>
hilscher

COMPETENCE IN
COMMUNICATION

Protocol API

Socket Interface
Packet Interface

Hilscher Gesellschaft fir Systemautomation mbH

www.hilscher.com
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public

Introduction 2/57

Table of contents

1 INEFOAUCTION ..cciiiiieeeeeeeeee e 3
I Y o To 10 1 a1 ES3 o [0 o 012 1= o | A 3
O I 1) A o)l (=1 V/ 3 0] T 3
1.3 Terms, abbreviations and definitiONSeoiiiiiiiiiiiie e 3
1.4 FUNCHONAI OVEIVIEW ...cvvviiiiiieeiieeiii e e e ettt e e e e e ettt e e e e e e e e e e bt eeeeeeee s abb e eeeaseee bbbt aeeeeeessrtannnnns 4
1.5 SYSIEM FEQUITEIMENTS ...ttt ettt e e e e e e s bbbttt e e e e e e e aabbebeeeae e e e aaanbbeeeeeaeeeaannnbeeeaaaaaas 4
T 11 (=Y g Lo [=To =10 To 1T o Uo7 S YOO PPORORR 4
R A o =T = [0 SRR 5

5 R = Ter o g [Tor=1 o £ - O UUPPPUTORR 5
O 7 W {4 11 = 1o] TSR 5

2 Yo Yod (=1 A eTo] 12T 110 Tl To7=1 4 Lo] o [P ORR 6
2.1 User Datagram ProtOCOL..........ccuuiiiii i e et e e e e s e e e e e e e e nanr s 6
2.2 TransmiSSION CONLIOI PrOtOCOuuuuiuieriieiiieietireretersrerererererererererere e ererer.rer.—.———————————.—.—.—.———.—————.—. 7

2.2. 1 SEIVEI APPIICALIONcei ittt e ettt e e e ettt e e e e e e b e e e e e e e et r e e e e e e e e n b rrreaeeeaan 7
A A O 110 AT o] o] [ToF= i o o USROS 10
2.2.3 IP Address change handling (appliCation VIEW)eiiiiiiiiiiiiiiee e e e 10

3 The appPliCAtioN INTEITACE ..ot e e e e e e e nnes 11
TR A © 1Y =T 4 V/ 1= YR POPR RSP 11
3.2 DESCHPUON OF PACKELSeeiiiiiiiiitit ettt ettt e e e e e e e s bbbt e e e e e e e e e aanbbeeeeaaaeeaannes 12

B.2.1 SOCKEL SBIVICESccovviiii ettt et et e e e et e e e e e e e e e et e e e e e e e e e at e e e e eeseesbaaaaeeeeressranaaaaeens 14
I I =11 0T I T=T oY/ o YOS 17
I T O] o1 [=Tox Y= T 4/ o = OSSR 19
BT A I 1) (=Y g 1Y Y/ o7 PP PPPPPRPPPRS 21
3125 ACCEPE SEIVICE ...ttt etttk e ekt ookt e e e h bt e e e bt e e b et R e e e bt e n e e s 23
3.2.6 RECEIVE FIOM SEIVICEoiiiiiiiiiiiiiiiieeieeeieeeteteteeeeeeeeseeeeessssesssssesssrsrsrees 25
B.2.7 SENA TO SEIVICE .oeieiieeiiiiieiiieieeeeeeeeeeeseseeesasssssassssssssesssessssssssrsrsrsrerens 27
3.2.8 SOCKEL ClOSE SBIVICEciiieiiiie e eeeeeee et ettt et e ettt e e e e e e e e et e e e e e e e e e ettt e eeeesessbbaaaeeeesessbaaaaaeeaes 29
3.2.9 SOCKEL ADOI SEIVICE.ottt ettt e e et e e e e e e e et e e e e e e seesbb e e eeeeeeatbanaaeaeaes 31
I O I Yo Tor = B = o] | IET=T 4/ o =TSSR 33
I I Yo Tor (= @0 g o] BT oY/ (o =TSSR 36
3.2.12 Set SOCKEL OPLIONS SEIVICE ...eeiuiiiiiiiieee ittt ettt ettt e e st e st e e e e e e et r e e nnne e e s neneee s 40
3.2.13 Gt SOCKEL OPLIONS SEIVICE ...cciuiiiiiiiieee ittt e ittt e e et e e st e s e b e e e et n e e e nnne e e s neneee s 43
3.2.14 Get INtErface ACQUIESSES SEIVICEevvvvvvrrirerrrirerreereeererreererreressererersrrrsrrrrrererrrerer.rer........ 46
3.3 Options StruCture defiNitiONc..vviiiiie e e e e e s s e e e e e s s e s e e e aeeeeannnes 48
Error codes and StatUS COUESoovviiiiiiiiieeeeeeeeeeeeeeeeeeeee e, 51
N] o 1= o 1 G PSP 52
Lo T R B 1= o) 8 =1 o] [T 52
I A W= To = | g o] (S ST U PP OUPRPOPTPN 53
LT T G011 | r=Tox £ TSRS 57

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

Introduction

3/57

1 Introduction
1.1 About this document

This manual describes the application programming interface of the Socket Interface.

1.2 List of revisions

Rev | Date Name Chapter | Revision
4 2018-01-24 |BM 15 Remark added that IwlP-based loadable firmware is required.
AM 3.24.1 Wrong service introduction corrected.
AT 3.2.12, New Socket Options added.
3.2.13
3.3 Section Options structure definition added.
5 2019-03-01 |HHE 3.2 Section Description of packets: Structure tLL added in Table 4.
3.2.14.2 Section SOCK_GETIFADDRS_CNF packet expanded.
4 Section Error codes and status codes updated.
6 2020-02-11 | ABE, 1.7.2 Section Limitations updated.
HHE 221 Section Server application: Sequence diagram added.
7 2020-04-07 | BME 3.2.12 API changes and API extensions for Set Socket Options service and Get
3.2.13 Socket Options service. Add description for each socket option.
3.3
BME 15 Add netX100 as supported chip to System requirements.
1.7.2 Add hint regarding firmware tag list to Limitations.
ABE 3.211 Extend description of Socket Control service regarding new non-blocking
mode.
BME 2.2.3 Add information about IP address services for application and extend
3.2.10 Socket Poll service accordingly.

Table 1: List of revisions

1.3 Terms, abbreviations and definitions

Term Description

ubP User Datagram Protocol

TCP Transmission Control Protocol
IP Internet Protocol

Table 2: Terms, abbreviations and definitions

All variables, parameters, and data used in this manual have the LSB/MSB (“Intel”) data format.

This corresponds to the convention of the Microsoft C Compiler.

All IP addresses in this document have host byte order.

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public

© Hilscher, 2014-2021

Introduction 4/57

1.4 Functional overview

The socket interface provides application access to the IP implementation of the protocol firmware.
It enables the application program to use TCP and UDP services over the network. The packet API
of the socket interface was designed with standard BSD/POSIX socket function interface in mind.
Some redundant interfaces are not implemented as they can be easily mapped onto implemented
interfaces.

The following features are available
Datagram based communication (UDP)
Stream based communication (TCP)
Standard poll functionality to wait for events on sockets

1.5 System requirements

This software package has the following environmental system requirements:

Real-Time-Ethernet protocol loadable firmware with socket interface. The Packet API will be
available through protocol stack DPM channel mailbox. The socket interface is only available
for loadable firmware based on IwlIP IP stack. If this is the case it is documented in protocol
API Manual.

netX51 / netX52 / netX90 / netX100 communication processor

1.6 Intended audience

This manual is suitable for software developers with the following background:
Knowledge of the programming language C
Knowledge of standard IP socket interface

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

Introduction 5/57

1.7 Specifications
1.7.1 Technical data

Capabilities and limitations

Transmit/receive buffer size per socket. This depends on the particular firmware and
hardware. Please the consult firmware manual about details.

Number of active sockets depends on particular firmware and hardware. Please
consult firmware manual about details.

UDP protocol message size up to 1472 bytes

TCP stream communication with support of passive sockets (listen sockets for server
applications)

IPv4 protocol
Blocking and non-blocking socket mode
Configuration

General [P configuration is done by Real-time Ethernet protocol stack. See
corresponding protocol manual for details.

Socket specific options available
Diagnostic
No explicit diagnostic functionality as there is no separate DPM channel.

1.7.2 Limitations

Most limits of the socket interface packet APl depend on the particular protocol firmware and the
used hardware. Details of this might be found in the corresponding protocol APl manual. In
particular the following properties are affected by limits

Number of concurrent active sockets (may be changeable via tag list of particular firmware)

Size of socket receive and transmit queues (may be changeable via tag list of
particular firmware)

Transmission speed
Furthermore, the following functionality is not available and not supported:
IPv6 protocol is not supported

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

Socket communication 6/57

2 Socket communication

The Socket Concept provides a common method for communication between applications.
Sockets can typically be used for local communication and for communication across networks.
Sockets support different communication protocols and methods. The following sections will
provide a short introduction into the protocols and methods supported by the Socket API.

2.1 User Datagram Protocol

The User Datagram Protocol (UDP) provides message-based communication on top of the IP
protocol. It is a stateless protocol and thus cannot guarantee message delivery or order. Besides
that, it has a low latency and supports addressing multiple destinations in a single message
(broadcast). The handling of a UDP socket is almost similar for a client or a server application.
Typically, the following steps are necessary to communicate via the UDP protocol:

1. Create a UDP Socket

2. Optionally bind the UDP Socket to a specific local port number. This step is required for
server applications in order to make the server accessible under this port number. It will be
performed automatically on the first send or receive request.

3. Use the socket for communication

A. Wait for incoming data using receive or poll requests. Retrieve incoming data using
receive requests

B. Transmit outgoing data using send requests.
4. Close the socket

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

Socket communication 7/57

2.2 Transmission Control Protocol

The Transmission Control Protocol (TCP) provides stream-based communication on top of the IP
protocol. It is connection-oriented and ensures the order of the exchanged data and the
transmission. Consequently, it has a larger latency than UDP and does not support addressing
multiple destinations. TCP requires different handling for connection establishment on server and
client side.

2.2.1 Server application

For a TCP server application, perform the following steps:
1. Create a TCP Socket
2. Bind the socket to a specific local port number

3. Switch the socket into passive mode using a listen request. In that mode, the socket can
handle incoming connections.

4. Use the socket to handle incoming connections: Wait for new incoming connections using
accept or poll requests. Retrieve incoming connections using the accept request. Each new
connection will be assigned to its own, new socket. Data exchange with a new connection is
performed with this new socket as described below.

5. Close the socket

The following sequence diagram shows the packet flow:

Application (Server) | Socket Interface l | Client

: Start serving a i :.

usDomain=S0CK_AF_INET By
usType=SOCK_SOCKET_STREAM SOCK_CMD_SOCKET_REQ
usProtocol=SOCK_IPPROTO_TCP

| SOCK_CMD_SOCKET CNF . |[hSocket=42/ Any arbitrary number */ I5[
hSocket=42 B
tSa.tlp.bFamily=SOCK_AF_INET
tSa.tlp.bPadding=0 SOCK_CMD_BIND_REQ

tSa.tlp.ullpAddr=0 /* 0 to bind to any local address "/
tSa.tlp.usPort=81 /* e.g. to build an sener */

tSa.tlp.bPadding=0
-|| t5atip.ullpAddr=0
tSa.tlp.usPort=8081

e SOCKCMD_BIND CHE eererenesee

tSa.tlp.bFamily=SOCK_AF_INET 7

hSocket=42
usBackLog=2 /* allow two clients to connect */

SOCK_CMD_LISTEN_REQ

e SUCHCMD_LISTEN CNE.]

Mow the server socket is ready for handling incoming

connections.

In this example, the application has now the responsibility

to handle up to three sockets

* The sener socket which we hawe created obtained via

the SOCK_CMD_SOCKET_REQ request.

= And up to two client sockets will be opened when a client connects.

We will obtain these sockets with the SOCK_CMD_ACCEPT_REQ request
T T T

Figure 1: Server application sequence diagram (part 1)

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

Socket communication

8/57

"

| -~ - L
1 ofa I
1
The ber of state hi depends on the back log size
This sequence diagram only will show one conneclion socket

loop / [This is the complete connection handling loop for an sefver application
Normaly this loop nerver ends ..]

opt) [Use poll request to check if client has connected]

ilMimeout= e.g. -1
atFds[0].hSocket=42

atFds[0].usEventMsk=SOCK_POLLIN | ...
atFds[...]. /* more file descriptors */

SOCK_CMD_POLL_REQ

Y

Waiting for someone to connect

SYN

-«

SYN | ACK

_ ACK

a3

ilINumFd=1
SOCK_CMD_POLL_CNF alFds[0]. hSockel=42
< atFds[0] usEventMsk=SOCK_POLLIN

When polling is used, the following accept request
will retum immediately.
Otherwise the accept request will block, as shown below.

hSocket=42) | g0 oMD_ACCEPT REQ
usFlags=0 = = = >

Waiting for someone to connect

opt) [When ne polling was used]

SYN

<

SYN | ACK

ACK

<

Note: This is a new socket!
hAcceptSocket=4711 /* Any arbitrary number */

tSa.tlp.bFamily=SOCK_AF_INET
SW—CMD—AOCEPT—CNF tSa.tlp.bPadding=0

tSa.tlp.ullpAddr=192.168.0.12 /* IP address of connected client */
tSa.tlp.usPort=50000 /* Source port of connected client */
1

ui

Now the ion is fully .
The application (server) can now communicate over the new socket.
The sockel can be used until one of the next events happen

[c P

Y

The client and server can now data over this

Figure 2: Server application sequence diagram (part 2)

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public

© Hilscher, 2014-2021

Socket communication 9/57
1 1

{ Closing a ction (Client closes the ction) [&
opt / [Remote side closes the connection]
The appearance of this FIN des not matter.

FIN It can also appear after the ‘poll' or receive from'
request. The 'poll’ or ‘received from' confirmation will
be retumed as soon the FIN was received.

alt / [poll]

iMmeout=-1 B

atFds[0].hSocket=4711 K D POLL RE

atFds[0].usEventMsk=SOCK_POLLHUP | ... SOGK_CMD_POLL_REQ >

alFds[...]. /* more file descriptors */
It is possible that the response has more than one B iINumFd=1
file descriptors, and also the order may have changed. atFds[0].hSocket=4711
All events must be handled accordingly. alFds[0].usEveniMsk=S0CK_POLLHUP

[receive from]
SOCK_CMD_RECVFROM_REQ
SOCK_CMD_RECVFROM_CNF
< -ulSta=ERR_SOCK_SOCKET_CLOSED

Closing the socket (Application closes the cti)"'

SOCK_CMD_CLOSE_REQ

Y

alt [Client has closed the connection
(see section abovi)]
FIN | ACK
[closed the lon]
FIN -
>

Oosing a TCP socket can take up to 120 seconds delay

alt [Client has cl th i
(see section abovi)]

ACK

3

[closed the lon]
FIN | ACK

ACK

SOCK_CMD_CLOSE_CNF

[asn sarving tha zackat B
{ Stop serving the socket |

Figure 3: Server application sequence diagram (part 3)

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

Socket communication 10/57

2.2.2 Client application
In contrast to that, a TCP client application needs to perform the following steps to establish a
connection:
1. Create a TCP Socket
2. Connect the socket to a remote IP address and port number
After connection establishment phase, the communication can take place:
1. Use the socket for communication

A. Wait for incoming data using receive or poll requests. Retrieve incoming data using
receive requests

B. Transmit outgoing data using send requests.

2. Close the socket. Closing a connected socket will be signaled and synchronized with the
remote application. Thus closing a TCP socket might not happen immediately.

2.2.3 IP Address change handling (application view)

An application may
- like to know the current IP address used by the IP stack or
- like to be informed when the IP address changes.
To fulfil these requirements, the stack provides services that the application can use.

Using the Get Interface Addresses service, the application can actively read the currently used IP
address from the IP stack at any time.

Using the Socket Poll service, the application will be aware about changes of the IP address. To
accomplish this, the Poll service offers a specific socket handle:
SOCK_HANDLE__IPVACHANGE OxFO0O0O0. After the application receives the information about the
change of the IP address, it can read the current IP address using the Get Interface Addresses
service.

Note, that there is no Socket API service available to the application to modify the IP address used
by the IP stack. The IP address is set and controlled by the Real-time Ethernet protocol stack
combined with the IP stack.

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

The application interface

11/57

3 The application interface

This chapter describes the packets of the socket interface.

The firmware will forward any socket interface related messages to the socket APl component. The
socket APl component will map the message to the corresponding functionality. The socket API
component will not send any indications to the application. Thus registering an application is not
required for the socket API itself. However, the protocol APl might still require a registered
application for its operation.

The firmware coordinates the routing of the socket APl messages to the socket APl component.
The socket API component manages the active socket objects and handles the messages.

3.1 Overview

The socket interface offers the following services:

Topic Section Page
Socket management Socket services 14
Bind service 17
Connect service 19
Listen Service 21
Accept service 23
Socket Abort service 31
Socket Control service 36
Socket Close service 29
Set Socket Options service 40
Get Socket Options service 43
Data transfer Receive From service 25
Send To service 27
Polling Socket Poll service 33
Identification Get Interface Addresses service 46

Table 3: Overview of services

Socket Interface | Packet Interface

DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public

© Hilscher, 2014-2021

The application interface 12/57

3.2 Description of packets

All packets of the socket APl use the same default Hilscher packet header. The structure is defined
as follows:
typedef struct SOCK_PCKHEADER_Ttag SOCK_PCKHEADER_T;

__ PACKED_PRE struct __ PACKED_POST SOCK_PCKHEADER_ Ttag

{
uint32_t ulDest; /* destination of the packet (task message queue reference) */
uint32_t ulSrc; /* source of the packet (task message queue reference) */
uint32_t ulDestld; /* destination reference (internal use for message routing) */
uint32_t ulSrcld; /* source reference (internal use for message routing) */

uint32_t ulLen; /* length of packet data (starting from the end of the header) */
uint32_t ulld; /* i1dentification reference (internal use by the sender) */
uint32_t ulSta; /* operation status code (error code, initialize with 0) */
uint32_t ulCmd; /* operation command code */

uint32_t ulExt; /* extension count (nonzero in multi-packet transfers) */
uint32_t ulRout; /* router reference (internal use for message routing) */

};
The socket API uses a file descriptor similar to BSD/POSIX to refer to a socket. The type of the file

descriptor is defined as follows:
typedef uintl6é_t SOCK H;

Furthermore, communication endpoints are associated with an address. The address format
depends on the socket domain. The current implementation only supports the layer 2 (hardware
address) (identified by SOCK_AF_PACKET) and IPv4 internet domain (identified by

SOCK_AF_INET). The following structures are defined for the address information:
typedef enum SOCK_SOCKET_DOMAIN_Etag SOCK_SOCKET_DOMAIN_E;

enum SOCK_SOCKET_DOMAIN_Etag

SOCK_AF_INET =
SOCK_AF_PACKET

};
typedef struct SOCK_ADDR_COMMON_Ttag SOCK_ADDR_COMMON_T;

2
=17,

__PACKED_PRE struct __ PACKED_POST SOCK_ADDR_COMMON_Ttag
uint8_t bFamily;
uint8_t bReserved[14];

uint8_t bPadding;
};

typedef struct SOCK_ADDR_IP_Ttag SOCK_ADDR_IP_T;

__PACKED_PRE struct __ PACKED_POST SOCK_ADDR_IP_Ttag

{ uint8_t bFamily;
uint8_t bPadding;
uint32_t ul IpAddr;

. uintlé_t usPort;

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

The application interface

13/57

typedef struct SOCK_ADDR LL_Ttag SOCK_ADDR _LL_T;

__HIL_PACKED_PRE struct _ HIL_PACKED_POST SOCK_ADDR_LL_Ttag

{

/** Set to SOCK_AF_PACKET */

uint8_t bFamily;
/** index of the interface, starts from 1 (Zero means all interfaces) */
uint8_t blflndex;
/** Padding */

uint8_t abPadding[4];
/** reserved for future usage */
uint8_t bPktType;
/** Length of hardware address */

uint8_t bLIAddrLen;
/** Up to 8 bytes hardware address */

uint8_t abLlAddr[8];

¥

typedef union SOCK_ADDR_Ttag SOCK_ADDR_T;

union SOCK_ADDR_Ttag

{

/** contains common fields of all socket address structures */
SOCK_ADDR_COMMON_T tCommon;

/** 1Pv4 specific socket address */

SOCK_ADDR_IP_T

/** Packet (Layer 2) socket address */

tip;

SOCK_ADDR_LL_T tLL;
}:
Area Variable Type Value / Description
Range

tCommon structure SOCK_ADDR_COMMON_T
bFamily uint8_t Socket Family / Domain
bReserved | uint8_t[14] Placeholder for family specific data
bPadding | uint8_t Padding for alignment

tlp structure SOCK_ADDR_IP_T
bFamily uint8_t 0x2 Socket Family SOCK_AF_INET
bPadding | uint8_t 0 Padding for alignment of following fields
ullpAddr uint32_t IP Address of endpoint
usPort uint16_t Port of endpoint

tLL structure SOCK_ADDR_LL_T
bFamily uint8_t 0x11 Socket Family SOCK_AF_PACKET
bifindex uint8_t Reserved for future usage
bPadding |uint8_t[4] |0 Padding for alignment of following fields
bPktType | uint8_t Reserved for future usage
bLIAddrLen | uint8_t 1..8 Length of the hardware address
abLIAddr uint8_t[8] Up to 8 bytes hardware address

Table 4: Socket Address Union — SOCK_ADDR_T

Socket Interface | Packet Interface

DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public

© Hilscher, 2014-2021

The application interface 14/57

3.21 Socket services

Communication requires a socket for identification. The application has to create a new socket for
communication.

3.2.11 SOCK_CMD_SOCKET_REQ packet
The application shall send this packet to create a new socket. For valid parameter combinations,
see Table 8 on page 15.

Packet structure reference
typedef enum SOCK_SOCKET TYPE_Etag SOCK_SOCKET TYPE E;

enum SOCK_SOCKET_TYPE_Etag

SOCK_SOCKET_STREAM
SOCK_SOCKET_DGRAM

};

typedef enum SOCK_IPPROTO_Etag SOCK IPPROTO_E;

1,
2

enum SOCK_IPPROTO_Etag

{
/** Dummy, alias for TCP */
SOCK_IPPROTO_IP = O,

/** TCP */
SOCK_IPPROTO_TCP = 6,
/** UDP */
SOCK_IPPROTO_UDP = 17,

¥
typedef struct SOCK_SOCKET REQ DATA Ttag SOCK_SOCKET REQ DATA T;

__PACKED_PRE struct __ PACKED_POST SOCK_SOCKET REQ DATA_Ttag
{

/** the socket domain */
uint32_t usDomain;

/** the socket type */
uint32_t usType;

/** the socket protocol */
uint32_t usProtocol;

};

typedef struct SOCK_SOCKET_REQ Ttag SOCK_SOCKET_REQ T;

___PACKED_PRE struct __ PACKED POST SOCK_SOCKET REQ Ttag
SOCK_PCKHEADER_T tHead;

SOCK_SOCKET_REQ DATA_T tData;
¥

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

The application interface

15/57

Packet description

Variable Type Value / Range | Description

ulDest uint32_t Destination Queue-Handle, unchanged

ulLen uint32_t | 0x0000000C Packet Data Length in bytes.

ulCmd uint32_t | 0x00009610 SOCK_CMD_SOCKET_REQ

Data

ulDomain uint32_t | 0x00000002 Domain of the Socket. Currently only Internet Domain supported.
ulType uint32_t | 0x1 or Ox2 Socket Type. See Table 6

ulProtocol uint32_t | 0,6 or 17 Socket Protocol Type. See Table 7

Table 5: SOCK_CMD_SOCKET_REQ — Packet

Socket Type Symbol Value Description

SOCK_SOCKET_STREAM |1 Stream connection

SOCK_SOCKET_DGRAM |2 Datagram connection

Table 6: Socket types
Protocol Symbol Value Description
SOCK_IPPROTO_IP 0 Alias for SOCK_IPPROTO_TCP
SOCK_IPPROTO_TCP 6 TCP Protocol
SOCK_IPPROTO_UDP 17 UDP Protocol

Table 7: Socket protocols
Domain Socket Type Protocol Connection
SOCK_AF_INET SOCK_SOCKET_STREAM SOCK_IPPROTO_IP TCP IPv4
SOCK_AF_INET SOCK_SOCKET_STREAM SOCK_IPPROTO_TCP TCP IPv4
SOCK_AF_INET SOCK_SOCKET_DGRAM SOCK_IPPROTO_UDP UDP IPv4

Table 8: Valid domain, Socket type and protocol combinations

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public

© Hilscher, 2014-2021

The application interface 16/57
3.2.1.2 SOCK_CMD_SOCKET_CNF packet

The stack will return this packet to the application as a confirmation to the
SOCK _CMD_SOCKET_REQ packet. Depending on the status of the operation, the confirmation
packet contains the new socket handle or an error code.

Packet structure reference
typedef struct SOCK_SOCKET CNF_DATA Ttag SOCK_SOCKET CNF_DATA T;

__PACKED_PRE struct __ PACKED_POST SOCK_SOCKET CNF_DATA_Ttag

SOCK_H hSocket;
};

typedef struct SOCK_SOCKET_CNF_Ttag SOCK_SOCKET_CNF_T;

__PACKED_PRE struct __ PACKED POST_SOCK_SOCKET CNF_Ttag

SOCK_PCKHEADER_T tHead;
SOCK_SOCKET_CNF_DATA_T tData;
};
Packet description
Variable Type Value / Range | Description
ulDest uint32_t Destination Queue-Handle, unchanged
ulLen uint32_t | 0x00000002 Packet Data Length in bytes
ulSta uint32_t (0 See section Error codes and status codes on page 51.
ulCmd uint32_t | 0x00009611 SOCK_CMD_SOCKET_CNF
Data
hSocket ‘ uintl6_t ‘ Handle of created socket on success

Table 9: SOCK_CMD_SOCKET_CNF — Packet

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

The application interface 17/57

3.2.2 Bind service

The application has to use this service to bind a socket to a local endpoint address. This service is
mandatory for any server application. In case of Internet Domain, the IP address might be set to
zero which means ‘any local IP address’. If the port number is set to zero, a port will be selected
automatically. The assigned port number can be determined from the confirmation packet.

3.2.2.1 SOCK_CMD_BIND_REQ packet
The application shall send this packet in order to bind the socket to a local endpoint.
Packet structure reference
typedef struct SOCK_ADDR_DATA_Ttag SOCK_ADDR_DATA T;
__PACKED_PRE struct __PACKED_POST SOCK_ADDR_DATA_Ttag
SOCK_H hSocket;

SOCK_ADDR_T tSa;
¥

typedef struct SOCK_BIND_REQ Ttag SOCK_BIND_REQ T;

__PACKED_PRE struct __ PACKED_POST SOCK_BIND_REQ Ttag

SOCK_PCKHEADER_T tHead;
SOCK_ADDR_DATA_T tData;

}:

Packet description

Variable Type Value / Range | Description

ulDest uint32_t Destination Queue-Handle.

ulLen uint32_t | 0x00000012 Packet Data Length in bytes.

ulCmd uint32_t | 0x00009614 SOCK_CMD_BIND_REQ

Data

hSocket uintl6_t Handle of the socket to connect

tSa Union Local Endpoint Address to bind the socket to. See Table 4.

Table 10: SOCK_CMD_BIND_REQ — Packet

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

The application interface 18/57
3.2.2.2 SOCK_CMD_BIND_CNF packet

The stack will return this packet to the application as a confirmation to the
SOCK_CMD_BIND_REQ packet. If the IP Port was set to Zero in the request packet, the
confirmation will contain the automatically assigned port number value.

Packet structure reference
typedef struct SOCK_BIND_CNF_Ttag SOCK_BIND_CNF_T;

__PACKED_PRE struct __ PACKED_POST SOCK_BIND_CNF_Ttag
SOCK_PCKHEADER T tHead;

SOCK_ADDR_DATA_T tData;
¥

Packet description

Variable Type Value / Range | Description

ulDest uint32_t Destination Queue-Handle, unchanged

ulLen uint32_t | 0x00000012 Packet Data Length in bytes

ulSta uint32_t See section Error codes and status codes on page 51.
ulCmd uint32_t | 0x00009615 SOCK_CMD_BIND_CNF

Data

hSocket uintl6_t Handle of the socket to connect

tSa Union Local Endpoint Address to bind the socket to. See Table 4.

Table 11: SOCK_CMD_BIND_CNF — Packet

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

The application interface

19/57

3.2.3 Connect service

The application has to use this service to connect a socket to a remote endpoint. This service is

mandatory for TCP client applications.

3.2.3.1 SOCK_CMD_CONNECT_REQ packet

The application shall send this packet in order to connect a socket.

Packet structure reference
typedef struct SOCK_CONNECT REQ DATA Ttag SOCK_CONNECT REQ DATA T;

__ PACKED_PRE struct __ PACKED_POST SOCK_CONNECT_REQ DATA Ttag
SOCK_H hSocket;

SOCK_ADDR_T tSa;
e

typedef struct SOCK_CONNECT REQ Ttag SOCK_CONNECT REQ T;

__PACKED_PRE struct _ PACKED_POST SOCK_CONNECT REQ Ttag

SOCK_PCKHEADER_T tHead;
SOCK_CONNECT_REQ_DATA T tData;
};
Packet description
Variable Type Value / Range | Description
ulDest uint32_t Destination Queue-Handle.
ulLen uint32_t | 0x00000012 Packet Data Length in bytes.
ulCmd uint32_t | 0x00009612 SOCK_CMD_CONNECT_REQ
Data
hSocket uintl6_t Handle of the socket to connect
tSa Union Remote Endpoint Address to connect the socket to. See Table 4.

Table 12: SOCK_CMD_CONNECT_REQ — Packet

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public

© Hilscher, 2014-2021

The application interface 20/57
3.2.3.2 SOCK_CMD_CONNECT_CNF packet
The stack will return this packet to the application as a confirmation to the

SOCK_CMD_CONNECT_REQ packet.

Packet structure reference
typedef struct SOCK_EMPTY_PCK Ttag SOCK_CONNECT CNF_T;

Packet description

Variable Type Value / Range | Description

ulDest uint32_t Destination Queue-Handle, unchanged

ulLen uint32_t | 0x00000000 Packet Data Length in bytes

ulSta uint32_t See section Error codes and status codes on page 51.
ulCmd uint32_t | 0x00009613 SOCK_CMD_CONNECT_CNF

Table 13: SOCK_CMD_CONNECT_CNF — Packet

Socket Interface | Packet Interface

DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

The application interface 21/57

3.24 Listen Service

The application can use the listen service to switch a socket into passive mode. This mode is
relevant for TCP sockets in order to listen for incoming connections. Thus, this service is
mandatory for TCP servers. This service is not applicable for UDP sockets.

3.2.4.1 SOCK_CMD_LISTEN_REQ packet

The application shall send this packet to switch the socket into passive mode. In passive mode, the
socket will be waiting for incoming connections and create a new socket for each incoming
connection. The resources for such a connection socket are taken from the listening socket's
backlog (resource pool). This service is useful for connection-oriented sockets only.

Packet structure reference
typedef struct SOCK_LISTEN_REQ DATA Ttag SOCK_LISTEN_REQ DATA T;
struct SOCK_LISTEN_REQ DATA Ttag

SOCK_H hSocket;

/** maximum size of pending connect queue */
uintlé_t usBackLog;

};
typedef struct SOCK_LISTEN_REQ Ttag SOCK_LISTEN REQ T;

struct SOCK_LISTEN_REQ Ttag

SOCK_PCKHEADER_T tHead;
SOCK_LISTEN_REQ_DATA T tData;
}:
Packet description
Variable Type Value / Range | Description
ulDest uint32_t Destination Queue-Handle.
ulLen uint32_t | 0x00000004 Packet Data Length in bytes.
ulCmd uint32_t | 0x00009616 SOCK_CMD_LISTEN_REQ
Data
hSocket uintl6_t Handle of the socket to switch into listen mode
usBackLog uintl6_t Maximum number of pending and active connections to this socket.
Attention: For any possible connection, a full socket will be pre-
allocated within Socket API component. This amount of resources is
part of the maximum socket count limit.

Table 14: SOCK_CMD_LISTEN_REQ — Packet

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

The application interface

22/57

3.2.4.2 SOCK_CMD_LISTEN_CNF packet

The stack will return this packet to the application
SOCK_CMD_LISTEN_REQ packet.

Packet structure reference
typedef struct SOCK_EMPTY_PCK_Ttag SOCK LISTEN CNF_T;

Packet description

after reception of the

Variable Type Value / Range | Description

ulDest uint32_t Destination Queue-Handle, unchanged

ulLen uint32_t | 0x00000000 Packet Data Length in bytes

ulSta uint32_t See section Error codes and status codes on page 51.
ulCmd uint32_t | 0x00009617 SOCK_CMD_LISTEN_CNF

Table 15: SOCK_CMD_LISTEN_CNF — Packet

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public

© Hilscher, 2014-2021

The application interface 23/57
3.25 Accept service

The application can use the accept service to accept a pending connection request on a
connection oriented socket in listen mode (e. g TCP). This service is mandatory for TCP servers
and not applicable for UDP sockets.

3.2.5.1 SOCK_CMD_ACCEPT_REQ packet

The application shall send this packet to the stack in order to accept a pending connection of a
socket

Packet structure reference
typedef struct SOCK_ACCEPT_REQ DATA Ttag SOCK_ACCEPT_REQ DATA T;

__PACKED_PRE struct __ PACKED_POST SOCK_ACCEPT_REQ DATA Ttag
SOCK_H hSocket;

uintl6é_t usFlags;
};

typedef struct SOCK_ACCEPT_REQ Ttag SOCK_ACCEPT_REQ T;

__PACKED_PRE struct __ PACKED _POST SOCK_ACCEPT REQ Ttag

SOCK_EMPTY_PCK_T tHead;
SOCK_ACCEPT_REQ DATA T tData;
};
Packet description
Variable Type Value / Range | Description
ulDest uint32_t Destination Queue-Handle.
ulLen uint32_t | 0x00000004 Packet Data Length in bytes.
ulCmd uint32_t | 0x00009618 SOCK_CMD_ACCEPT_REQ
Data
hSocket uintl6_t Handle of a socket in listen mode
usFlags uintlé_t [0 Reserved for Future Usage Set to Zero.

Table 16: SOCK_CMD_ACCEPT_REQ — Packet

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

The application interface 24/57
3.25.2 SOCK_CMD_ACCEPT_CNF packet

The stack will return this packet to the application on reception of the SOCK_CMD_ACCEPT_REQ
packet when a new connection is available. If the socket is in Blocking Mode (default), the stack
will not return this packet until the socket is closed or the stack receives a connection request.

Packet structure reference
typedef struct SOCK_ACCEPT_CNF_DATA Ttag SOCK_ACCEPT_CNF_DATA T;
___PACKED_PRE struct __ PACKED POST SOCK_ACCEPT_CNF_DATA Ttag

/** the socket handle of the new connection */

SOCK_H hAcceptSocket;

/** address information */
SOCK_ADDR_T tSa;

¥
typedef struct SOCK_ACCEPT_CNF_Ttag SOCK_ACCEPT CNF _T;

__PACKED_PRE struct _ PACKED_POST SOCK_ACCEPT CNF_Ttag

SOCK_EMPTY_PCK_T tHead;
SOCK_ACCEPT_CNF_DATA T tData;
};
Packet description
Variable Type Value / Range | Description
ulDest uint32_t Destination Queue-Handle, unchanged
ulLen uint32_t | 0x00000012 Packet Data Length in bytes
ulSta uint32_t See section Error codes and status codes on page 51.
ulCmd uint32_t | 0x00009619 SOCK_CMD_ACCEPT_CNF
Data
hSocket uintl6 t Handle of the new socket associated with the new connection
tSa Union Remote Endpoint Address of the new connection. See Table 4.

Table 17: SOCK_CMD_ACCEPT_CNF — Packet

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

The application interface 25/57

3.2.6 Receive From service

The application can use the Receive From Service to retrieve received data from a socket. By
default, this service is blocking and waiting for receipt of data. You can change this behavior using
the Socket Control service.

3.2.6.1 SOCK_CMD_RECVFROM_REQ packet

The application shall send this packet to the stack in order to retrieve received data from a socket.

Packet structure reference
typedef struct SOCK_RECVFROM_REQ DATA Ttag SOCK_RECVFROM_REQ DATA T;
___PACKED_PRE struct __ PACKED_POST SOCK_RECVFROM_REQ DATA Ttag
SOCK_H hSocket;
/** Reserved for future extensions set to zero */

uintlé_t usFlags;

uintlé_t usMaxLen;

e

typedef struct SOCK_RECVFROM REQ Ttag SOCK_RECVFROM_REQ T;
_PACKED_PRE struct __ PACKED_POST SOCK_RECVFROM_REQ Ttag

SOCK_PCKHEADER_T tHead;
SOCK_RECVFROM_REQ_DATA_T tData;
}:
Packet description
Variable Type Value / Range | Description
ulDest uint32_t Destination Queue-Handle.
ulLen uint32_t | 0x00000006 Packet Data Length in bytes.
ulCmd uint32_t | Ox0000961A SOCK_CMD_RECVFROM_REQ
Data
hSocket uintl6_t Handle of a socket to retrieve data from
usFlags uintlé_t (0 Receive Flags. Reserved for future. Set to zero.
usMaxLen uintle_t |1-1472 Maximum Number of Receive Data to return in Confirmation. If this
length is smaller than a pending datagram for Datagram Sockets the
excess data will be dropped.

Table 18: SOCK_CMD_RECVFROM_REQ — Packet

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

The application interface 26/57
3.2.6.2 SOCK_CMD_RECVFROM_CNF packet

The stack will return this packet to the application after reception of the
SOCK_CMD_RECVFROM_REQ packet when data is available for the socket. If the socket is in
Blocking Mode (default), the stack will not return this packet until the socket is closed or data is
available.

Packet structure reference

typedef struct SOCK_RECVFROM_CNF_DATA Ttag SOCK_RECVFROM_CNF_DATA T;
__PACKED_PRE struct __ PACKED POST SOCK_RECVFROM_CNF_DATA Ttag
/** remote address information */
SOCK_ADDR_T tSa;
/** data */
uint8_t abBuffer[SOCK_LIMITS_MAX_PCK_SIZE];
}:
typedef struct SOCK_RECVFROM_CNF_Ttag SOCK RECVFROM_CNF_T;

__PACKED_PRE struct __ PACKED_POST SOCK_RECVFROM_CNF_Ttag

SOCK_PCKHEADER_T tHead;
SOCK_RECVFROM_CNF_DATA T tData;
}:
Packet description
Variable Type Value / Description
Range
ulDest uint32_t Destination Queue-Handle, unchanged
ulLen uint32_t 0x000000010 | Packet Data Length in bytes. Depends on the amount of received data
ulSta uint32_t See section Error codes and status codes on page 51.
ulCmd uint32_t | 0x0000961B | SOCK_CMD_RECVFROM_CNF
Data
tSa Union Remote Endpoint Address associated with the data. Only valid for
datagram sockets (UDP). See Table 4.
abPayload uint8_t Payload Data of received datagram or stream.
[1472]

Table 19: SOCK_CMD_RECVFROM_CNF — Packet

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

The application interface 27/57
3.2.7 Send To service

The application can use the Send To service to send data to a remote endpoint via a socket.

3.2.7.1 SOCK_CMD_SENDTO_REQ Packet

The application shall send this packet to the stack in order to send data to a remote endpoint via a
socket.

Packet structure reference
typedef struct SOCK_SENDTO_REQ DATA Ttag SOCK_SENDTO_REQ DATA T;

__PACKED_PRE struct __ PACKED_POST SOCK_SENDTO_REQ DATA Ttag
{
SOCK_H hSocket;
/** Reserved for future extensions set to zero */
uintle_t usFlags;
/** remote address information */
SOCK_ADDR_T tSa;
/** data */
uint8_t abBuffer[SOCK_LIMITS_MAX_PCK_SIZE];
}:

typedef struct SOCK_SENDTO_REQ Ttag SOCK_SENDTO_REQ T;

__PACKED_PRE struct __ PACKED_POST SOCK_SENDTO_REQ Ttag

SOCK_PCKHEADER_T tHead;
SOCK_SENDTO_REQ_DATA T tData;
};
Packet description
Variable Type Value / Range | Description
ulDest uint32_t Destination Queue-Handle.
ulLen uint32_t | 0x00000014 — | Packet Data Length in bytes. Depends on amount of data to send.
0x000005d4
ulCmd uint32_t | 0x0000961C SOCK_CMD_SENDTO_REQ
Data
hSocket uintl6_t Handle of a socket to retrieve data from
usFlags uintlé_t [0 Receive Flags. Reserved for future. Set to zero.
tSa Union Remote Endpoint Address to send the data to. Only valid for datagram
sockets. If set to zero for UDP Socket, a network broadcast will be
performed according current IP address configuration. See Table 4
For more information about this structure.
abPayload Fint8_]t Payload Data of send datagram or stream.
1472

Table 20: SOCK_CMD_SENDTO_REQ — Packet

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

The application interface 28/57
3.2.7.2 SOCK_CMD_SENDTO_CNF packet

The stack will return this packet to the application for the SOCK_CMD_SENDTO_REQ packet
when data was sent via the socket. If the socket is in Blocking Mode (default), the packet will not
be returned until the socket is closed or data has been sent

Packet structure reference
typedef struct SOCK_EMPTY_PCK_Ttag SOCK_SENDTO_CNF_T;

Packet description

Variable Type Value / Range | Description

ulDest uint32_t Destination Queue-Handle, unchanged

ulLen uint32_t | 0x000000000 Packet Data Length in bytes.

ulSta uint32_t See section Error codes and status codes on page 51.
ulCmd uint32_t | 0x0000961D SOCK_CMD_SENDTO_CNF

Table 21: SOCK_CMD_SENDTO_CNF — Packet

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

The application interface

29/57

3.2.8 Socket Close service

The application shall use the socket close service to close a socket. The service will close and

destroy the associated socket object.

3.2.8.1 SOCK_CMD_CLOSE_REQ packet

The application shall send this packet to the stack in order to close a socket object.

Packet structure reference
typedef struct SOCK_CLOSE_REQ DATA Ttag SOCK_CLOSE_REQ DATA T;

__PACKED_PRE struct __ PACKED POST SOCK_CLOSE_REQ DATA Ttag
/** Socket or file descriptor handle */

SOCK_H hSocket;

};
typedef struct SOCK_CLOSE _REQ Ttag SOCK_CLOSE REQ T;

__PACKED_PRE struct SOCK_CLOSE_REQ Ttag __ PACKED_POST

SOCK_PCKHEADER_T tHead;
SOCK_CLOSE_REQ_DATA_T tData;
}:
Packet description
Variable Type Value / Range | Description
ulDest uint32_t Destination Queue-Handle.
ulLen uint32_t | 0x00000002 Packet Data Length in bytes
ulCmd uint32_t | 0x00009602 SOCK_CMD_CLOSE_REQ
Data
hSocket ‘ uintl6é_t ‘ Handle of File Descriptor to close

Table 22: SOCK_CMD_CLOSE_REQ — Packet

Socket Interface | Packet Interface

DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

The application interface 30/57
3.2.8.2 SOCK_CMD_CLOSE_CNF packet

The stack will return this packet to the application after executing the SOCK_CMD_CLOSE_REQ
packet. The associated file or socket object has been destroyed, thus the socket handle is now
invalid. Closing a TCP socket may take up to 120 seconds delay. This is necessary according TCP
protocol specification in some states.

Packet structure reference
typedef struct SOCK_CLOSE_CNF_Ttag SOCK_CLOSE_CNF_T;

Packet description

Variable Type Value / Range | Description

ulDest uint32_t Destination queue handle, unchanged

ulLen uint32_t |0 Packet Data Length in bytes

ulSta uint32_t See section Error codes and status codes on page 51.
ulCmd uint32_t | 0x00009603 SOCK_CMD_CLOSE_CNF

Table 23: SOCK_CMD_CLOSE_CNF- Packet

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

The application interface 31/57
3.2.9 Socket Abort service

The application shall use the socket abort service to close a socket immediately. This service is
useful in the context of TCP connections. According to the TCP standard, a TCP socket must be
held open in a special state for twice the Maximum Segment Lifetime after closing it. (2x 60
seconds). This is necessary to make sure that all pending incoming fragments are collected and
acknowledged. During this time, the socket resource is still in use and cannot be reused by another
connection. In several circumstances, it might be required to force a connection close without this
timeout and immediately release the associated socket resource. This can be accomplished by
using this service. The service will close the socket and release the socket resource immediately.

Note: This service is not a general replacement for the 3.2.8 Socket Close service. It might
cause a violation of the TCP protocol and result in communication problems with
network peers!

3.2.9.1 SOCK_CMD_ABORT_REQ packet

The application shall send this packet to the stack in order to abort a connection.

Packet structure reference
typedef struct SOCK_ABORT REQ DATA Ttag SOCK_ABORT REQ DATA T;

__PACKED_PRE struct __ PACKED_POST SOCK_ABORT_REQ DATA_Ttag

SOCK_H hSocket;
};

typedef struct SOCK_ABORT_REQ_Ttag SOCK_ABORT_REQ T;

___PACKED_PRE struct __ PACKED_POST SOCK_ABORT REQ Ttag

SOCK_PCKHEADER_T tHead;
SOCK_ABORT_REQ_DATA_T tData;

}:

Packet description

Variable Type Value / Range | Description

ulDest uint32_t Destination Queue-Handle.

ulLen uint32_t | 0x00000002 Packet Data Length in bytes

ulCmd uint32_t | 0x0000961E SOCK_CMD_ABORT_REQ

Data

hSocket ‘ uint16_t ‘ Handle of File Descriptor to abort

Table 24: SOCK_CMD_ABORT_REQ — Packet

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

The application interface 32/57
3.2.9.2 SOCK_CMD_ABORT_CNF packet

The stack will return this packet to the application after executing the SOCK_CMD_ABORT_REQ
packet. Afterwards the associated file or socket object has been destroyed, thus the socket handle
is invalid then.

Packet structure reference
typedef struct SOCK_EMPTY_PCK_Ttag SOCK_ABORT_CNF_T;

Packet description

Variable Type Value / Range | Description

ulDest uint32_t Destination queue handle, unchanged

ulLen uint32_t |0 Packet Data Length in bytes

ulSta uint32_t See section Error codes and status codes on page 51.
ulCmd uint32_t | 0x0000961F SOCK_CMD_ABORT_CNF

Table 25: SOCK_CMD_ABORT_CNF- Packet

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

The application interface 33/57

3.2.10 Socket Poll service
The application shall use the socket poll service to wait for an event on a socket. The service will
return which file descriptors have pending events.

The service may be used in addition to be informed about IP address changes using the special
file descriptor SOCK_HANDLE_ IPV4CHANGE OxF00O0.

3.2.10.1 SOCK_CMD_POLL_REQ packet

The application shall send this packet in order to wait for file descriptors. The length of the packet
shall be set according the number of sockets to be polled. E.g. polling of two sockets results in 4 +
2 x4 =12 Bytes.

Packet structure reference
typedef enum SOCK POLL_EVENT Etag SOCK POLL_EVENT E;

/** poll event bitmask, these are defined similar to posix values */
enum SOCK_POLL_EVENT_Etag

{
SOCK_POLLIN = 0x0001,
SOCK_POLLPRI = 0x0002,
SOCK_POLLOUT = 0x0004,
SOCK_POLLERR = 0x0008,
SOCK_POLLHUP = 0x0010,
SOCK_POLLNVAL = 0x0020,

¥

typedef struct SOCK_POLL_ Ttag SOCK_POLL_T;
__ PACKED_PRE struct __ PACKED_POST SOCK_POLL_Ttag

/** The file handle to poll */

SOCK_H hSocket;
/** the events */

uintle_t usEventMsk;
};

typedef struct SOCK_POLL_REQ DATA Ttag SOCK_POLL_REQ DATA T;
__PACKED_PRE struct __ PACKED_POST SOCK_POLL_REQ DATA_Ttag

int32_t ilTimeout;

/** array of file descriptors to poll
*

* actual array size might be smaller and must be specified in header */
SOCK_POLL_T atFds[SOCK_LIMITS_MAX_ POLL];

}:

typedef struct SOCK_POLL REQ Ttag SOCK POLL REQ T;

__PACKED_PRE struct __ PACKED POST SOCK_POLL_REQ Ttag
SOCK_PCKHEADER_T tHead;

SOCK_POLL_REQ DATA T tData;
¥

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

The application interface 34/57

Packet description

Variable Type Value / Range | Description

ulDest uint32_t Destination Queue-Handle.

ulLen uint32_t | 0x00000004 - Packet Data Length in bytes. Depends on number of fds to poll
ulCmd uint32_t | 0x0000960A SOCK_CMD_POLL_REQ

Data

iITimeout INT32 Polling Timeout in milliseconds. Value 0 means to just check current

events and immediate return. Negative Value means infinite wait until
event occurs.

atFds[] Array X Array of poll descriptor. One entry for each file descriptor to poll
hSocket uintl6_t File descriptor handle
usEventMsk uintl6_t Event Mask to specify for which events to wait. Multiple events should

be combined by performing an OR-operation with the corresponding
bitmasks to a single value. Some events are always enabled. (E.g.

Errors)
Table 26: SOCK_CMD_POLL_REQ — Packet
Event Name Value Description
SOCK_POLLIN 0x0001 The socket is ready for reading data
SOCK_POLLPRI 0x0002 The socket has received high priority data and is ready for reading
SOCK_POLLOUT 0x0004 The socket is ready for writing data, or (depending on prior state)
The connection was established successfully
SOCK_POLLERR 0x0008 The socket had an error (always active)
If set, the error can be received with Get Socket Options service
SOCK_POLLHUP 0x0010 The remote peer has closed the connection (always active)
SOCK_POLLNVAL 0x0020 Invalid socket handle (always active)

Table 27: File descriptor poll event mask

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

The application interface 35/57

3.2.10.2 SOCK_CMD_POLL_CNF packet

The stack will immediately return this packet to the application if any of the polled file descriptors
has a pending event or a timeout of zero had been specified in the request. The packet will be
returned after the specified timeout duration if no event occurred within the given interval.

Packet structure reference
typedef struct SOCK_POLL_CNF_DATA Ttag SOCK_POLL_CNF DATA T;

__PACKED_PRE struct __ PACKED_POST SOCK_POLL_CNF_DATA_Ttag
{

/** number of fds with events */
int32_t i INumFd;

/** array of file descriptors to poll
*

* actual array size might be smaller and must be specified in header */
SOCK_POLL_T atFds[SOCK_LIMITS_MAX_POLL];

typedef struct SOCK_POLL CNF_Ttag SOCK POLL_CNF_T;

__PACKED_PRE struct _ PACKED_POST SOCK_POLL_CNF Ttag

SOCK_PCKHEADER_T tHead;
SOCK_POLL_CNF_DATA T tData;
};
Packet description
Variable Type Value / Range | Description
ulDest uint32_t Destination Queue-Handle, unchanged
ulLen uint32_t Packet Data Length in bytes, unchanged
ulSta uint32_t (0 See section Error codes and status codes on page 51.
ulCmd uint32_t | 0x0000960B SOCK_CMD_POLL_CNF
Data
iINumFd INT32 Number of file descriptor where an event occurred
atFds[] Array X Array of poll descriptor. One entry for each file descriptor to poll.
hSocket uintl6_t File descriptor handle, unchanged
usEventMsk uintl6_t Event Mask specifying which events occurred. Zero if no event
occurred for the corresponding file descriptor

Table 28: SOCK_CMD_POLL_CNF — Packet

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

The application interface

36/57

3.2.11 Socket Control service

The application shall use the socket control service to perform a specific control operation on a

socket. For example, you can use it to switch a socket into non-blocking mode.

The service supports the following modes:
e Set/Get Non-blocking I/O mode

0 SOCK _CMD_RECVFROM_REQ: The request will not wait until data is received.
0 SOCK_CMD_SENDTO_REQ: The request will not wait until all data is send (data

may be sent partially)

0 SOCK _CMD_ACCEPT_REQ: The request will not wait until client tries to connect

e Set/Get Non-blocking connect request

0 SOCK CMD_CONNECT_REQ: The request will be responded immediately with

status OK while the connection is established in background

Use the Poll service to check the status of the related socket.

3.2.11.1 SOCK_CMD_FCNTL_REQ packet

The application shall send this packet in order to perform a socket control.

Packet structure reference
typedef enum

SOCK_FCNTL_GETFL
SOCK_FCNTL_SETFL
3 SOCK_FCNTL_E;

3,
4,

enum SOCK_STATUS_FLAGS_Etag

/** Makes socket operations except connect non blocking */
SOCK_FL_O_NONBLOCK = 0x0800,

/** Makes socket operations including connect non blocking */

SOCK_FL_0O_NONBLOCK_CONNECT = 0x1000,

¥
typedef enum SOCK_STATUS_FLAGS_Etag SOCK_STATUS_ FLAGS_E;

__HIL_PACKED_PRE struct _ HIL_PACKED_POST SOCK_FCNTL_COM_Ttag

/** the file descriptor to perform the fcntl on */
SOCK_H hSocket;

/** the command to execute */

uintlé_t usFcntl;

}:
typedef struct SOCK_FCNTL_COM_Ttag SOCK_FCNTL_COM_T;

__HIL_PACKED_PRE struct _ HIL_PACKED_POST SOCK_FCNTL_FL_Ttag
{
/** the file descriptor to perform the fcntl on */
SOCK_H hSocket;
/** the command to execute */
uintlé_t usFcntl;
/** the status flags */
uint32_t ulStatusFlags;
}:
typedef struct SOCK_FCNTL_FL_Ttag SOCK_FCNTL_FL_T;

union SOCK_FCNTL_DATA_ Ttag

/** To access fTields common to all fcntl commands */
SOCK_FCNTL_COM_T tCom;
/** used for F_GETFL/F_SETFL */
SOCK_FCNTL_FL_T tFileStatus;
¥
typedef union SOCK_FCNTL_DATA_Ttag SOCK_FCNTL_DATA T;

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public

© Hilscher, 2014-2021

The application interface

37/57

__HIL_PACKED_PRE struct _ HIL_PACKED_POST SOCK_FCNTL_REQ Ttag

HIL_PACKET HEADER_T tHead;
SOCK_FCNTL_DATA T tData;

{Qpedef struct SOCK_FCNTL_REQ_Ttag SOCK_FCNTL_REQ_T;
__HIL_PACKED_PRE struct _ HIL _PACKED POST SOCK_FCNTL_CNF_ Ttag
HIL_PACKET HEADER T tHead;
SOCK_FCNTL_DATA_T tData;
{Qpedef struct SOCK_FCNTL_CNF_Ttag SOCK_FCNTL_CNF_T;
union SOCK_FCNTL_PCK_Ttag

SOCK_FCNTL_REQ T tReqs;
SOCK_FCNTL_CNF_T tCnf;

}:
typedef union SOCK_FCNTL_PCK_Ttag SOCK_FCNTL_PCK_T;

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public

© Hilscher, 2014-2021

The application interface

38/57

Packet description

Variable Type Value / Range | Description
ulDest uint32_t Destination Queue-Handle.
ulLen uint32_t | 0x00000004 - Packet Data Length in bytes. Depends on the particular operation.
ulCmd uint32_t | 0x0000960C SOCK_CMD_FCNTL_REQ
Data
tCom Struct X Union element describing the fields common to all fcntl operations
hSocket uintl6_t File descriptor handle
uskFcntl uintl6 t Fcntl command code. See Table 30.
tFileStatus Struct Union element for use with Get/Set File Descriptor Status Flag
command code
hSocket uintl6_t File descriptor handle
usFcntl uintl6_t Fcntl command code. See Table 30.
ulStatusFlags | uint32_t File descriptor status flags bitmask. See Table 31.

Table 29: SOCK_CMD_FCNTL_REQ — Packet

Command Name Value Description
SOCK_FCNTL_GETFL 3 Get a file descriptor status flag
SOCK_FCNTL_SETFL 4 Set a file descriptor status flag

Table 30: File descriptor Fentl command codes

Flag Name Value

Description

SOCK_FL_O_NONBLOCK 0x0800 | Non-blocking I/O Mode

SOCK_FL_O_NONBLOCK_CONNECT |0x1000 | Non-blocking Connect request

Table 31: File descriptor Get/Set Status Flag bitmasks

Socket Interface | Packet Interface

DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

The application interface

39/57

3.2.11.2 SOCK_CMD_FCNTL_CNF packet

The stack will return this packet to the application after performing the file descriptor control

operation.

Packet structure reference

typedef struct SOCK_FCNTL_CNF_Ttag SOCK_FCNTL_CNF_T;

__PACKED_PRE struct __ PACKED_POST SOCK_FCNTL_CNF_Ttag

SOCK_PCKHEADER_T tHead;
SOCK_FCNTL_DATA_T tData;

}:

Packet description

Variable Type Value / Range | Description

ulDest uint32_t Destination Queue-Handle, unchanged

ulLen uint32_t Packet Data Length in bytes, Depends on command and return code

ulSta uint32_t (0 See section Error codes and status codes on page 51.

ulCmd uint32_t | 0x0000960D SOCK_CMD_FCNTL_CNF

Data

tCom Struct X Union element describing the fields common to all fcntl operations
hSocket uintl6_t File descriptor handle, unchanged
uskFentl uintl6_t Fcntl command code. See Table 30, unchanged.

tFileStatus Struct Union element for use with Get/Set File Descriptor Status Flag

command code

hSocket uintl6_t File descriptor handle, unchanged
usFcntl uintl6 t Fcntl command code. See Table 30, unchanged.
ulStatusFlags | uint32_t File descriptor status flags bitmask. See Table 31.

Table 32: SOCK_CMD_FCNTL_CNF — Packet

Socket Interface | Packet Interface

DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

The application interface 40/57
3.2.12 Set Socket Options service
The application can use the set socket options service to configure socket options. Currently, the
stack supports the following options for TCP sockets:

Disable and enable the Naggle algorithm

Disable and enable the KeepAlive

Configure the timing values of KeepAlive

Configure the linger timeout

3.2121 SOCK_CMD_SETSOCKOPT_REQ packet

The application shall send this packet in order to configure a socket option

Packet structure reference
typedef struct SOCK_SETSOCKOPT REQ DATA Ttag SOCK_SETSOCKOPT REQ DATA T;

__PACKED_PRE struct __ PACKED_POST SOCK_SETSOCKOPT_REQ DATA Ttag

{
SOCK_H hSocket;

/** option level to set, value should be one of SOCK_IPPROTO_* enums */
uintle_t usLevel ;

uintle_t usOption;

uintle_t usReserved;

/* valid union field depends on usOption */

SOCK_SOCKOPT_T tOpt;
¥

typedef struct SOCK_SETSOCKOPT REQ Ttag SOCK_SETSOCKOPT REQ T;
__PACKED_PRE struct __ PACKED_POST SOCK_SETSOCKOPT REQ Ttag
SOCK_PCKHEADER_T tHead;

SOCK_SETSOCKOPT _REQ DATA_T tData;
e

typedef struct SOCK_EMPTY_PCK_Ttag SOCK_SETSOCKOPT CNF_T;

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

The application interface

41/57

Packet description

Variable Type Value / Range | Description
ulDest uint32_t Destination Queue-Handle.
ulLen uint32_t 0x00000010 Packet Data Length in bytes.
ulCmd uint32_t | 0x00009620 SOCK_CMD_SETSOCKOPT_REQ
Data
hSocket uintl6 t Socket Handle
usLevel uintl6_t 0,1o0r6 Protocol Level , a value of SOCK_IPPROTO_IP,
SOCK_IPPROTO_TCP or SOCK_SOL_SOCKET
usOption uintl6é_t The option to set, this is protocol specific. See section Options
structure definition on page 48.
usReserved uintl6_t 0 Reserved set to zero
tOpt UNION X
tOpt.tkeepAlivelntvl | STRUCT Use in case of usOption SOCK_TCP_KEEPINTVL
iKeeplintvl uint32_t | 1to 65535 The time in seconds between two non-acknowledged keep alive
probes.
IReserved int32_t 0 Reserved set to zero
tOpt.tKeepAliveldle | STRUCT Use in case of usOption SOCK_TCP_KEEPIDLE
IKeepldle uint32_t | 1to 65535 The time in seconds the connection needs to remain idle before starts
sending keep alive probes
IReserved int32_t 0 Reserved set to zero
tOpt.tKeepAliveCnt | STRUCT Use in case of usOption SOCK_TCP_KEEPCNT
IKeepCnt uint32_t 1 to 65535 Set to the number of keep alive probes to send before considering the
connection dead.
IReserved int32_t 0 Reserved set to zero
tOpt.tKeepAlive STRUCT Use in case of usOption SOCK_SO_KEEPALIVE
IKeepAlive uint32_t 0,1 Set to 0 to disable the keepalive feature, set to 1 to enable the
keepalive feature.
IReserved int32_t 0 Reserved set to zero
tLinger STRUCT Use in case of usOption SOCK_SO_L INGER
|ONnOff INT32 0,1 Set to 0 to disable the linger feature, set to 1 to enable the linger
feature.
ILinger INT32 0 to 65535 Linger timeout in seconds
tOpt.tTcpNoDelay | STRUCT Use in case of usOption SOCK_TCP_NODELAY
IEnabled int32_t Oor1l Set to 0 to enable Naggle Algorithm (Default) and to 1 to disable
Naggle Algorithm
IReserved int32_t 0 Reserved set to zero
tOpt.tReuseAddr STRUCT Use in case of usOption SOCK_SO_REUSEADDR
IReuseAddr Int32_t Set to 1 to enable reusage of sockets even if their wait time is not
expired.
IReserved int32_t 0 Reserved set to zero
tOpt.tError STRUCT Use in case of usOption SOCK_SO_ERROR
ulError uint32_t
IReserved int32_t 0 Reserved set to zero

Table 33: SOCK_SETSOCKOPT_REQ — Packet

Socket Interface | Packet Interface

DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public

© Hilscher, 2014-2021

The application interface 42/57

3.2.12.2 SOCK_CMD_SETSOCKOPT_CNF packet

The stack will return this packet to the application after applying the socket option to the socket.

Packet structure reference
typedef struct SOCK_EMPTY_PCK_Ttag SOCK_SETSOCKOPT_CNF_T;

Packet description

Variable Type Value / Range | Description

ulDest uint32_t Destination Queue-Handle, unchanged

ulLen uint32_t (0 Packet Data Length in bytes, Depends on command and return code
ulSta uint32_t (0 See section Error codes and status codes on page 51.

ulCmd uint32_t | 0x00009621 SOCK_CMD_SETSOCKOPT_CNF

Table 34: SOCK_CMD_SETSOCKOPT_CNF — Packet

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

The application interface 43/57
3.2.13 Get Socket Options service

The application can use this service to retrieve the current setting for a particular socket option.

3.2.13.1 SOCK_CMD_GETSOCKOPT_REQ packet

The application shall use this packet to retrieve the current setting of a socket option.
Packet structure reference

typedef struct SOCK_GETSOCKOPT_REQ_DATA_Ttag SOCK_GETSOCKOPT_REQ DATA_T;

__PACKED_PRE struct __ PACKED_POST SOCK_GETSOCKOPT_REQ DATA Ttag

SOCK_H hSocket;
uintle t usLevel ;
uintle t usOption;

: uintle t usReserved;

typedef struct SOCK_GETSOCKOPT_REQ Ttag SOCK_GETSOCKOPT_REQ T;
__PACKED_PRE struct __ PACKED POST SOCK_GETSOCKOPT REQ Ttag
SOCK_PCKHEADER_T tHead;

SOCK_GETSOCKOPT_REQ DATA T tData;
¥

Packet description

Variable Type Value / Range | Description

ulDest uint32_t Destination Queue-Handle.

ulLen uint32_t | 0x00000008 Packet Data Length in bytes. Depends on the particular operation.

ulCmd uint32_t | 0x00009622 SOCK_CMD_GETSOCKOPT_REQ

Data

hSocket uintl6 t Socket Handle

usLevel uintl6_t (0,1 o0r6 Protocol Level , a value of SOCK_IPPROTO_IP,
SOCK_IPPROTO_TCP or SOCK_SOL_SOCKET

usOption uintl6_t The option to get, this is protocol specific. See section Options
structure definition on page 48.

usReserved uintlé_t [0 Reserved

Table 35: SOCK_CMD_GETSOCKOPT_REQ — Packet

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

The application interface 44/57
3.2.13.2 SOCK_CMD_GETSOCKOPT_CNF packet
The stack will return this packet to the application in response to the application’s request.
Packet structure reference
typedef struct SOCK_GETSOCKOPT CNF_DATA Ttag SOCK_GETSOCKOPT CNF_DATA_ T:
/** Common Fields of every sockopt data */
__PACKED_PRE struct __ PACKED_POST SOCK_GETSOCKOPT_CNF_DATA Ttag
{
SOCK_H hSocket;
uintle_t usLevel ;
uintle_t usOption;
uintle_t usReserved;
/* valid union field depends on usOption */
SOCK_SOCKOPT_T tOpt;
};
typedef struct SOCK_GETSOCKOPT_CNF_Ttag SOCK_GETSOCKOPT_CNF_T;
__PACKED_PRE struct __ PACKED POST SOCK_GETSOCKOPT CNF_Ttag
SOCK_PCKHEADER_T tHead;
SOCK_GETSOCKOPT_CNF_DATA_T tData;
};
Packet description
Variable Type Value / Description
Range
ulDest uint32_t Destination Queue-Handle.
ulLen uint32_t 0, 0x10 Packet Data Length in bytes.
ulSta uint32_t 0 See section Error codes and status codes on page 51.
ulCmd uint32_t 0x00009623 | SOCK_CMD_GETSOCKOPT_CNF
Data
hSocket uint1l6_t Socket Handle, Unchanged from Request
usLevel uintl6_t Unchanged from Request
usOption uintl6_t Unchanged from Request
usReserved uintl16_t Ignore
tOpt UNION X See section Options structure definition on page 48 for details
(depends on value of field usOption)
tOpt UNION X
tOpt.tKeepAlivelntvl | STRUCT Use in case of usOption SOCK_TCP_KEEPINTVL
iKeeplintvl uint32_t The time in seconds between two non-acknowledged keep alive
probes.
IReserved int32_t 0 Reserved, ignore.
tOpt.tKeepAliveldle | STRUCT Use in case of usOption SOCK_TCP_KEEPIDLE
IKeepldle uint32_t The time in seconds the connection needs to remain idle before
starts sending keep alive probes
IReserved int32_t 0 Reserved, ignore.
tOpt.tKeepAliveCnt | STRUCT Use in case of usOption SOCK_TCP_KEEPCNT
IKeepCnt uint32_t 1 to 65535 The number of keep alive probes to send before considering the
connection dead.
IReserved int32_t 0 Reserved, ignore

Socket Interface | Packet Interface

DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

The application interface 45/57
tOpt.tKeepAlive STRUCT Use in case of usOption SOCK_SO_KEEPALIVE
IKeepAlive uint32_t 0 indicates disabled keepalive feature, 1 indicates enabled keepalive
feature.
IReserved int32_t 0 Reserved, ignore.
tLinger STRUCT Use in case of usOption SOCK_SO_L INGER
IONnOff INT32 0 indicates disabled linger feature, 1 indicates enabled linger feature.
ILinger INT32 0 to 65535 Linger timeout in seconds (only valid if enabled)
tOpt.tTcpNoDelay | STRUCT Use in case of usOption SOCK_TCP_NODELAY
IEnabled int32_t Oor1l 0 indicates enabled Naggle Algorithm, 1 indicates disabled Naggle
Algorithm
IReserved int32_t 0 Reserved, ignore.
tOpt.tReuseAddr STRUCT Use in case of usOption SOCK_SO_REUSEADDR
IReuseAddr Int32_t 0 indicates disabled socket reusage feature, 1 indicates enabled
reusage of sockets even if their wait time is not expired.
IReserved int32_t 0 Reserved, ignore.
tOpt.tError STRUCT Use in case of usOption SOCK_SO_ERROR
ulError uint32_t Returns the recently occurred Socket Error code.
IReserved int32_t 0 Reserved, ignore

Table 36: SOCK_CMD_GETSOCKOPT_CNF — Packet

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public

© Hilscher, 2014-2021

The application interface

46/57

3.2.14 Get Interface Addresses service

The application can use the get interface addresses service to retrieve the current interface
addresses, e. g. the IP Address.

3.214.1

SOCK_GETIFADDRS_REQ packet

The application shall send this packet in order to obtain the interface addresses.

Packet structure reference
typedef struct SOCK_EMPTY_PCK_Ttag SOCK_GETIFADDRS REQ T;

Packet description

Variable Type Value / Range | Description

ulDest uint32_t Destination Queue-Handle.
ulLen uint32_t | 0x00000000 Packet Data Length in bytes.
ulCmd uint32_t | 0x00009630 SOCK_CMD_GETIFADDRS_REQ

Table 37: SOCK_CMD_GETIFADDRS_REQ — Packet

3.2.14.2

SOCK_GETIFADDRS_CNF packet

The stack will return this packet to the application after receiving a SOCK_GETIFADDRS_REQ
packet to retrieve interface addresses. The confirmation data is an array of address entries, the
data length (tHead.ulLen) is used to indicate the number of entries. One interface (identified with
the same name (tEntry.szlfName)) could be associated to several entries:
If tEntry.tifAddress.tCommon.bFamily is equal to SOCK_AF_INET, it is an IPv4 address.
tNetmask and tBcastAddr are meaningful.
If tEntry.tIfAddress.tCommon.bFamily is equal to SOCK_AF_PACKET, it is a layer 2 address
(or hardware address). tNetmask and tBcastAddr are not meaningful.

Packet structure reference
typedef struct SOCK_EMPTY_PCK_Ttag SOCK_GETIFADDRS REQ T;

typedef struct SOCK_GETIFADDRS_ENTRY_Ttag SOCK_GETIFADDRS_ENTRY_T;

_ HIL_PACKED_PRE struct _ HIL_PACKED_POST SOCK_GETIFADDRS_ENTRY_Ttag

{

uint8_t

uint32_t

ulFlags;

szI1fName[8];

SOCK_ADDR_T tlfAddress;

SOCK_ADDR_T tNetmask;

SOCK_ADDR_T tBcastAddr;

e

typedef struct SOCK_GETIFADDRS_CNF DATA Ttag SOCK_GETIFADDRS_CNF_DATA T;

__HIL_PACKED_PRE struct _ HIL PACKED_POST SOCK_GETIFADDRS_CNF_DATA Ttag

{

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

The application interface

47157

#define SOCK_GETIFADDRS_MAX_NB_ENTRIES 8
SOCK_GETIFADDRS_ENTRY_T atEntries[SOCK_GETIFADDRS_MAX_NB_ENTRIES];

}

typedef struct SOCK_GETIFADDRS_CNF_Ttag SOCK_GETIFADDRS_CNF_T;

__HIL_PACKED_PRE struct _ HIL_PACKED_POST SOCK_GETIFADDRS_CNF_Ttag

HIL_PACKET_HEADER_T tHead;
SOCK_GETIFADDRS_CNF_DATA_T tData;

}:

Packet description

Variable Type Value / Range | Description

ulDest uint32_t Destination Queue-Handle, unchanged

ulLen uint32_t 0x00000039 Packet Data Length in bytes.

ulSta uint32_t 0 See section Error codes and status codes on page 51.

ulCmd uint32_t | 0x00009631 SOCK_CMD_GETIFADDRS_CNF

Data

atEntries STRUCT[Array of maximal 8 interface entries. One interface could be

8] represented by several entries.

Table 38: SOCK_CMD_GETIFADDRS_CNF — Packet

Variable Type Value / Range | Description

szIfName uint8_t[8] | “eth0” Interface Name.

ulFlags uint32_t Ignore. Reserved for interface flags for future use.

tipAddress SOCK_A Address assigned to interface
DDR_T

tNetmask SOCK_A Netmask assigned to interface, when the entry represents an IPv4
DDR_T address.

tBcastAddr SOCK_A Broadcast Address assigned to interface, when the entry represents
DDR_T an IPv4 address.

Table 39: SOCK_GETIFADDRS_ENTRY_T - Interface entry

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-

04 | Released | Public © Hilscher, 2014-2021

The application interface 48/57

3.3 Options structure definition

The Set Socket Options service (page 40) and the Get Socket Options service (page 43) use
options listed in this section.
/** TCP socket options */

enum

{
SOCK_TCP_NODELAY = 1,
SOCK_TCP_KEEPCNT = 0x05,
SOCK_TCP_KEEPIDLE = 0x06,
SOCK_TCP_KEEPINTVL = 0x07,
SOCK_SO_KEEPALIVE = 0x08,
SOCK_SO_LINGER = 0x09,
SOCK_SO_REUSEADDR = OxOA,
SOCK_SO_BROADCAST = OxOB,
SOCK_SO_ERROR = OxF1,

e

/** Set sockopt tcp no delay */
typedef struct SOCK_SOCKOPT_TCP_NODELAY_ Ttag SOCK_SOCKOPT_TCP_NODELAY T;

_ PACKED_PRE struct _ PACKED_POST SOCK_SOCKOPT_TCP_NODELAY_Ttag
{
/** Set to true if socket shall immediately send out the data */
int32_t lEnabled;
/** Padding to unique size. Set to zero in Set Sockopt Request,
* ignore in Get Sockopt Confirmation */
int32_t IReserved;

¥

typedef struct SOCK_SOCKOPT_TCP_KEEPALIVE_INTVL_Ttag SOCK_SOCKOPT_TCP_KEEPALIVE_INTVL_T;
_ PACKED_PRE struct __ PACKED_POST SOCK_SOCKOPT_TCP_KEEPALIVE_INTVL_Ttag
{

/* The time in seconds between two non-acknowledged keep alive probes. */

int32_t IKeeplntvl;

/** Padding to unique size. Set to zero in Set Sockopt Request,

* ignore in Get Sockopt Confirmation */

int32_t [IReserved;

¥

typedef struct SOCK_SOCKOPT_TCP_KEEPALIVE_IDLE_Ttag SOCK_SOCKOPT_TCP_KEEPALIVE_IDLE_T;
__ PACKED_PRE struct __ PACKED_POST SOCK_SOCKOPT_TCP_KEEPALIVE_IDLE_Ttag
{
/* The time in seconds the connection needs to remain idle before starts sending keep
* alive probes */
int32_t IKeepldle;
/** Padding to unique size. Set to zero in Set Sockopt Request,
* ignore in Get Sockopt Confirmation */
int32_t [IReserved;

e

typedef struct SOCK_SOCKOPT_TCP_KEEPALIVE_CNT_Ttag SOCK_SOCKOPT_TCP_KEEPALIVE_CNT T;
___PACKED_PRE struct __ PACKED_POST SOCK_SOCKOPT_TCP_KEEPALIVE_CNT_Ttag
{
/* The number of keep alive probes to send before considering the connection dead */
int32_t IKeepCnt;
/** Padding to unique size. Set to zero in Set Sockopt Request,
* ignore in Get Sockopt Confirmation */
int32_t IReserved;

¥
typedef struct SOCK_SOCKOPT TCP_KEEPALIVE_ Ttag SOCK_SOCKOPT TCP_KEEPALIVE T;
__PACKED_PRE struct __ PACKED POST SOCK_SOCKOPT TCP_KEEPALIVE_Ttag

/* Set to true (1) to enable keep alive or false (0) to disable it. */
int32_t IKeepAlive;
/** Padding to unique size. Set to zero in Set Sockopt Request,

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

The application interface

49/57

* ignore in Get Sockopt Confirmation */
int32_t [IReserved;

¥

typedef struct SOCK_SOCKOPT_TCP_LINGER Ttag SOCK_SOCKOPT TCP_LINGER T;
_PACKED_PRE struct __ PACKED POST SOCK_SOCKOPT TCP_LINGER Ttag

/* Set to true (1) to enable linger feature or false (0) to disable it. */
int32_t 10nOff;
/* Linger time to be used in seconds (if enabled). */
int32_t ILinger;
}:

typedef struct SOCK_SOCKOPT_SO_REUSEADDR_Ttag SOCK_SOCKOPT SO REUSEADDR_T;
_HIL_PACKED_PRE struct _ HIL_PACKED_POST SOCK_SOCKOPT_SO_REUSEADDR Ttag
{

/* Set to 1 to enable reusage of sockets even if their wait time is not expired. */

int32_t IReuseAddr;

/** Padding to unique size. Set to zero in Set Sockopt Request,
* ignore in Get Sockopt Confirmation */

int32_t [IReserved;

¥

typedef struct SOCK_SOCKOPT_SO_ERROR_Ttag SOCK_SOCKOPT_SO_ERROR_T;
__ PACKED_PRE struct __ PACKED_POST SOCK_SOCKOPT_SO_ERROR_Ttag
{
/* recently occurred Socket error. Can only be GET, not SET. */
uint32_t ulError;
/** Padding to unique size. Set to zero in Set Sockopt Request,
* ignore in Get Sockopt Confirmation */
int32_t [IReserved;

Socket Interface | Packet Interface

DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

The application interface 50/57
typedef union SOCK_SOCKOPT_Ttag SOCK_SOCKOPT_T;

union SOCK_SOCKOPT_Ttag

{
SOCK_SOCKOPT_TCP_NODELAY_T tTcpNoDelay;
SOCK_SOCKOPT_TCP_KEEPALIVE_INTVL_T tKeepAlivelntvl;
SOCK_SOCKOPT_TCP_KEEPALIVE_IDLE_T tKeepAliveldle;
SOCK_SOCKOPT_TCP_KEEPALIVE_CNT_T tKeepAliveCnt;
SOCK_SOCKOPT_SO_KEEPALIVE_T tKeepAlive;
SOCK_SOCKOPT_SO_LINGER_T tLinger;
SOCK_SOCKOPT_SO_ERROR_T tError;

};

The following commands are available for the usOption value of the SetSockOpt and GetSockOpt
request packets in order to select the option to access.

Command Name Value Description
SOCK_TCP_NODELAY 1 Disable or Enable Nagle Algorithm
SOCK_TCP_KEEPCNT 5 Set the number of keep alive probes send before considering the

connection dead.

SOCK_TCP_KEEPIDLE |6 The time in seconds the connection needs to remain idle before starts
sending keep alive probes

SOCK_TCP_KEEPINTVL |7 The time in seconds between two non-acknowledged keep alive probes.
Table 40: Socket options for protocol level SOCK_IPPROTO_IP and SOCK_IPPROTO_TCP

Command Name Value Description
SOCK_SO_KEEPALIVE |8 Enable/disable the keep alive feature.
SOCK_SO_LINGER 9 Configure the linger timeout, in order to set the maximum time of TIME-

WAIT state. After timeout, the socket resources are freed and the close
packet confirmation will be send. Remark: The on/off Boolean is in Socket
API not relevant. After a close packet has been transmitted, it always
“lingers” before transmitting the closing confirmation packet
SOCK_SO_ERROR OxF1 Get the last error code.

Table 41: Socket options for protocol level SOCK_SOL_SOCKET

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

Error codes and status codes

51/57

4 Error codes and status codes

The following status and error codes are used by the Socket interface component in ulSta.

Hexadecimal Value Definition
Description
0x00000000 SUCCESS_HIL_OK
Status ok.
0xC0C90001 ERR_SOCK_UNSUPPORTED_SOCKET
Unsupported socket domain, type and protocol combination.
0xC0C90002 ERR_SOCK_INVALID_SOCKET_HANDLE
Invalid socket handle.
0xC0C90003 ERR_SOCK_SOCKET_CLOSED
Socket was closed.
0xC0C90004 ERR_SOCK_INVALID_OP
The command is invalid for the particular socket.
0xC0C90005 ERR_SOCK_INVALID_ADDRESS_FAMILY
An invalid address family was used for this socket
0xC0C90006 ERR_SOCK_IN_USE
The specified address is already in use.
0xC0C90007 ERR_SOCK_HUP
The remote side closed the connection
0xC0C90008 ERR_SOCK_WOULDBLOCK
The operation would block
0xC0C90009 ERR_SOCK_ROUTE
No IP route to destination address.
0xCOC9000A ERR_SOCK_IS_CONNECTED
IP socket already connected.
0xC0C9000B ERR_SOCK_CONNECTION_ABORTED
TCP connection aborted.
0xC0C9000C ERR_SOCK_CONNECTION_RESET
TCP connection reset.
0xC0C9000D ERR_SOCK_CONNECTION_CLOSED
TCP connection closed.
0xCOC9000E ERR_SOCK_NOT_CONNECTED
IP Socket not connected.
0xCOC9000F ERR_SOCK_NETWORK_INTERFACE
Low-level network interface error.

Table 42: Socket API error codes

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public

© Hilscher, 2014-2021

Appendix 52/57

5 Appendix

5.1

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:
Table 18:
Table 19:
Table 20:
Table 21:
Table 22:
Table 23:
Table 24:
Table 25:
Table 26:
Table 27:
Table 28:
Table 29:
Table 30:
Table 31:
Table 32:
Table 33:
Table 34:
Table 35:
Table 36:
Table 37:
Table 38:
Table 39:
Table 40:
Table 41:
Table 42:

List of tables

[o)l =1V o o E PSPPSR OPPP TP 3
Terms, abbreviations and AefiNItIONS............ouiii it e st e e e e e et e e aae
OVEIVIEW OF SEIVICES ...eiiieiiiiitiit et e ettt oottt e oo e bttt e e e 4o e kbt b ettt e e e e e an b bttt e e e e e e e ab bbbt e e e e e e e nbbbbeeeeeeenannntbeeeas
Socket Address Union — SOCK _ADDR _T ..o,
SOCK_CMD_SOCKET _REQ — PACKEL......ceiiiiuuiieeiiiiie et e s iteee e sttt e e settae e s st e e e sstaeeeassaeessaaaeaeastaeaeanssaeessssaneeassneeeanns
010l (] 1 01T TP PP PUP PP OPPPPRPOPPPIS
Yo Tod (=] o] o) (o Tolo | £ USSP SEPT PP
Valid domain, Socket type and protoCcol COMBINALIONSuviiiiiiiiiiier e
SOCK_CMD_SOCKET_CNF — Packet..........cocvereiiiieeeiiire e

SOCK_CMD_BIND_REQ — PACKEL......ciutiiiiiiiie ettt ettt ettt e e st e e s anbn e e e snbne e e s nnbeee s
SOCK_CMD_BIND_CNF — PACKET......ceiueiiee it e seiiieeesiet e e sieee e sttt e e sstee e e st e e ettt e e e anteeeesnteeeseseeeeeanseeeesnnneeesanneeean
SOCK_CMD_CONNECT_REQ — Packet
SOCK_CMD_CONNECT_CNF — PACKELiiiiuieiieiiiiee ettt ettt sttt e ettt e e ettt e e e ante e e e snnneee s nnneee s
SOCK_CMD_LESTEN_REQ — PACKEL......uuiiiitiieeiiiiieeesit e e ettee e sttt e e e sttt e e staeae s tbeeeassteeeesnaaaesssbaeesansseeesnnsneesansenenn
SOCK_CMD_LESTEN_CNF = PACKEL.eeteiiuteieeitiieeesiit e eteee ettt e ettt e e sttt e e sttt e e s amte e e e snteeeasbbeeeeantneeesnnneeesnnneeean
SOCK_CMD_ACCEPT _REQ — PACKEL......cuiiiitiieeiitiieeesiit e e ettta e sttt e e e st e e e staaa e s tbeeeaastaeeesnaaaeassaeeesantaeeesnssnnesssseeean
SOCK_CMD_ACCEPT_CNF — Packet..........ccccvvernnee.

SOCK_CMD_RECVFROM_REQ — Packet

SOCK_CMD_RECVFROM_CNF — Packet

SOCK_CMD_SENDTO_REQ — Packet
SOCK_CMD_SENDTO_CNF — Packet
SOCK_CMD_CLOSE_REQ — Packet.....
SOCK_CMD_CLOSE_CNF- Packet......
SOCK_CMD_ABORT_REQ — Packet.....
SOCK_CMD_ABORT _CNF— PACKELcecutiteeitiieeiitiieeasit e e steea e sttt e e e sntee e e saeeaeastteeeeanteeeesnneeeeseseeeeeanseeeesnnneeesanneeean
SOCK_CMD_POLL_REQ — PACKEL......ciutiieiiiiit ettt ettt ettt ettt e et e e s st e e e sabne e e s nbbeee s
File descriptor poll event mask
SOCK_CMD_POLL_CNF — PACKET......ceiutiieeiieieeieiieeeesit e e steee e sttt e e ante e e e st e e sttt eesanteeeeeneeeeaeseeeeeanseeeesnnneeesanneeean
SOCK_CMD_FCNTL_REQ — PACKEL.ueeiiiiiieie ettt ettt sttt et e et e e s st e e nabne e e s nbneee s
File descriptor Fcntl command codes......................

File descriptor Get/Set Status Flag bitmasks
SOCK_CMD_FCNTL_CNF — Packet........ccccccecvvreennee.

SOCK_SETSOCKOPT _REQ — PACKEL.eeiiiiutiieeiiiiee et eteee ettt e ettt ettt a e sttt e e s snte e e e satea e e bb e e eanteeeesnnneeesnnneeean
SOCK_CMD_SETSOCKOPT_CNF — Packet
SOCK_CMD_GETSOCKOPT_REQ — Packet
SOCK_CMD_GETSOCKOPT_CNF — Packet
SOCK_CMD_GET IFADDRS_REQ — Packet
SOCK_CMD_GETIFADDRS_CNF — Packet
SOCK_GETIFADDRS_ENTRY_T - INTEIfACE ENIIY ...eciiiiiiiiiiiee ittt s
Socket options for protocol level SOCK_IPPROTO_IP and SOCK_IPPROTO_TCP
Socket options for protocol level SOCK_SOL_SOCKETccciuitiiiiiiieiiieee ittt sirre e
SOCKEL API BITON COURSooieiiieiitie ettt ettt ettt e e h bt e e e b et e e o kbt e e e aa et e e s bt e e e kbt e e s nbn e e e snbreeesnbbeee s

Socket Interface | Packet Interface

DOC140

401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

Appendix 53/57

5.2 Legal notes

Copyright
© Hilscher Gesellschatft fiir Systemautomation mbH
All rights reserved.

The images, photographs and texts in the accompanying materials (in the form of a user's manual,
operator's manual, Statement of Work document and all other document types, support texts,
documentation, etc.) are protected by German and international copyright and by international
trade and protective provisions. Without the prior written consent, you do not have permission to
duplicate them either in full or in part using technical or mechanical methods (print, photocopy or
any other method), to edit them using electronic systems or to transfer them. You are not permitted
to make changes to copyright notices, markings, trademarks or ownership declarations.
Illustrations are provided without taking the patent situation into account. Any company names and
product designations provided in this document may be brands or trademarks by the
corresponding owner and may be protected under trademark, brand or patent law. Any form of
further use shall require the express consent from the relevant owner of the rights.

Important notes

Utmost care wasl/is given in the preparation of the documentation at hand consisting of a user's
manual, operating manual and any other document type and accompanying texts. However, errors
cannot be ruled out. Therefore, we cannot assume any guarantee or legal responsibility for
erroneous information or liability of any kind. You are hereby made aware that descriptions found
in the user's manual, the accompanying texts and the documentation neither represent a
guarantee nor any indication on proper use as stipulated in the agreement or a promised attribute.
It cannot be ruled out that the user's manual, the accompanying texts and the documentation do
not completely match the described attributes, standards or any other data for the delivered
product. A warranty or guarantee with respect to the correctness or accuracy of the information is
not assumed.

We reserve the right to modify our products and the specifications for such as well as the
corresponding documentation in the form of a user's manual, operating manual and/or any other
document types and accompanying texts at any time and without notice without being required to
notify of said modification. Changes shall be taken into account in future manuals and do not
represent an obligation of any kind, in particular there shall be no right to have delivered
documents revised. The manual delivered with the product shall apply.

Under no circumstances shall Hilscher Gesellschaft fir Systemautomation mbH be liable for direct,
indirect, ancillary or subsequent damage, or for any loss of income, which may arise after use of
the information contained herein.

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

Appendix 54/57

Liability disclaimer

The hardware and/or software was created and tested by Hilscher Gesellschaft fir
Systemautomation mbH with utmost care and is made available as is. No warranty can be
assumed for the performance or flawlessness of the hardware and/or software under all application
conditions and scenarios and the work results achieved by the user when using the hardware
and/or software. Liability for any damage that may have occurred as a result of using the hardware
and/or software or the corresponding documents shall be limited to an event involving willful intent
or a grossly negligent violation of a fundamental contractual obligation. However, the right to assert
damages due to a violation of a fundamental contractual obligation shall be limited to contract-
typical foreseeable damage.

It is hereby expressly agreed upon in particular that any use or utilization of the hardware and/or
software in connection with

Flight control systems in aviation and aerospace;
Nuclear fission processes in nuclear power plants;
Medical devices used for life support and

Vehicle control systems used in passenger transport

shall be excluded. Use of the hardware and/or software in any of the following areas is strictly
prohibited:

For military purposes or in weaponry;

For designing, engineering, maintaining or operating nuclear systems;
In flight safety systems, aviation and flight telecommunications systems;
In life-support systems;

In systems in which any malfunction in the hardware and/or software may result in physical
injuries or fatalities.

You are hereby made aware that the hardware and/or software was not created for use in
hazardous environments, which require fail-safe control mechanisms. Use of the hardware and/or
software in this kind of environment shall be at your own risk; any liability for damage or loss due to
impermissible use shall be excluded.

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

Appendix 55/57

Warranty

Hilscher Gesellschaft fir Systemautomation mbH hereby guarantees that the software shall run
without errors in accordance with the requirements listed in the specifications and that there were
no defects on the date of acceptance. The warranty period shall be 12 months commencing as of
the date of acceptance or purchase (with express declaration or implied, by customer's conclusive
behavior, e.g. putting into operation permanently).

The warranty obligation for equipment (hardware) we produce is 36 months, calculated as of the
date of delivery ex works. The aforementioned provisions shall not apply if longer warranty periods
are mandatory by law pursuant to Section 438 (1.2) BGB, Section 479 (1) BGB and Section 634a
(1) BGB [Burgerliches Gesetzbuch; German Civil Code] If, despite of all due care taken, the
delivered product should have a defect, which already existed at the time of the transfer of risk, it
shall be at our discretion to either repair the product or to deliver a replacement product, subject to
timely notification of defect.

The warranty obligation shall not apply if the notification of defect is not asserted promptly, if the
purchaser or third party has tampered with the products, if the defect is the result of natural wear,
was caused by unfavorable operating conditions or is due to violations against our operating
regulations or against rules of good electrical engineering practice, or if our request to return the
defective object is not promptly complied with.

Costs of support, maintenance, customization and product care

Please be advised that any subsequent improvement shall only be free of charge if a defect is
found. Any form of technical support, maintenance and customization is not a warranty service, but
instead shall be charged extra.

Additional guarantees

Although the hardware and software was developed and tested in-depth with greatest care,
Hilscher Gesellschaft fir Systemautomation mbH shall not assume any guarantee for the suitability
thereof for any purpose that was not confirmed in writing. No guarantee can be granted whereby
the hardware and software satisfies your requirements, or the use of the hardware and/or software
is uninterruptable or the hardware and/or software is fault-free.

It cannot be guaranteed that patents and/or ownership privileges have not been infringed upon or
violated or that the products are free from third-party influence. No additional guarantees or
promises shall be made as to whether the product is market current, free from deficiency in title, or
can be integrated or is usable for specific purposes, unless such guarantees or promises are
required under existing law and cannot be restricted.

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

Appendix 56/57

Confidentiality

The customer hereby expressly acknowledges that this document contains trade secrets,
information protected by copyright and other patent and ownership privileges as well as any related
rights of Hilscher Gesellschaft fir Systemautomation mbH. The customer agrees to treat as
confidential all of the information made available to customer by Hilscher Gesellschaft fir
Systemautomation mbH and rights, which were disclosed by Hilscher Gesellschaft flr
Systemautomation mbH and that were made accessible as well as the terms and conditions of this
agreement itself.

The parties hereby agree to one another that the information that each party receives from the
other party respectively is and shall remain the intellectual property of said other party, unless
provided for otherwise in a contractual agreement.

The customer must not allow any third party to become knowledgeable of this expertise and shall
only provide knowledge thereof to authorized users as appropriate and necessary. Companies
associated with the customer shall not be deemed third parties. The customer must obligate
authorized users to confidentiality. The customer should only use the confidential information in
connection with the performances specified in this agreement.

The customer must not use this confidential information to his own advantage or for his own
purposes or rather to the advantage or for the purpose of a third party, nor must it be used for
commercial purposes and this confidential information must only be used to the extent provided for
in this agreement or otherwise to the extent as expressly authorized by the disclosing party in
written form. The customer has the right, subject to the obligation to confidentiality, to disclose the
terms and conditions of this agreement directly to his legal and financial consultants as would be
required for the customer's normal business operation.

Export provisions

The delivered product (including technical data) is subject to the legal export and/or import laws as
well as any associated regulations of various countries, especially such laws applicable in
Germany and in the United States. The products / hardware / software must not be exported into
such countries for which export is prohibited under US American export control laws and its
supplementary provisions. You hereby agree to strictly follow the regulations and to yourself be
responsible for observing them. You are hereby made aware that you may be required to obtain
governmental approval to export, reexport or import the product.

Socket Interface | Packet Interface
DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public © Hilscher, 2014-2021

Appendix

57/57

5.3 Contacts

Headquarters

Germany

Hilscher Gesellschaft fiir
Systemautomation mbH
Rheinstrasse 15

65795 Hattersheim

Phone: +49 (0) 6190 9907-0
Fax: +49 (0) 6190 9907-50
E-Mail: info@hilscher.com

Support
Phone: +49 (0) 6190 9907-99
E-Mail: de.support@hilscher.com

Subsidiaries

China

Hilscher Systemautomation (Shanghai) Co. Ltd.

200010 Shanghai
Phone: +86 (0) 21-6355-5161
E-Mail: info@hilscher.cn

Support
Phone: +86 (0) 21-6355-5161
E-Mail: cn.support@hilscher.com

France

Hilscher France S.a.r.l.

69800 Saint Priest

Phone: +33 (0) 4 72 37 98 40
E-Mail: info@hilscher.fr
Support

Phone: +33 (0) 4 72 37 98 40
E-Mail: fr.support@hilscher.com

India

Hilscher India Pvt. Ltd.
Pune, Delhi, Mumbai
Phone: +91 8888 750 777

E-Mail: info@hilscher.in

Italy

Hilscher ltalia S.r.l.

20090 Vimodrone (Ml)

Phone: +39 02 25007068
E-Mail: info@hilscher.it
Support

Phone: +39 02 25007068
E-Mail: it.support@hilscher.com

Japan

Hilscher Japan KK

Tokyo, 160-0022

Phone: +81 (0) 3-5362-0521
E-Mail: info@hilscher.jp
Support

Phone: +81 (0) 3-5362-0521
E-Mail: jp.support@hilscher.com

Korea

Hilscher Korea Inc.

Seongnam, Gyeonggi, 463-400
Phone: +82 (0) 31-789-3715
E-Mail: info@hilscher.kr

Switzerland

Hilscher Swiss GmbH

4500 Solothurn

Phone: +41 (0) 32 623 6633
E-Mail: info@hilscher.ch

Support
Phone: +49 (0) 6190 9907-99
E-Mail: ch.support@hilscher.com

USA

Hilscher North America, Inc.
Lisle, IL 60532

Phone: +1 630-505-5301
E-Mail: info@hilscher.us

Support
Phone: +1 630-505-5301
E-Mail: us.support@hilscher.com

Socket Interface | Packet Interface

DOC140401APIO7EN | Revision 7 | English | 2021-04 | Released | Public

© Hilscher, 2014-2021

mailto:info@hilscher.com
mailto:de.support@hilscher.com
mailto:info@hilscher.cn
mailto:cn.support@hilscher.com
mailto:info@hilscher.fr
mailto:fr.support@hilscher.com
mailto:info@hilscher.in
mailto:info@hilscher.it
mailto:it.support@hilscher.com
mailto:info@hilscher.jp
mailto:jp.support@hilscher.com
mailto:info@hilscher.kr
mailto:info@hilscher.ch
mailto:ch.support@hilscher.com
mailto:info@hilscher.us
mailto:us.support@hilscher.com

	1 Introduction
	1.1 About this document
	1.2 List of revisions
	1.3 Terms, abbreviations and definitions
	1.4 Functional overview
	1.5 System requirements
	1.6 Intended audience
	1.7 Specifications
	1.7.1 Technical data
	1.7.2 Limitations

	2 Socket communication
	2.1 User Datagram Protocol
	2.2 Transmission Control Protocol
	2.2.1 Server application
	2.2.2 Client application
	2.2.3 IP Address change handling (application view)

	3 The application interface
	3.1 Overview
	3.2 Description of packets
	3.2.1 Socket services
	3.2.1.1 SOCK_CMD_SOCKET_REQ packet
	3.2.1.2 SOCK_CMD_SOCKET_CNF packet

	3.2.2 Bind service
	3.2.2.1 SOCK_CMD_BIND_REQ packet
	3.2.2.2 SOCK_CMD_BIND_CNF packet

	3.2.3 Connect service
	3.2.3.1 SOCK_CMD_CONNECT_REQ packet
	3.2.3.2 SOCK_CMD_CONNECT_CNF packet

	3.2.4 Listen Service
	3.2.4.1 SOCK_CMD_LISTEN_REQ packet
	3.2.4.2 SOCK_CMD_LISTEN_CNF packet

	3.2.5 Accept service
	3.2.5.1 SOCK_CMD_ACCEPT_REQ packet
	3.2.5.2 SOCK_CMD_ACCEPT_CNF packet

	3.2.6 Receive From service
	3.2.6.1 SOCK_CMD_RECVFROM_REQ packet
	3.2.6.2 SOCK_CMD_RECVFROM_CNF packet

	3.2.7 Send To service
	3.2.7.1 SOCK_CMD_SENDTO_REQ Packet
	3.2.7.2 SOCK_CMD_SENDTO_CNF packet

	3.2.8 Socket Close service
	3.2.8.1 SOCK_CMD_CLOSE_REQ packet
	3.2.8.2 SOCK_CMD_CLOSE_CNF packet

	3.2.9 Socket Abort service
	3.2.9.1 SOCK_CMD_ABORT_REQ packet
	3.2.9.2 SOCK_CMD_ABORT_CNF packet

	3.2.10 Socket Poll service
	3.2.10.1 SOCK_CMD_POLL_REQ packet
	3.2.10.2 SOCK_CMD_POLL_CNF packet

	3.2.11 Socket Control service
	3.2.11.1 SOCK_CMD_FCNTL_REQ packet
	3.2.11.2 SOCK_CMD_FCNTL_CNF packet

	3.2.12 Set Socket Options service
	3.2.12.1 SOCK_CMD_SETSOCKOPT_REQ packet
	3.2.12.2 SOCK_CMD_SETSOCKOPT_CNF packet

	3.2.13 Get Socket Options service
	3.2.13.1 SOCK_CMD_GETSOCKOPT_REQ packet
	3.2.13.2 SOCK_CMD_GETSOCKOPT_CNF packet

	3.2.14 Get Interface Addresses service
	3.2.14.1 SOCK_GETIFADDRS_REQ packet
	3.2.14.2 SOCK_GETIFADDRS_CNF packet

	3.3 Options structure definition

	4 Error codes and status codes
	5 Appendix
	5.1 List of tables
	5.2 Legal notes
	5.3 Contacts

