.org/rfc/rfc2616.txt

PAX — portable archive interchange: https://pubs.opengroup.org/onlinepubs/9699919799/
TAR — format of tape archive files: https://www.freebsd.org/cgi/man.cgi?query=tar&sektion=5

Web server | netX 90/4000
DOC190901APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2020-2022

http://www.ietf.org/rfc/rfc2616.txt

Hypertext Transfer Protocol HTTP 5/38

2 Hypertext Transfer Protocol HTTP

This section is a brief summary of the HTTP as defined in RFC 2616 (see reference [2]).

Clients such as common Internet browsers can connect with the web server. Connections are
established by the Transmission Control Protocol (TCP). Via a connection, the client can retrieve
resources that are available on the server. Resources may be any information and are often
represented as files such as HTML pages or images.

HTTP is a text-based protocol. The protocol communication and the meta-data associated with
resources are human-readable and represented as a stream of US-ASCIlI characters. The
communication consists of requests and responses.

A request is always directed from the client to the server and contains a Uniform Resource
Identifier (URI) that specifies which resource is requested. The resource is then sent from the
server to the client within a response.

web netxX
1. Request
browser (server)
(client) L » GET /index.html HTTP/1.1 n .
Method URI

Status Code
2. Response

HTTP/1.1 200 OK

Content-Length: 45

Content-Type: text/html

¢ <html> ——
<body>Hello World!</body>

</html>

Resource

Figure 1: HTTP request and response

The server implements a set of HTTP methods. A method is invoked by a request, the first word in
the request identifies the used method. The two mostly used methods are GET and POST. The
standard method GET is used to retrieve a resource from the server (so called “download”). The
two methods POST and PUT are the complements of GET and are used to send resources from
the client to the server. This is useful to store additional files on the server (so called “upload”) or to
send form data which is then processed by the server. The response to a POST/PUT request may
contain resources, so a POST/PUT request can be also seen as a GET plus an additional
information flow from the client to the server.

Each response contains a status code (for example “200 OK” or “404 Not Found”). This is an
identifier number consisting of three digits followed by a short reason phrase to inform the client of
the result of the request.

An HTTP request is stateless, each request is processed for itself, no request will influence other
requests. To recognize that requests belong together, issued by the same user or client, the web
server can use authentication or cookies information of the HTTP protocol, e.g. to allow login.

For a good and general overview, see: https://developer.mozilla.org/en-US/docs/Web/HTTP. To
avoid design mistakes, we recommend reading this documentation (at least the section “An
overview of HTTP”) before starting development applications based on HTTP.

Web server | netX 90/4000
DOC190901APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2020-2022

Overview 6/38

3 Overview

Each feature is associated to a URL. The different use cases (A, B, C and C for 1oT LFWSs)
implement a different set of features. The following table describes the URLs associated to the
feature. Note that the features not implemented in a specific use case are marked with “N/A”.

Feature / Use case A B C C for IoT LFWs
Reset Inetx/reset

Diagnostic /netx/diag

Weblf | & Iwebif /webif

File server N/A / & [files

File manager N/A Inetx/filemanager

Firmware upload /netx/firmware N/A /netx/firmware

netProxy object access N/A /netx/npx
Authentication N/A /netx/login

User Manager N/A Inetx/usermanager

Table 2: Feature overview

Depending on the use case, the root "/" gives a different resource. For use case C, the web server
redirects to /files. For use case A and B, the web server redirects to /webif. If a script or an
application uses an API provided via the Weblf API, the /webif URL has to be used in order to be
portable between the use cases.

Additionally, some built-in pages or GUI are provided to perform some basic operations without the
need to access the API directly. For example, the Device Manager can update a new firmware and
reset the board to boot on this new firmware. We need a web browser with java script that is
enabled to use these built-in pages.

Feature / Use case A B C C for IoT LFWs
FileManager N/A Inetx/FileManager.html
Device manager /netx/Admin.html ‘ N/A /netx/Admin.html

Table 3: Built-in web pages (GUI)

The above features can be further customized (feature deactivation or URL change) using the Web
Interface Packet API, for more information see [1] Section 3.3.1 — “Dispatch Entry Customization”

Web server | netX 90/4000
DOC190901APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2020-2022

API 7/38

4 API
4.1 Reset API

The web server performs a firmware reset.

Reset Description

URL http://<webserver.ip>/netx/reset

Authentication In firmware with authentication, access is granted only to users belonging to the groups “admin”
or “reset”.

Table 4: Reset

The following request will perform a reset in order to load a new firmware.

Reset Description
Request POST /netx/reset
Response 200, JSON empty

Table 5: Reset API

4.1.1 Example with Javascript

The following JS function uses an instance of XMHttpRequest to reset in order to force the update
of the previously uploaded firmware (see section Example with Javascripton page 11):

function reset () {
var xhr = new XMLHttpRequest () ;
xhr.open ("GET", "/netx/reset", true);
xhr.onreadystatechange = function() {
if (xhr.readyState == 4) {
var failure = "unknown error";
if (xhr.responseText != "") ({
failure = xhr.responseText;

}

if (xhr.status == 200) {
console.log("Successful") ;
} else {
console.log("Failed (" + failure + ")");
}
}
bi
xhr.send () ;

}
See: https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest

Web server | netX 90/4000
DOC190901APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2020-2022

API 8/38
4.2 Diagnostic API

The diagnostic feature provides information on the running system and the installed firmware.

Diagnostic Description
URL http://<webserver.ip>/netx/diag
Authentication no

Table 6: Diagnostic

The following request gets the diagnostic information:

Diagnostic Description
Request GET /netx/diag

Response 200, JSON object
sys:

uptime: integer
mac: string

hw_oem
serial_number: string
order_number: string
revision: string

hw:
manufacturer: integer
dev_class: integer
dev_number: integer
serial_number: integer
compatibility: integer
revision: integer
production_date: integer

Table 7: Diagnostic API

For example:

$ curl <webserver.ip>/netx/diag
{
"sys": |
"uptime": 1595,
"mac": "0200371e0al0"
}y

"hw": {
"manufacturer": 1,
"dev_class": 69,
"dev number": 7690102,
"serial number": 20055,
"compatibility": O,
"revision": 2,

"production date": 4395
I
"hw oem": {
"serial number": "",
"order number": "",
"revision": ""

Web server | netX 90/4000
DOC190901APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2020-2022

API 9/38

Production Date Format

The production date is represented as a humber from 0 to 65535. The value fits in 2 bytes and its
hexadecimal representation OXYYWW is interpreted like this:

e OXYY is the number of years since year 2000

e OXWW is the week number.
In the example above the production date is represented with the decimal number 4395 whose
hexadecimal equivalent is 0x112B, so:

Year = 2000 + Ox11 = 2000 + 17 = 2017
Week = 0x2B = 43
The production date is week 43 of year 2017.

Web server | netX 90/4000
DOC190901APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2020-2022

API 10/38

4.3 Firmware upload API

This feature provides an API to upload a new firmware. The web server does not verify the
firmware file format or the file CRC32 checksum. After the file upload, a manual reset is required.

Firmware upload Description

URL http://<webserver.ip>/netx/firmware

Authentication In firmware with authentication, access is granted only to users belonging to the groups “admin”
or “fwupdate”.

Table 8: Firmware upload

The following request loads a new firmware, the body of the request shall contain an NXI, NXS or a
ZIP file.

Firmware upload Description

Request POST /netx/firmware

Body ZIP file (application/zip, application/octet-stream, application/x-zip-compressed), NXI file
(application/x.nxi) or NXS file (application/x.nxs). The "Content-Type" has to be used to specify
the type.

The file size has to be specified with the "Content-Length" field.
The file size must not exceed the max. body size of 10 MBytes.

Response 200, JSON empty
Table 9: Firmware upload API

For example, we can update the firmware stored in a simple NXI file with the following command:

$ curl -H "Content-Type: application/x.nxi" --data-binary @- <webserver.ip>/netx/firmware
< FIRMWARE.nxi

We can also update the firmware stored in a signed NXS file with the following command:

$ curl -H "Content-Type: application/x.nxs" --data-binary @- <webserver.ip>/netx/firmware
< FIRMWARE.nxs

Additionally, we can also update the firmware stored in a ZIP file with the following command:

$ curl -H "Content-Type: application/zip" --data-binary @- <webserver.ip>/netx/firmware <
fwupdate.zip

Web server | netX 90/4000
DOC190901APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2020-2022

API

11/38

4.3.1 Example with Javascript

The following JS function use an instance of XMHttpRequest associated to an instance of
FileReader to upload a firmware defined by an instance of a File object.

function sendFile (file) {
/* Check the file name and extension */

var content type = "application/octet-stream";

if (file.name.match (/.+\. (zip|ZIP)S$/)) {
content type = "application/zip";

} else if (file.name.match(/.+\. (nxi|NXI)S$/)) {
content type = "application/x.nxi";

} else if (file.name.match(/.+\. (nxs|NXS)S$/)) {
content type = "application/x.nxs";

} else {

console.log("The filename shall have the .nxi, .nxs or

return;

}

var xhr = new XMLHttpRequest () ;
var reader = new FileReader();

/* Prepare the POST request to send the file */
xhr.open ("POST", "/netx/firmware", true);
xhr.setRequestHeader ("Content-Type", content type);
console.log ("Upload in progress ...");

/* Manage the POST request termination */
xhr.onreadystatechange = function() {
if (xhr.readyState == 4) {
var failure = "unknown error";
if (xhr.responseText != "") ({
try {
JSON.parse (xhr.responseText) ;
failure = "Middleware failed with code 0x" +
xhr.responseText ["middleware code"].toString(16);
} catch (e) {
failure = xhr.responseText;
}
}

if (xhr.status == 200) {
console.log ("Upload is successful");
} else {
console.log ("Upload failed (" + failure + ")");

}
}
b

/* Read the file and send it */
reader.onload = function (event) {
xhr.send (event.target.result) ;

bi
reader.readAsArrayBuffer (file) ;

}
See:

https://developer.mozilla.org/en-US/docs/Web/API/File/File

.zip extension.");

https://developer.mozilla.org/en-US/docs/Web/API/FileReader/readAsArrayBuffer

Web server | netX 90/4000
DOC190901APIO3EN | Revision 3 | English | 2022-10 | Released | Public

© Hilscher, 2020-2022

API 12/38

4.4 File manager API

The feature provides an API to access the /PORT 1/ (channel 1) directory and subdirectories of
the local file system.

File manager Description

URL http://<webserver.ip>/netx/filemanager

Authentication In firmware with authentication, access is granted only to users belonging to the groups “admin”
or “manager”.

Table 10: File manager

Attention: This module is enabled only if one of the following files exists:
/PORT _1/FILEMAN Of
/PORT 1/FILEMAN.ENA

4.4.1 Read a file

The following request gets the content of a file.

File manager Description
Request GET /netx/filemanager/<pathToFile>?op=read
Response 200, file content

404, resource not found

Table 11: File manager API (read a file)

Web server | netX 90/4000
DOC190901APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2020-2022

API

13/38

4.4.2 List a directory

The following request gets the list of directory and files inside a directory.

File manager

Description

Request

GET /netx/filemanager/<pathToDir>?op=list

Response

200, list JSON objects:
type: "regular"/"directory"
name: string

404, resource not found

Table 12: File manager API (list a directory)

For example, if we want to list the files and directory inside the /web directory.

$ curl <webserver.ip>/netx/filemanager/web?op=list

{
"files":

{

[

"name" :
"type" :

"name" :
"type" :

"name" :
"type" :

"name" :
"type" :

"WC.HTM",
"regular"

"wCc.Jgs",
"regular"

"TEST.HTM",
"regular"

" PUB " ’
"directory"

4.4.3 Write a file

The following request writes a new file. It can also be used to overwrite the content of an existing

file.
File manager Description
Request POST /netx/filemanager/<pathToFile>?op=write
Body Binary data (application/octet-stream)
Can be chunked, encoded or without any encoding but the content length has to be specified.
Response 200, empty JSON object

Table 13: File manager API (write a file)

Web server | netX 90/4000

DOC190901APIO3EN | Revision 3 | English | 2022-10 | Released | Public

© Hilscher, 2020-2022

API

14/38

4.4.4 Remove a file or an empty directory

The following request removes a file or an empty directory. If the directory is not empty, the files
and sub-directories inside shall be previously removed.

File manager

Description

Request

DELETE /netx/filemanager/<path>?op=remove

Response

200, empty JSON object

Table 14: File manager API (remove a file or an empty directory)

4.4.5 Create a new directory

The following request creates a new empty directory.

File manager

Description

Request POST /netx/filemanager/<path>?op=mkdir
Body Empty
Response 200, empty JSON object

Table 15: File manager API (create a new directory)

4.4.6 Get the MD5 checksum of a file

The following request computes the MD5 value of a file. To check if the file has not been corrupted
during a transfer, a client can use this request to compare the MD5 computed locally and the D5

given by the Web API.

File manager Description
Request GET /netx/filemanager/<pathToFile>?op=hash
Summary Compute the file checksum
Response 200, JSON object:
Hash: string
404, resource not found

Table 16: File manager API (gets the MD5 of a file)

Due to a missing or incorrect mbedtls library initialization, the hash operation may fail with some

firmware files.
Example to get the MD5 checksum of the file /web/index.htm:

$ curl <webserver.ip>/netx/filemanager/web/index.htm?op=hash
{

"Hash": "7£f£5442ee70849ce5086611da952c£95"
}

Web server | netX 90/4000
DOC190901APIO3EN | Revision 3 | English | 2022-10 | Released | Public

© Hilscher, 2020-2022

API 15/38

4.5 FileSystem access

This feature serves to read a file located in the /PORT 1/web/ directory of the file system using
the requested URL. If the file has not been found, this module responds with an error "404". The
default page to be delivered is index.htm, if the root directory is requested.

File server Description
URL http://<webserver.ip>/files
Authentication N/A

Table 17: File server

In addition to the possibility to serve the files stored in the file system directly, the file system may
contain a file /PORT 1/web/content.tar. If this file exists, the files stored in the file system are
no longer considered resources, except for the file entries in the archive.

The content.tar archive is a standard TAR (USTAR or PAX) archive. Each file entry corresponds to
a resource. If, e.g., there is a file entry “/pics/background.jpeg”, this resource will be available at the
URL “http//<webserver.ip>/files/pics/background.jpeg”. Note that with the content.tar archive, the
8.3 limitations on the filenames are not longer relevant.

45.1 Default Content-Type computation

To find the “Content-Type” (which indicate to the client the file type), by default the web server
uses the filename extension. The following table associate a file extension to a media type:

Extension Media type

IS application/javascript
jsh application/json
pdf application/pdf
zip application/zip
bmp image/bmp

gif image/gif

iPg image/jpeg
ipeg image/jpeg

png image/png

svg image/svg+xml
tif imageltiff

ico image/x-icon
css text/css

htm text/html

html text/html

txt text/plain

xml text/xml

Table 18: MediaTypes

In case the filename extension is not listed in the table, the web server uses the default
“application/octet-stream”.

Web server | netX 90/4000
DOC190901APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2020-2022

API 16/38
45.2 Default Content-Encoding computation

To find the “Content-Encoding” (which indicate to the client the compression method), the web
server uses by default the magic number at the beginning of the file. Only the gzip compression
format is supported.

This allows storing gzip compressed files in the file system in order to save Flash memory and
reduce the data which otherwise will be transferred uncompressed. All modern browsers support
this feature and decompress the content for the user.

45.3 Extended attributes

The /web/content.tar archive is a PAX archive containing for each of the data entries several
attributes. We can use these attributes to modify the HTTP fields in the responses. These
attributes in the PAX archive are prefixed with the vendor identifier “‘HILSCHER”.

The two following attributes influences the “Content-Encoding” and “Content-Type” fields. If there
are not defined, the default seen in the previous section is used:

HILSCHER.content_encoding: Define the “Content-Encoding” field.
HILSCHER.content_type: Define the “Content-Type” field.
The following three attributes influences the “Cache-Control” and “ETag” fields:

HILSCHER.cacheability: Can be “public”, “private”, “no-cache” or “no-store”. By default the
value used is “no-store”.

HILSCHER.max_age: An unsigned integer used to define the expiration sub-field “max-age”.
This value is ignored if the HILSCHER.cacheability is set to “no-store”.

HILSCHER.etag: Can be a revision number or a hash of the content. This attribute will
activate the comparison of the local ETAG and the optional “If-None-Match” field in the HTTP
request. If both are equal the client will receive a response with a HTTP status “304 Not
Modified”.

Web server | netX 90/4000
DOC190901APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2020-2022

API 17/38

45.4 Examples

The first use case with files and directories directly in the FileSystem, it is a simply solution. Only
file name conform to the 8.3 convention are accepted.

/PORT_1/web :

- /index.htm
- [style.css

- Inics/imaae.ico

In case, filenames greater than 12 characters needs to be supported, the solution is to use a TAR
file (or USTAR) /PORT_1/web/content.tar. Note: The files in the file system are not directly
accessible in case the content . tar file exists.

/PORT_1/web :

- content.tar with 3 entries

o index.html

o style.css
o pics/image.ico

- Jconf.htm

A

If we need to give cache information and an ETAG value, the solution is to use a PAX file (which is
also a USTAR) with extended attributes. Note the difference between the “global” and “local”
attributes: The “global” attributes are relevant for all the entries, the “local” attribute is only relevant
to the following entry. The “local” attributes can override the value of the “global” attributes.

Web server | netX 90/4000
DOC190901APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2020-2022

/PORT_1/web :

=> content.tar with 3 entries

o Inthe “global” record:

cacheability public

max_age 3600

o Inthe “local” record for /index.html

etag V1

content_type text/html

o index.html

o Inthe “local” record for /style.css

etag V4
content_type text/css
max_age 5000

o style.css

Web server | netX 90/4000
DOC190901APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2020-2022

API 19/38

455 How to create a TAR archive

The 7Zip program can be used to create a TAR archive in Windows. Here we take the common
GNU Tar program to do it. We want to create the content. tar of the second example:

$ tar -c -v -f content.tar index.html style.css pics/image.ico

$ tar -t —-f content.tar

index.html

style.css

image/ico

Please take care to not specify the filename with “./” at the beginning or using the absolute path
name, the resulting archive will certainly not be usable by the web server; The file name in the
command line has to be the same as the intended URL following /files/ (Note the slash at end).
With PAX attributes, several calls have to be used to create it.

$ tar -c -v -f content.tar --format=pax --pax-option "HILSCHER.cacheability=public, HILSCHER.max age=3600 " -T
/dev/null

$ tar -r -v -f content.tar --pax-option "HILSCHER.etag:=V1,HILSCHER.content type:=text/html" index.html

$ tar -r -v -f content.tar --pax-option "HILSCHER.etag:=V4,HILSCHER.content type:=text/css,HILSCHER.max age=5000"
style.css

$ tar -r -v -f content.tar --pax-option "HILSCHER.etag:=V4,HILSCHER.content type:=image/ico" pics/image.ico

The first call specifies the global attributes. The following calls define the files and the
corresponding local attributes.

For more information, see the PAX specifications [3] and the FreeBSD documentation [4] about
TAR archive formats.

Web server | netX 90/4000
DOC190901APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2020-2022

API 20/38
4.6 NetProxy API

This API provides access to the netProxy objects. Only a subset of netProxy operations is
available:

Get object descriptions (name, list of elements, ...)

Write and read object instances

Write and read elements inside object instances
This APl does not support:

Add a new object description
Declaring new instances of an object

netProxy Description
URL http://<webserver.ip>/netx/npx
Authentication The authorization is specific to the object and the operation (read or write).

Table 19: netProxy

Web server | netX 90/4000
DOC190901APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2020-2022

API 21/38
4.6.1 Get an object description

The following request gets the object description (containing the object name).

netProxy Description
Request GET /netx/npx/objects/{obj_id}
Response 200, JSON object
name: string
404: Object not found

Table 20: netProxy API (get an object description)

Example to get the object name of the object 0x004E2C33

$ curl <webserver.ip>/netx/npx/objects/5123123
{

"name": "IO-Link Master - SMI - On Request Data Status"
}

4.6.2 Get the number of elements in an object

The following request gets the number of elements in an object.

netProxy Description
Request GET /netx/npx/objects/{obj_id}/elements/
Response 200, JSON object
size: integer
404: Object not found

Table 21: netProxy API (get the number of elements in an object)

Example to get the number of elements in the object 0x004E2C33:

$ curl <webserver.ip>/netx/npx/objects/5123123/elements/
{
"size": 5

}

4.6.3 Get the element description

With the following request, we can get the description of an individual element. The description
contains the name, type, and size.

netProxy Description
Request GET /netx/npx/objects/{obj_id}/elements/{elem_id}
Response 200, JSON object

name: string

type: BOOLEAN | BINARY | INTEGER | UNSIGNED | REAL | STRING | OBJREF |
BITFIELD | ENUMERATION | UNKNOWN

size: integer, size of the element in netproxy database memory.

404: Element not found

Table 22: netProxy API (get the element description)

Example to get the name, size, and type of the first element in the object 0x004E2C33:

$ curl <webserver.ip>/netx/npx/objects/5123123/elements/0
{

"name": "TransactionID",
"type": "UNSIGNED",
"size": 4

Web server | netX 90/4000
DOC190901APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2020-2022

API 22/38

4.6.4 Get the number of object instances

A group may contain zero or several instances of the same object. The following request gives the
number of instances of an object:

netProxy Description
Request GET /netx/npx/groups/{grp_id}/objects/{obj_id}/instances/
Response 200, JSON object
size: integer
404: Object not found

Table 23: netProxy module API (get the number of object instances)

Example to get the number of instances of an object in the first group:

$ curl <webserver.ip>/netx/npx/groups/0/objects/5123123/instances/
{
"size": 8

}

Web server | netX 90/4000
DOC190901APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2020-2022

API 23/38

4.6.5 Read an object instance

With the following request, we can read all elements of an object instance:

netProxy Description
Request GET /netx/npx/groups/{grp_id}/objects/{obj_id}/instances/{inst_id}
Response 200, JSON object,

“values”: list of values encoded as described in the encoding section

404: Instance not found

Table 24: netProxy API (read an object instance)

4.6.6 Write an object instance

With the following request, we can modify all elements of an object instance.

netProxy Description
Request PUT /netx/npx/groups/{grp_id}/objects/{obj_id}/instances/{inst_id}
Body Several JSON base elements (application/json) separated by CRLF. (See the encoding section).
Response 200, Empty
404: Instance not found

Table 25: netProxy API (write an object instance)

Example to set the IPv4 configuration object instance with the following values:
static IP configuration (0)
IP address (192.168.0.2 — 0xCOA80002 — 3232235522)
netmask (255.255.255.0 — OxFFFFFF00 — 4294967040) and

gateway address (192.168.0.1 — 0xCOA80001 — 3232235521).

$ curl --data-binary @- <webserver.ip>/netx/npx/groups/0/objects/536973312/instances/0
<<EOQOF

0

1

3232235522

4294967040

3232235521

EOF

Note: The execution of this operation, element by element, may be interrupted due to an
inconsistency in the IP configuration ...

Web server | netX 90/4000
DOC190901APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2020-2022

API 24/38
4.6.7 Read an element

With the following request, we can read an element in an object instance individually.

netProxy Description
Request GET /netx/npx/groups/{grp_id}/objects/{obj_id}/instances/{inst_id}/elements/{elem_id}
Response 200, JSON object,

“value”: value encoded as described in the encoding section
404: Element not found
Table 26: netProxy API (read an element)

Example to get the value of the first element of the first instance of the object 0x004E2C33 in the
first group.

$ curl <webserver.ip>/netx/npx/groups/0/objects/5123123/instances/0/elements/0
{

"value": 0

}

4.6.8 Write an element

With the following request, we can modify an element in an object instance individually.

netProxy Description
Request PUT /netx/npx/groups/{grp_id}/objects/{obj_id}/instances/{inst_id}/elements/{elem_id}
Body One JSON base element (application/json) (See the encoding section)
Response 200, Empty
404: Element not found

Table 27: netProxy API (write an element)

For the body of the maodification requests, the NetProxy API expects a text with the encoded value.

Web server | netX 90/4000
DOC190901APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2020-2022

API 25/38

4.6.9 Elements encoding

The size in the element description is the size in the netproxy memory, not the size of the JSON
values handled by the Web API. For each netproxy type, there is a corresponding JSON type,
independently from the size of the element in netproxy memory. For example a netproxy unsigned
integer (the UNSIGNED type associated with the NPX_TYPE_UNSIGNED described in the
Netproxy C API) of size 4 bytes is encoded as a JSON Number in the Web API representation. Of
course, this module will refuse any attempt to write a number that does not match the size of the
netproxy element, i.e. numbers bigger than 232 or smaller than zero.

The following list describes the relation between the netproxy representation and the JSON one as
well as the limitation regarding the element sizes (in the internal netProxy memory).

BOOLEAN: a JSON boolean
BINARY: a JSON array of numbers between 0 and 255.

As the given element size is the number of bytes in the internal netproxy memory, it is
also the number of elements in the JSON array.
INTEGER: a JSON number without fractional part and E notation.
Web API supports only 3 element sizes:
4 bytes in the internal netproxy memory;
represented by a JSON number between -273! and 231-1
2 bytes in the internal netproxy memory;
represented by a JSON number between —2*° and 21°-1
1 byte in the internal netproxy memory;
represented by a JSON number between -128 and 127.
UNSIGNED: a positive JSON number without fractional part and E notation.
Web API supports only 3 element sizes:
4 bytes in the internal netproxy memory;
represented by a JSON number between 0 and 232
2 bytes in the internal netproxy memory;
represented by a JSON number between 0 and 216
1 byte in the internal netproxy memory;
represented by a JSON number between 0 and 255.
BITFIELD: same as UNSIGNED
ENUMERATION: same as UNSIGNED
STRING:
As input (“set element” or “set object” operations), the strings are represented by a
sequence of bytes without surrounding quotes encoded with UTF-8.

As output (“get element” or “get object” operations), the strings are represented by a
JSON string (surrounded by quotes). Special ASCII characters from 0x01 to Ox1F
inclusive (not representable by other escape sequences) are represented through the
escape sequence format \uXXXX.

Web server | netX 90/4000
DOC190901APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2020-2022

API 26/38

REAL: a JSON number with fractional part but without E notation.
Web API supports only 2 element sizes:

8 bytes in the internal netproxy memory;
represented by a JSON number with simple-precision floating point

4 bytes in the internal netproxy memory;
represented by a JSON number with simple-precision floating point

Note that for elements with a type which is not supported (for example object reference or variable
binary) or with an uncommon size (an UNSIGNED of 3 bytes), most of the operation on this
element will failed (with an HTTP error 500 and with the corresponding error message). The only
exception is when we read a complete object instance, the value “null” is used for unsupported
elements.

Web server | netX 90/4000
DOC190901APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2020-2022

API 27/38
4.7 Weblf

The Weblf is a web server module used to extend the web server by delivering custom web
content from an external application.

- Description

URL http://<webserver.ip>/webif

Authentication | No authentication needed but an authentication (basic, digest, ...) can be implemented on the
application side.

Table 28: Weblf

The Weblf module provides a packet interface to retrieve incoming HTTP requests and transmit
the HTTP responses. External components are able to write extensions using this packet interface.
This section is only an introduction to the Weblf. For more information, see [1].

4.8 Authentication and Authorization API

The Authentication and Authorization API allows the web server to verify whether the user
accessing a resource is known by the system (i.e.. users managed by the
AuthenticationManager component).

Authentication | Description

URL http://<webserver.ip>/netx/login

Authorization N/A

Table 29: Authentication

48.1 Authentication

For authentication, you first have to make a request to the Authentication API.

Authentication Description

Request GET /netx/login

Response 200, JSON object
status: 0,

status_msg: "User is authenticated”,
groups: list of user groups

403, with the authentication challenge in the HTTP header, JSON object:
status: 1,
status_msg:"User is authenticated, but the credentials need to be renewed”,
groups: list of user groups
or:
status: 2,
status_msg: "User is not authenticated”,
groups: empty list
Table 30: Authentication API (authenticate)

Web server | netX 90/4000
DOC190901APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2020-2022

API 28/38
4.8.2 Authorization

Then, you can use the resource authorized by the credential from the authentication API.

Authentication | Description

Request GET <resource>
Response 403, JSON object,
status: 1,

status_msg: “User is authenticated, but not authorized”
or:

status 2,

status_msg: “User is not authenticated”

Table 31: Authorization API (authorization)

4.8.3 Example

Example of access to the protected FileManager API. First we try to access the resource without
any credential:

$ curl -i http://192.168.210.11/netx/filemanager/?op=1list
HTTP/1.1 403 Forbidden

Cache-Control: no-store

Connection: close

Transfer-Encoding: chunked

Content-Type: application/json

{"status": 2,"status msg": "User is not authenticated"}

To be able to generate the credential, we need an authentication challenge and we have to know
the supported authentication protocol (Basic, digest, Oauth, ...).

We make a request to /netx/login without credential. The server will give a negative response with
an authentication challenge:

$ curl -i http://192.168.210.11/netx/login

HTTP/1.1 403 Forbidden

Cache-Control: no-store

Connection: keep-alive

Transfer-Encoding: chunked

WWW-Authenticate: Basic realm="netx"

Content-Type: application/json

{"status": 2,"status msg": "User is not authenticated","groups": []}
Now we know the server uses the HTTP Basic authentication. We are able to create the credential.

Example of a request to /netx/login with a correct credential. The server gives a positive response.
The AuthenticationManager database contains the user "root" with the password "password":

$ curl --basic -u root:password -i http://192.168.210.11/netx/login

HTTP/1.1 200 OK

Cache-Control: no-store

Connection: keep-alive

Transfer-Encoding: chunked

Content-Type: application/json

{"status": 0,"status msg": "User is authenticated","groups": ["user","admin"]}

Web server | netX 90/4000
DOC190901APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2020-2022

API 29/38

We can use this credential to access the protected resources.

$ curl --basic -u root:password -i http://192.168.210.11/netx/filemanager/?op=1list
HTTP/1.1 200 OK

Cache-Control: no-store

Connection: keep-alive

Transfer-Encoding: chunked

Content-Type: application/json

{"files": [{"name": "FILEMAN","type": "regular"}, {"name": "WEB","type": "directory"}]}

Web server | netX 90/4000
DOC190901APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2020-2022

API

30/38

4.9 User manager API

The User management API provides a way to manage the user database.

User manager

Description

URL

http://<webserver.ip>/netx/usermanager

Authorization

Access is granted only to users belonging to the groups “accountmanager” or “admin”.

Table 32: User manager API

49.1 List the users

The following request gets the list of users and their properties:

User manager

Description

Request

GET /netx/usermanager/users

Response

200, JSON Object:
users: list of objects
username: string
groups: list of strings, the following strings are accepted:
user, manager, fwupdate, reset, accountmanager and admin

Table 33: User manager API (list the users)

492 Remove a user

This request removes a user from the database:

User manager

Description

Request

DELETE /netx/usermanager/users/<username>

Response

200, Empty: operation successful
404, Empty: user not found

Table 34: UserManager API (remove a user)

Web server | netX 90/4000
DOC190901APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2020-2022

AP 31/38
4.9.3 Create or modify a user

The last request creates a new user in the database, but may also be used to modify an existing
user. A request concerning an existing user is useful to change the password or add a new group
to the user. An update request with the field X-User-Mng-Group will add a group to the user. It is
not possible to directly remove a user from a group (the user needs to be removed first). Users that
have no administrative rights are also allowed to change their own password.

User manager Description
Request PUT /netx/usermanager/users/<username>
Header fields A request with the possible following fields:

X-User-Mng-Password with the user password
If the user was not created before, this field is mandatory.
The password should be URL-encoded (percent encoded).

X-User-Mng-Group with the name of the group to add. The groups are "user", "manager",
"fwupdate”, "reset", "accountmanager", "admin" and "all".
If the user was not created before, the default group "user" is used.

Using the special group "all" to add the user in all groups. It is conveniant for

adding a root super user (with all rights) with only one request.

Response 200, Empty: operation successful

Table 35: UserManager API (Create or modify a user)

494 Example

For example, in order to get the list of users in the database:

$ curl --basic -u root:password —-i http://192.168.210.11/netx/usermanager/users/
HTTP/1.1 200 OK

Cache-Control: no-store

Connection: keep-alive

Transfer-Encoding: chunked

Content-Type: application/json

{"users": [{"username": "root","groups": ["user","admin"]}]}

To add the user "camille" with the password "1234":

$ curl --basic -u root:password -X PUT -H "X-User-Mng-Password: 1234" -H "X-User-Mng-
Group: user" -i http://192.168.210.11/netx/usermanager/users/camille

HTTP/1.1 200 OK

Cache-Control: no-store

Connection: keep-alive

Content-Length: 0

Content-Type: application/json

$ curl --basic -u root:password -i http://192.168.210.11/netx/usermanager/users/
HTTP/1.1 200 OK

Cache-Control: no-store

Connection: keep-alive

Transfer-Encoding: chunked

Content-Type: application/json

{"users": [{"username": "root",'"groups": ["user","admin"]}, {"username":
"camille", "groups": ["user"]}1]}

To set a URL-encoded password to the user “camille”, e.g. “1234!”:

S curl --basic -u root:password -X PUT -H "X-User-Mng-Password: 1234%21" -H "X-User-Mng-
Group: user" -i http://192.168.210.11/netx/usermanager/users/camille

HTTP/1.1 200 OK

Cache-Control: no-store

Connection: keep-alive

Content-Length: 0

Content-Type: application/json

Web server | netX 90/4000
DOC190901APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2020-2022

API 32/38

User “camille” can change their own password:

$ curl --basic -u camille:1234! -X PUT -H "X-User-Mng-Password: abcdel" -i
http://192.168.210.11/netx/usermanager/users/camille

HTTP/1.1 200 OK

Cache-Control: no-store

Connection: keep-alive

Content-Length: 0

Content-Type: application/json

To add the user "camille" to the groups "fwupdate" and "reset". We need to send two PUT requests
in order to add the user to both groups.

$ curl --basic -u root:password -X PUT -H "X-User-Mng-Group: fwupdate" -i
http://192.168.210.11/netx/usermanager/users/camille

HTTP/1.1 200 OK

Cache-Control: no-store

Connection: keep-alive

Content-Length: 0

Content-Type: application/json

$ curl --basic -u root:password -X PUT -H "X-User-Mng-Group: reset" -i
http://192.168.210.11/netx/usermanager/users/camille

HTTP/1.1 200 OK

Cache-Control: no-store

Connection: keep-alive

Transfer-Encoding: chunked

Content-Type: application/json

$ curl --basic -u root:password -i http://192.168.210.11/netx/usermanager/users/
HTTP/1.1 200 OK

Cache-Control: no-store

Connection: keep-alive

Transfer-Encoding: chunked

Content-Type: application/json

{"users": [{"username": "root",'"groups": ["user","admin"]}, {"username":
"camille", "groups": ["user","fwupdate","reset"]}]}

To remove the user "camille":

$ curl --basic -u root:password -X DELETE
http://192.168.210.11/netx/usermanager/users/camille

$ curl --basic -u root:password -i http://192.168.210.11/netx/usermanager/users/
HTTP/1.1 200 OK

Cache-Control: no-store

Connection: keep-alive

Transfer-Encoding: chunked

Content-Type: application/json

{"users": [{"username": "root","groups": ["user","admin"]}]}

Web server | netX 90/4000
DOC190901APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2020-2022

Built-in web pages (GUI)

33/38

5 Built-in web pages (GUI)
5.1 Device administration GUI

This page allows you to
load a new firmware (a NXI, NXS or a ZIP file)
reset the board to boot on the new firmware

Device administration | Description

URL (to GUI) http://<webserver.ip>/netx/

Table 36: Device administration GUI

5.2 File manager GUI

This page allows you to manage the file system:
List the files and sub-directories in a directory
Create a new directory
Write a new file
Dump the contents of an existing file

File manager Description

URL (to GUI) http://<webserver.ip>/netx/filemanager_gui

Table 37: File manager GUI

This page will not work if the file manager API is disabled. To enable it, there has to be a
/PORT 1/FILEMAN.ENA file in the file system. To write this file, you can use the middleware
packet services (via NetHost for example). If the Authentication & Authorization feature is
supported, we need to be authenticated with a user belonging to a group with full file system

access.
The interface has several sections:

"Current pathname" shows the current path name. It can be a simple file or directory. The
"Browse parent directory" button allows you to change to the upper directory.

"Output" shows the list of files and directories in the current directory. You can click
"Remove" to remove or "Read file" to dump a file. If the “Current pathname” is a simple file

(we previously clicked “Read file”), this dumps the file in this section.

"Upload a file" serves to upload a new file in the root directory. Click "Browse..." to choose

the file in the local file system. Click "Send" to upload the file.

"Create a new directory": Here you can enter a name and click "Create directory" to create

the new directory in the "Current pathname" directory.

“Authentication”: Here you can enter a user name and a password. The user shall have the
right to access the file system. If the Authentication&Authorization feature is not supported,

this section is not of use.

"Events logs" will be filled-in after each performed operation.

Note: During a file upload, the event log indicates when the upload is completed.

Web server | netX 90/4000

DOC190901APIO3EN | Revision 3 | English | 2022-10 | Released | Public

© Hilscher, 2020-2022

How to enable and use the file manager GUI 34/38

6 How to enable and use the file manager GUI

File example

First, we need an index.htm file, e.g. this very simple HTML file:

<!DOCTYPE html>

<html>

<head><title>Welcome</title></head>
<body><hl>Welcome</hl><p>Hello world!</p></body>
</html>

Since file names must comply with the 8.3 convention (8 characters for the name and 3 characters
for the extension), we are not allowed to use the name “index.html”.

Add a FILEMAN.ENA file

Then, we need to enable the FileManager API. This is possible only if /PORT 1/FILEMAN.ENA
exists. You can use netHOST or any tool able to write a file via the DPM interface and the
middleware services.

For example netHOST:

Note: The FILEMAN(.ENA) file may have to contain at least one byte for the netHost download to
succeed.

1. Click Device > Open.

2. Wait until the window Channel Selection is displayed. If this window is empty, this may be
due to an incorrect selection of the COM interface, click Device > Setup to select a COM
interface.

3. In the window Channel Selection, select the main channel (e.g. COM21_Cifx0) and click
Open.

Click Device > Download.
Enter 1 into the channel text area (to address the PORT 1 directory).
Create a (non-empty) FILEMAN . ENA file and select it in the local file system.

N o ok

Click Download.

Create the /WEB directory (or /PORT_1/WEB)

The FileManager GUI should now be accessible with the URL
http://<ipaddress.ip>/netx/filemanager gui. In the FileManager API all path names
relate to /PORT 1, other ports (or channels) are not accessible via the FileManager API. Now, all
path names in this section relate to the FileManager path names (not the path names displayed in
other tools e.g. netHOST).

To create the directory /WEB for storing the website in the section Create a new directory,
proceed as follows:

1. Enter web in the text area
2. Click Create directory.
3. Wait until the Event logs displays the message "Directory created".

Change to the /web directory

1. Click Browse directory to the right of web in the list.
2. Wait until the Output displays the list of the empty web directory.

Web server | netX 90/4000
DOC190901APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2020-2022

How to enable and use the file manager GUI 35/38

Create the /web/index.htm file

In the section Upload a file:
1. Click Browse to choose the file "index.htm" in the local file system.
2. Click Send to upload the file.
3. Repeat this operation for all files of the website: CSS files, other HTML files, javascript files,
etc.

The request to the URL http://<webserver.ip>/files will now be redirected to
http://<webserver.ip>/files/index.htm. If you are sure that all files of your website
have been uploaded correctly, you can - for security reasons - disable the access to the
filemanager by removing the /FILEMAN.ENA file.

Web server | netX 90/4000
DOC190901APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2020-2022

Appendix

36/38

7 Appendix
7.1 Common response status codes

Status code

Reason phrase

Description

500

Internal Server Error

Unknown error: most of the time, this error occurs when the called module
failed to treat the request because it didn’'t know how to handle the error.

400 Bad Request The incoming HTTP request is not well-formed or corrupted.

403 Forbidden Access forbidden: The authorization to access the module is refused, or the
module itself refused the access; see Authorization & Authentication modules.

404 Not found Resource is not found: The called module can send this response to indicate

that the requested resource does not exist. If no module corresponds to the
URL, the web server will send this response.

Table 38: Common status codes

Web server | netX 90/4000
DOC190901APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2020-2022

Appendix 37/38

7.2

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:
Table 18:

Table 19

Table 20:

Table 21

Table 22:
Table 23:

Table 24

Table 25:
Table 26:
Table 27:
Table 28:
Table 29:
Table 30:
Table 31:
Table 32:
Table 33:
Table 34:
Table 35:
Table 36:
Table 37:
Table 38:

7.3

Figure 1:

List of tables

IS A oY =371 o] o P ERPT S UPUPERPR 3
FFRATUINE OVEIVIBWeeeiii ettt ettt e ettt e e e oo e ettt et e e e e e e s a ettt e e e e e e e e m e be et eeaeeeeamsbbeeeeaeeesanssneeaaaeeesaannnsseeaaaesannns 6
BUIlt-iN WED PAGES (GUI) ...ttt ettt e e oo ettt e e e e e e et te et e e e e e e e ansbb et eeaeeesansbsneeaaeeeaannnneeaaaaeeaanns 6
RESEL ...ttt e e E et e et e et et ne s
Reset API
Diagnostic
(D] E= Vo | [0 1) o3 Y = PSPPI SSPRRPRN
T a1V =T =TT o] (o Vo IS PP PPRRRT
Firmware upload API
File managercccccceeeeiiiiiiiennenn.
File manager API (read afile)............
File manager API (list a directory)
File manager API (write @ fil€)cccovveieiiiiiiiiee e
File manager API (remove a file or an empty directory)
File manager API (create a new direCtory)cccceeeeeviiiinieeeeenienns
File manager API (gets the MD5 of a file)
1LY Y =T R PRSPTPRI
L [=To [E= W Y oL SR PTPRI
T NEIPIOXY ettt

netProxy API (get an object description)
: netProxy API (get the number of elements in an OBJECT)coiiiiiiiiiii e
netProxy API (get the element description)ccccocceeiiiineennee

netProxy module API (get the number of object instances)
: netProxy API (read an object instance)

Authentication API (AUNENTICALE)c.oiiiiiieiiiiie ettt s e ettt e e e s ab e e e stt e e e nnee e e e antaeeeenseeeennnes
Authorization AP (QUTNOTIZAION)cooiiiiii e e e st e et e e st e e e e ntee e e enteeeennnee
User manager APl........ccoooiiiiiiiiiiinns

User manager AP| (lISTTNE USEIS)eeiiiiiiiie ittt sttt e st et e e st e et b e e s st e e s nnneeeeanbneeenas
UserManager API (remove a user)
UserManager API (Create or modify a user)
Device administration GUI
File manager GUI.............
Common status codes

List of figures

HTTP rEQUESE BN FESPONSEeeiiiiiieiitiee ettt ettt et e et e e ekttt e ek et e e s bt e e e bt et e e aabe e e e sabe e e e e bbbt e e anne e e e snneeeaanbeeenan 5

Web server | netX 90/4000
DOC190901APIO3EN | Revision 3 | English | 2022-10 | Released | Public © Hilscher, 2020-2022

Appendix

38/38

7.4 Contacts

Headqguarters

Germany

Hilscher Gesellschaft fiir
Systemautomation mbH
Rheinstrasse 15

65795 Hattersheim

Phone: +49 (0) 6190 9907-0
Fax: +49 (0) 6190 9907-50
E-Mail: info@hilscher.com

Support
Phone: +49 (0) 6190 9907-99
E-Mail: de.support@hilscher.com

Subsidiaries

China

Hilscher Systemautomation (Shanghai) Co. Ltd.

200010 Shanghai
Phone: +86 (0) 21-6355-5161
E-Mail: info@hilscher.cn

Support
Phone: +86 (0) 21-6355-5161
E-Mail: cn.support@hilscher.com

France

Hilscher France S.a.r.l.

69500 Bron

Phone: +33 (0) 4 72 37 98 40
E-Mail: info@hilscher.fr
Support

Phone: +33 (0) 4 72 37 98 40
E-Mail: fr.support@hilscher.com

India

Hilscher India Pvt. Ltd.
Pune, Delhi, Mumbai
Phone: +91 8888 750 777
E-Mail: info@bhilscher.in

Italy

Hilscher ltalia S.r.l.

20090 Vimodrone (Ml)

Phone: +39 02 25007068
E-Mail: info@hilscher.it
Support

Phone: +39 02 25007068
E-Mail: it.support@hilscher.com

Japan

Hilscher Japan KK

Tokyo, 160-0022

Phone: +81 (0) 3-5362-0521
E-Mail: info@hilscher.jp
Support

Phone: +81 (0) 3-5362-0521
E-Mail: jp.support@hilscher.com

Korea

Hilscher Korea Inc.

Seongnam, Gyeongdgi, 463-400
Phone: +82 (0) 31-789-3715
E-Mail: info@hilscher.kr

Switzerland

Hilscher Swiss GmbH

4500 Solothurn

Phone: +41 (0) 32 623 6633
E-Mail: info@hilscher.ch

Support
Phone: +49 (0) 6190 9907-99
E-Mail: ch.support@hilscher.com

USA

Hilscher North America, Inc.
Lisle, IL 60532

Phone: +1 630-505-5301
E-Mail: info@hilscher.us

Support
Phone: +1 630-505-5301
E-Mail: us.support@hilscher.com

Web server | netX 90/4000

DOC190901APIO3EN | Revision 3 | English | 2022-10 | Released | Public

© Hilscher, 2020-2022

mailto:info@hilscher.com
mailto:de.support@hilscher.com
mailto:info@hilscher.cn
mailto:cn.support@hilscher.com
mailto:info@hilscher.fr
mailto:fr.support@hilscher.com
mailto:info@hilscher.in
mailto:info@hilscher.it
mailto:it.support@hilscher.com
mailto:info@hilscher.jp
mailto:jp.support@hilscher.com
mailto:info@hilscher.kr
mailto:info@hilscher.ch
mailto:ch.support@hilscher.com
mailto:info@hilscher.us
mailto:us.support@hilscher.com

